# Chern Classes and Intersection Theory (Wednesday, November 03) ## Chern Classes > See Eisenbud and Harris, 3264 and All That, and Fulton. :::{.theorem title="Klein's Transversality Theorem"} Let $G \in \Alg\Grp$ act transitively on $X$ over $k = \kbar$ with $\ch k = 0$ and let $Y \leq X$ be a subvariety. a. If $Z\leq X$ is a subvariety then there is an open dense subset of group elements $U \subseteq G$ such that $gZ \transverse Y$ generically. b. If $\phi: Z\to X$ is a morphism of varieties, then for a generic $g\in G$, the preimage $\phi\inv(gY)$ is generally reduced and is of the same codimension as $Y$. c. If $G$ is affine then $[gY] = [Y]$ in the Chow group $A(X)$. ::: :::{.remark} See ELC article, a consequence is Bertini's theorem. ::: :::{.lemma title="?"} Suppose $\mce \in \VectBundlerk{r}\slice {Y}$ and let $1\leq i\leq r$. Let $\sigma_0, \cdots, \sigma_{r-i}$ be global sections of $\mce$ and $Y_{\sigma} = Y( \sigma_0 \wedgeprod \cdots \wedgeprod \sigma_{r-i})$ be the degeneracy locus where they are linearly dependent, so \( \sigma_0 \wedgeprod \cdots \wedgeprod \sigma_{r-i} \) are sections of $\Extalg^{r-i+1} \mce \to Y$. Then a. No component of $Y_{ \sigma}$ has codimension greater than $i$, b. If the \( \sigma_i \) are general elements of $\mods{\CC}$ and \( V \subseteq H^0(\mce) \) be a subset of global sections generating $\mce$, then $Y_{ \sigma}$ is generically reduced with codimension $i$ in $Y$. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/FlagVarieties/sections/figures}{2021-11-03_14-06.pdf_tex} }; \end{tikzpicture} ::: :::{.remark} For affine $Y$, locally thinking of functions, either $f$ hits or misses completely any given irreducible component. ::: :::{.proof title="of b"} Let $V\in\mods{\CC}$ with $\dim_\CC V = m$ be the module of global sections \( \sigma_0, \cdots, \sigma_{m-1} \) generating $\mce$, and let $\phi:Y\to \Gr_{m-r}(V)$ be given by $y \mapsto \ker(V\to \mce_y)$. If $W \leq V$ is a submodule of dimension $r-i+1$ spanned by \( \sigma_0, \cdots, \sigma_{r-i} \), then the locus $Y_{ \sigma} \subseteq Y$ is the preimage $\phi\inv (X_{\lambda}(W))$. ::: :::{.remark} We can write $X = \Gr_{m-r}(V) = G/P$ for $G = \GL(V)$ to realize it as a projective homogeneous variety. Then $X_{\lambda}(W) = \ts{E \in \Gr_{m-r}(V) \st \dim(W \intersect E ) \geq 1}$ is a Schubert variety for any subspace $0 \leq W \leq V$. In Young diagrams for a partition \( \lambda \), this condition corresponds to a valley: ![](figures/2021-11-03_14-22-15.png) ::: :::{.theorem title="?"} There is a unique way of assigning to each vector bundle $\mce$ on a $X$ (assumed smooth) a class $c(\mce) = 1 + c_1(\mce) + c_2(\mce) + \cdots \in A(X)$, noting that smooth $X$ guarantees a ring structure on the Chow group. These satisfy a. (Line bundles): If $\mcl\to X$ is a line bundle then $c(\mcl) = 1 + c_1(\mcl)$ where $c_1(\mcl) \in A^1(X)$ is the class of the divisor of zeros minus the divisor of poles of any rational section of $\mcl$, defined up to rational equivalence in $A(X)$. b. (Degeneracy locus): If \( \sigma_0, \cdots, \sigma_{r-i} \) are global sections of $\mce$ and the degeneracy/dependence locus $Y_{ \sigma} \subseteq X$ has codimension $i$, then $c_i(\mce) = [X_{ \sigma} ] \in A^i(X)$ c. (Whitney's formula): If $0 \to \mce \to \mcf \to \mcg \to 0$ is a SES in $\VectBundle\slice X$, then $c(\mcf) = c(\mce)c(\mcg) \in A(X)$. d. (Functoriality/compatibility with pullback): If $\phi:X\to Y$ then $\phi^*(c(\mce)) = c(\phi^*(\mce))$. ::: :::{.remark} This induces a map $c: \K(X) \to A(X)$. Note that you can compose this with the cycle class map $A(X)\to H^*_{\sing}(X)$. ::: ## Singular Cohomology > See Anderson-Fulton. :::{.remark} We can define a total Chern class $c(\mce) = \sum_i c_i(\mce) u^i \in R[u]$ for $R\da H^*_{\sing}(X)$. ::: :::{.proposition title="?"} Setup: take $X$ paracompact and Hausdorff/T2, which will be necessary for partitions of unity. For $\mce \mapsvia{\pi} X \in \VectBundle(\CC)\slice X$, there exist $c_i(\mce)\in H^{2i}(X)$ satisfying 1. If $f:X\to Y \in \Top$ then $f^*(c_i(\mce)) = c_i(f^* \mce)$. 2. $c_i(\mce) = 0$ unless $o\leq i \leq r\da \rank(\mce)$, and $c_0(\mce) = 1$ 3. Exact sequences of vector bundles yield Whitney's formula. If additionally $X$ is smooth, 4. If $\mcl, \mcm$ are line bundles, then $c_1(\mcl \tensor \mcm) = c_1(\mcl) + c_1(\mcm)$. 5. If $s:X\to \mcl$ is a nonzero section, writing $Z(s) \subseteq X$ for its zero set, $[Z(s)] = c_1(\mcl) \in H^2(X)$. 6. For the projectivization $\pi: \PP(\mce)\to X$, there is a Poincaré duality: considering $\OO(-1) \subseteq \pi^* \mce$ and its dual $\OO(1)$, \[ H^*(\PP(\mce)) = H^*(X)[\zeta] / \gens{ \zeta^r - c_1(\mce\dual)\zeta^{r-1} + \cdots + (-1)^r c_r(\mce\dual) } .\] ::: > This is the tautological bundle, to be continued on Friday!