# Friday, November 12 :::{.example title="Projective space"} Let $G\actson X \in \mods{\CC}^{\dim = n}$ be a linear algebraic group acting on a $\CC\dash$module of dimension $n$, then there is a morphism $G\to \GL_n$ and we'll regard $G \subseteq \GL_n$. Then $G\actson \PP^n$: - $\PP(V) = \leftquotient{\CC\units}{V\smz}$, and $G$ acts linearly and commutes with scalar multiplication. - $\PP(V) = \GL_n / P$ and the $G\dash$action descends since the projection $\GL_n\to \GL_n/P$ is $\GL_n\dash$equivariant. Note that $G$ also acts on the tautological bundle $\OO(-1)$, since these are lines. We can write $\OO(-1) = \GL_n \mix{P} \CC_{\tv{1,0,\cdots, 0}}$, using the identification $X^*(T) = \ZZ\cartpower{n}$ and taking the character associated to $\tv{t_1,\cdots, t_n}\mapsto t_1$. Note that $\OO(-1) \to\GL_n/P$ is $\GL_n$ equivariant. Write $\zeta \da c_1^G(\OO(1)) \in H_G^2(\PP(V))$ for the equivariant Chern classes. Recall that if $\GL_n \mix{P} \CC_{\lambda} \to \GL_n/P$ for $\lambda \in X^*(T)$ is a $G\dash$equivariant bundle, we can construct $E\mix{G} \GL_n\mix{P} \CC_{\lambda} \to E\mix{G} \GL_n/P \cong E\mix{G} \times \PP^{n-1}$, and the base here corresponds to $H^*_G(\PP^{n-1})$. This induces $E\mix{G} \PP^{n-1} \to E/G = \BG$, where now the base corresponds to $H^*_G(\pt)$. ::: :::{.proposition title="?"} \[ H^*_G(\PP(V)) \iso H^*_G(\pt)[\zeta] / \gens{\sum_{k=0}^n c_k \zeta^{n-k}} .\] ::: :::{.proof title="?"} Given $\mce\to X$, we know $H^*(\PP(\mce))$ in terms of $H^*(\pt)$. We have \begin{tikzcd} {E\mix{G} \GL_n/P} && {\PP(E\mix{G} \GL_n \mix{P} \CC_\lambda)} \\ \\ {E/G = \BG} && \BG \arrow["{=}", from=1-1, to=1-3] \arrow[from=1-1, to=3-1] \arrow["{=}"', from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJFXFxtaXh7R30gXFxHTF9uL1AiXSxbMCwyLCJFL0cgPSBcXEJHIl0sWzIsMCwiXFxQUChFXFxtaXh7R30gXFxHTF9uIFxcbWl4e1B9IFxcQ0NfXFxsYW1iZGEpIl0sWzIsMiwiXFxCRyJdLFswLDIsIj0iXSxbMCwxXSxbMSwzLCI9IiwyXSxbMiwzXV0=) So $\xi$ is a hyperplane class for a projective bundle, and thus $c_i^G(V) = c_i(E\mix{G} V)$. ::: :::{.example} For $G = \GL_n$, we have $H^*_G(\pt) = \ZZ[c_1,\cdots, c_n] \subseteq \ZZ[t_1,\cdots, t_n] = H^*_T(\pt)$. So $H^*_G \PP(V) = \ZZ[c_1,\cdots, c_n][\zeta]/\gens{\zeta^n + c_1\zeta^{n-1} + \cdots + c_n}$. ::: :::{.example title="?"} For $G=T$, $H^*_T(\PP(V)) = \ZZ[t_1,\cdots, t_n][\zeta] / \gens{\prod_{1\leq i \leq n} \zeta + t_i}$ where $c_i^T(V) = e_2(t_1,\cdots, t_n)$. ::: :::{.theorem title="Localization in equivariant cohomology"} Let $X$ be an $n\dash$dimensional smooth algebraic variety with finitely many $T\dash$fixed points. Write $X^T$ for the fixed point locus, write $c \da \prod_{p\in X^T} c_n^T(\T_p X) \in H^*_T(\pt)$, noting that since $X$ is smooth these are all the same dimension. Let $S \subseteq H^*_T(\pt)$ be a multiplicative set containing $c$, which is nonzero since the fixed points are isolated. Assume there are $m\leq \size X^T$ classes in $H_T^*(X)$ restricting to a basis of $H^*(X)$. Then there are isomorphisms induced by \[ H^*_T(X)\localize{S} &\mapsvia{S\inv i^*} H^*_T(X^T)\localize{S} \\ H^*_T(X^T)\localize{S} &\mapsvia{S\inv i_*} H^*_T(X)\localize{S} .\] Note that $X^T \mapsvia{i} X$ is $T\dash$equivariant, so $i^*$ on $H^*$ descends to $H_T^*$. By Poincaré duality, we get $\bar{H}(X^T) \to \bar{H}(X)$. Without the localization, there is still an injection: \[ H_T^*(X) \mapsvia{\iota^*} H^*_T(X^T) = \bigoplus H^*_T(\pt) .\] ::: :::{.remark} Note that $H^*_T(\pt; \ZZ) = \ZZ[t_1,\cdots, t_n]$ and $H^*(\pt; \CC) = \CC[t_1,\cdots, t_n] = S(\lieh\dual)$, the symmetric algebra on the Cartan. This comes up when looking at Soergel bimodules. Compare to $\K^T(\pt) = R(T)$, the representation ring. ::: :::{.example title="?"} For projective space, let $T$ be any torus that acts linearly on a $n\dash$dimensional $\CC\dash$module. Then $V = \bigoplus_i C_{\lambda_i}$ for some characters $\lambda_i$. Assume the $\lambda_i$ are distinct, then \[ H^*_T(\PP^{n-1}) = H^*_T(\pt)[\zeta]/\gens{\prod \zeta + \lambda_i} ,\] where $\zeta = c_1^T(\OO(1))$. So write $X^T$ as the set of coordinate lines for $X = \PP^{n-1} = \PP(V)$, i.e. for $p_i\da \tv{0,0,\cdots, 0,1,0,\cdots,0}$, $X^T = \ts{p_1,\cdots, p_n}$. The tangent spaces are given by $\T_{p_i} \PP^{n-1} = \bigoplus_{j\neq i} \CC_{\lambda_j - \lambda_i} = \T_{p_i} U_i$ where $U_i \cong \CC^{n-1}$ by dividing out by the $i$th coordinate, so \[ t\tv{x_1: \cdots : 1:\cdots x_n} &= \tv{t_1x_1: \cdots : t_i \cdot 1: \cdots t_n x_n } \\ &= \tv{{t_1\over t_i} x_1 : \cdots: 1 : \cdots {t_n \over t_i} x_n} .\] Thus $(\lambda_j - \lambda_i)(t) = t_1/t_i$. Thus $c_{n-1}^T(\T_{p_i} \PP^{n-1}) = \prod_{j\neq i} (\lambda_j - \lambda_i)$. ::: :::{.proposition} A self-intersection formula: if $i:Y\injects X$ is a closed embedding of codimension $d$ with normal bundle $N$ of rank $d$, then \[ i^* i_* ( \alpha) = c_d(N) \alpha .\] ::: :::{.exercise title="?"} Show that the following composite is diagonal: \[ H_T\sumpower{n} \to H_T(\PP^{n-1}) \to H_T\sumpower{n} .\] What is the determinant? :::