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1 First Examples of Flag/Schubert Varieties (Wednesday, August 18)

1 First Examples of Flag/Schubert Varieties
(Wednesday, August 18)

Remark 1.0.1: Course description from Scott’s syllabus:

Schubert varieties are key examples of algebraic va-
rieties that on one hand have an intrinsic interest
and beauty, and on the other hand have many ap-
plications to algebraic geometry, algebraic topology,
and representation theory; e.g., category O, infinite
dimensional representation theory of real reductive
groups, modular representation theory, polar varieties,
Chern classes, Schubert calculus, etc.
The course goal is to understand Schubert varieties
and their algebraic geometry, equivariant cohomology,
and equivariant K-theory. There are many open prob-
lems related to basic geometry of Schubert varieties,
so we will of course not complete this goal. One of
the key applications of equivariant cohomology and
equivariant K-theory of flag varieties is the complete
description of the singular locus of any Schubert vari-
ety, and we will settle on learning this theory as our
goal. This result was originally obtained by the author
of our course textbook, and is described completely by
him in Chapter XII.
The language of this result is naturally and originally
described in the ominous generality of (possibly in-
finite dimensional) Kac-Moody groups - which are
becoming increasingly more important in many areas
- and the result at the time was new even for the finite
dimensional case. In fact much recent literature on
Schubert varieties is written in this language and at
the same time is new for the finite dimensional case.

Remark 1.0.2: The goal of this course: describe the singular locus of arbitrary Schubert varieties.
Note that we’ll assume all varieties and schemes are reduced!

References:

• Introduction to Lie Algebras and Representation Theory, Humphreys.
• Representations of Semisimple Lie Algebras in the BGG Category O, Humphreys.
• Linear Algebraic Groups, Humphreys.

– Linear Algebraic Groups, Springer.

• Kac-Moody Groups, their Flag Varieties, and their Representation Theory, Shrawan Kumar.
• Chries-Ginzburg., particularly for K-theory of abelian categories. See Youtube lectures and

course notes from Geordie’s course!
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1 First Examples of Flag/Schubert Varieties (Wednesday, August 18)

• Brian’ Conrad’s notes on group schemes: http://math.stanford.edu/~conrad/papers/
luminysga3.pdf

• Björner and Brenti: Combinatorics of Coxeter Groups

Remark 1.0.3: First up, defining the words in the course title: flag varieties, equivariant cohomol-
ogy, K-theory.

• Flag variety: complete homogeneous algebraic variety, i.e. with a transitive algebraic group
action.

• Cohomology: it suffices to work with H∗sing(X,A;R), the relative singular cohomology. See
also Borel-Moore homology.

• K-theory: The study of coherent sheaves (take the Grothendieck group on the category
C = Coh(X))

Definition 1.0.4 (T -spaces)
For T ∼= (C×)n a torus, define a T -space X as a space X with an action T ×X → X which is
also an algebraic morphism.

Remark 1.0.5: Notions of equivariance will take into account this action. For cohomology, we’ll
consider a space E ×T X = (E ×X)/T where T acts by (e, x)t := (et, t−1x). This is not a variety,
but instead an Ind-variety.

For K-theory, the version we’ll work with is the following:

Definition 1.0.6 (T -equivariant sheaves)
Let m : T × T → T be the multiplication map. For X a T -space, a sheaf F ∈ Sh(OX-Mod),
T -equivariant iff

1. There is a given isomorphism of sheaves on T × X written I : a∗F → pr2F where
pr∗2 : T × X → X is projection onto the second coordinate and a : T × X → X is the
given action map.

2. The pullbacks by id×a and m× id if the isomorphism I are given by the equation

pr∗23I ◦ (idG×a)I = (m× idX)∗I.

3. There is an isomorphism Ie×X = id and F = a∗F |e×X
∼−→ Fe×X = F .

Example 1.0.7(?): Note that for f : X → Y and F ∈ Sh(Y ), then

f?F = OX ⊗f∗OY f
∗F .

For any T -space X, OX has a canonical T -equivariant structure given by

pr∗2OX ∼= OT×X ∼= a?OX .

First Examples of Flag/Schubert Varieties (Wednesday, August 18) 6
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1 First Examples of Flag/Schubert Varieties (Wednesday, August 18)

Example 1.0.8(1): Take X := pt ∼= G/G, since any group action is transitive and we get a
complete space. This is a silly but important example! We can take H∗G = H∗G(pt) := H∗sing(BG).
For G = C×, this is a polynomial ring, and for T = (C×)n it’s just a polynomial ring in more
variables. One can then take the constant sheaf C ∈ Sh(X) which is C for U = X and 0 otherwise.

Example 1.0.9(2): X := P1 with an action by G := SL2(C):

z = 0

P1
/C

z =∞

First Examples of Flag/Schubert Varieties (Wednesday, August 18) 7



1 First Examples of Flag/Schubert Varieties (Wednesday, August 18)

In the coordinate chart [z1, z2] with z2 6= 0, we can scale z2 to 1 and set[
a b
c d

]
[z, 1] =

[
az + b

cz + d
, 1
]

cz + d 6= 0.

