# Sasha's Talk (Monday, November 29) :::{.remark} Topic: Segal-Sagawara construction. Define $\mathrm{Witt} = \Lie(\Diff^+ S^1)$, regarded as polynomial vector fields on $S^1$. $H^2(\mathrm{Witt}; \CC) = \CC$, so there is a 1-dimensional space of central extensions, with a distinguished one: the Virasoro algebra. There is a SES $0 \to\CC\mathrm{charge} \to \mathrm{Vir} \to \mathrm{Witt}\to 0$, and for $LG\da C^\infty(S^1, G)$, a SES $0\to S^1 \to \tilde{LG} \to LG\to 0$. Here $\mathrm{charge}$ is some distinguished central element. Does the Virasoro group act on this extension? Not quite, but almost -- pass to Lie algebras to get $0\to \CC\to \tilde{L\lieg}\to \lieg \to 0$. Theorem: for $\rho: \tilde{L\lieg} \to \Endo_\CC(V)$ an admissible representation, there is a representation $\rho': \mathrm{Vir}\to \Endo_\CC(V)$. Note $L\lieg \da \lieg \tensor_\CC \CC[t, t\inv]$. Write $X_i \gens{m} \da X_i\tensor m$. ::: :::{.remark} Admissible representations: for all $v\in V$ and $X\in\lieg$, there exists an $m$ such that $\rho(X\gens{m})(v) = 0$. Define the Casimir element $\sum_i X_i X^i \in Z(\mcu(\lieg))$. Levels: level $\ell$ if $\mathrm{charge}$ acts by $\ell \cdot \id$. Critical level: $\ell \neq \cdots$ some constant (roughly the dual Coxeter number), avoid this $\ell$ for the reps in the theorem statement. :::