Then

• Gy X transitively, and

• B := StabG([0, 1]) is a nontrivial Borel given by upper triangular matrices, and X = G/B.

Note that OX(P1) = C by Liouville’s theorem, and OX(U) ∼= C[x] for U ⊆ P1.

Example 1.0.10(3): The Grassmannian of k-planes, given by

XY := Grk(Cn) =
{
E ⊆ Cn

∣∣∣ dim(E) = k
}
.

This has the structure of an algebraic group, either by taking some transitive algebraic group
action and lifting structure from the quotient, or taking a Segre embedding. For notation, write
Ci := spanC {e1, · · · , ei} for the span of the first i standard basis vectors.

• G := GLn acts transitively by g.E := gE, for example by extending a basis from E to Cn and
using that GLn sends bases to bases, thus sending E → E′ another k-plane.

First Examples of Flag/Schubert Varieties (Wednesday, August 18) 8



1 First Examples of Flag/Schubert Varieties (Wednesday, August 18)

• StabG(C2) are upper block-triangular matrices:

Then define XY := G/P , noting that here P is a parabolic.

Remark 1.0.11: Much study of Schubert varieties reduces to studies of the combinatorics of the
Weyl group. Write W Y for the Young diagrams on an set of k × (n− k) blocks.

For example, for n = 4, k = 2:

First Examples of Flag/Schubert Varieties (Wednesday, August 18) 9



2 Friday, August 20

Definition 1.0.12 (?)
For every λ ∈W Y , define

XY
λ =

{
E ∈ XY

∣∣∣ ∀i = 1, · · · , k, dim(C
∑

λi+i ∩ E) ≥ i
}
.

Does this have a name?

Example 1.0.13(?): For λ = (1, 2), we have

XY
λ =

{
E ∈ Gr2(C4)

∣∣∣ dim(C2 ∩ E) ≥ 1, dim(C4 ∩ E) ≥ 2
}
.

2 Friday, August 20

Friday, August 20 10



2 Friday, August 20

Remark 2.0.1: Recall that we were discussing example 3, Grassmannians, and defined W Y as
Young diagrams in a k × (n− k) grid. We write

XY
λ =

{
E ∈ XY = Grk(Cn)

∣∣∣ ∀1 ≤ i ≤ k, dim(Cλi+i ∩ E) ≥ i
}
.

Example 2.0.2(?):

XY
(1,2) =

{
E
∣∣∣ dim(C2 ∩ E) ≥ 1,dim(C4 ∩ E) ≥ 2

}
.

Note that the second condition is redundant since E ⊂ C4 is a 2-plane. Why is this a closed variety?
Perhaps the easiest way to see this is using Plucker relations. Using more technology later, this
allows follows from looking at B-orbits and Bruhat decompositions.

Fact 2.0.3
Note that for the rank function rank : Mat(m× n)→ Z, one can compute the closure

rank−1(r) = rank−1 ([0, r)) .

Also note that pr2 : Cr → Cq, we have ker(pr2|E) = C2 ∩ E.

E 2.1 Example 4: The Full Flag Variety e

Example 2.1.1(4: The Full Flag Variety (Type An−1)): Define the full flag variety

X :=
{
F • =

(
0 ⊆ F 1 ⊆ F 2 ⊆ · · · ⊆ Fn−1 ⊆ Cn

) ∣∣∣ dim(F k) = k
}
.

Write C• :=
(
0 ⊆ C1 ⊆ · · · ⊆ Cn

)
for a distinguished basepoint.

• This is a complete homogeneous space,
• GLn y X transitively,
• StabG(C•) = B, the Borel of upper triangular matrices.
• X ∼= G/B.

For G a linear algebraic group and B a closed subgroup, G/B will generally be a variety.

Definition 2.1.2 (Weyl Group)
The Weyl group is generally given by W = NG(T )/T for T a torus.

Remark 2.1.3: Some facts:

• NG(T ) is the set of permutation matrices with arbitrary nonzero entries.

2.1 Example 4: The Full Flag Variety 11



2 Friday, August 20

• W = Sn in general, and can be written W =
{

(w(1), w(2), · · · , w(n))
∣∣∣ w ∈ Sn}.

• W ↪→ X sits in the flag variety via w 7→ cC•, i.e. acting on the distinguished basepoint.

As an example, we can write permutation matrices in one-line notation, using that w(ei) = ew(i):

A = [e4, e1, e2, e3] (4, 1, 2, 3).

Using that B/B ∼= C• is the basepoint, we have wC• = wB/B ∈ BwB/B.

Proposition 2.1.4(?).

BwB/B ∼=
{
F • ∈ X

∣∣∣ ∀i, j, dim(Ci ∩ F j) ∩ dim(Ci ∩ wCj)
}
.

Remark 2.1.5(?): Moreover, dim(Ci ∩ wCj) = #
{
k
∣∣∣ k ≤ i, w(k) ≤ j

}
. Just compute 〈e1〉 ∩

w 〈e1〉 = 〈e4〉 = 0 for entry 1, 1, and continue:
0 1 1 1
0 1 2 2
0 1 2 3
1 2 3 4

 .

Now check that counting
{
k
∣∣∣ k ≤ j, w(k) ≤ i

}
yields the same entries in the i, j spot, and thus

the same matrix.

E 2.2 Combining Examples 3 and 4 e

Remark 2.2.1: There is a map

π : X → XY

F • 7→ F k,

which is equivalently sending a Borel to its corresponding parabolic, and geometrically corresponding
to sending T -fixed points to T -fixed points. This induces a map W →W Y , and since W ∼= Sn, this
is sending a Young diagram to a partition.

• This is G-equivariant for G := GLn
• π(w) = λ, so there is a map w → {w(1), · · · , w(k)} = {λ1 − 1, λ2 − 2, · · · , λk − k}.

2.2 Combining Examples 3 and 4 12



2 Friday, August 20

Example 2.2.2(?): Given λ and 1 ≤ i ≤ k, let w(i) = λi + i and extend w by filling in the
remaining numbers in increasing order, so w(k + 1) < w(k + 2) < · · · < w(n). For example, take
(1, 2) 7→ w = (2, 4

∣∣∣ 1, 3), recalling that (1, 2) has this form:

One could also do wmax = (4, 2
∣∣∣ 3, 1).

Remark 2.2.3: Note that the Hasse diagrams under a given diagram give the closure relations
under B-orbits: For λ = (1, 2), the B-orbits in XY

λ are given by the following:

2.2 Combining Examples 3 and 4 13



2 Friday, August 20

We get BwP/P = C`(w
r), and we in fact get a CW structure. Since H2

sing(XY
λ ;Z) 6= H4

sing(XY
λ ;Z),

this doesn’t satisfying Poincare duality, so it can not be a smooth manifold. So what is the singular
locus?

2.2 Combining Examples 3 and 4 14



3 Lecture 2 (Monday, August 23)

Remark 2.2.4:

One can determine that the singular locus is the single point
{
C2
}
corresponding to the empty

diagram:

3 Lecture 2 (Monday, August 23)

E
3.1 A Lightning Introduction to Groups and

Representations e

Lecture 2 (Monday, August 23) 15



3 Lecture 2 (Monday, August 23)

Remark 3.1.1: Throughout, finite type means finitely generated over the base field.

Remark 3.1.2: Which G are important for equivariant cohomology of the flag variety, and equiv-
ariant K-theory. We’ll consider only connected reductive groups, and work over k := C.

Definition 3.1.3 (Pertaining to Linear Algebraic Groups)

• A group G ∈ AlgGrp be is a linear algebraic group if

– The coordinate ring C[G] is a reduced (so no nonzero nilpotents) C-algebra of finite
type.

– G is a group where multiplication m : G×2 → G and inverseion i : G → G are
algebraic morphisms

• A maximal torus of G is a torus not properly contained in any other torus of the form
(C×)×n.

• A Cartan subgroup is the centralizer of a maximal torus. Note that maximal torii are
the same as Cartans in the connected reductive case.

• G is unipotent if every representation has a nonzero fixed vector.

• The unipotent radical Ru(G) ≤ G is a maximal closed connected normal subgroup of
G.

• G is reductive iff Ru(G) = {e}.

Proposition 3.1.4(?).
To study Rep(G)irr for G ∈ AlgGrp linear, we can assume that G is reductive.

Proof (?).
Let V ∈ Rep(G)irr, we’ll show that the unipotent radical acts trivially. Then V is the data of

1. G→ GL(V ) for some V , a morphism of varieties and algebraic groups
2. There is an action map G× V → V .

Let V0 = Fix(Ru(G)) ⊆ V be the fixed points of Ru(G), by restricting the G action to an
Ru(G) ≤ G action by a subgroup. We know V0 6= 0, and we have for every g ∈ G, r ∈
Ru(G), v ∈ V0. We’d like to show V0 = V , which means that Ru(G) acts trivially. So we’ll
show r fixes every gv:

r(gv) = g(g−1rg)v ∈ gRu(G)v = gv,

using that Ru(G) fixes v. So V0 is G-stable, and since V0 is irreducible and V is irreducible,
we get equality.

�

Remark 3.1.5: So Ru(G) won’t matter for irreducible representations, or in turn for equivariant
K-theory, and we can assume Ru(G) = {e} is trivial. If G is not reductive, just replace it with

3.1 A Lightning Introduction to Groups and Representations 16



3 Lecture 2 (Monday, August 23)

R/Ru(G), which is a reductive linear algebraic group when G is a linear algebraic group since
Ru(G) E G.

Next question: how can we relate compact groups to complex reductive groups?

Remark 3.1.6: Let K ∈ Lie Grp be compact, and set C[K] to be the C-span of matrix coefficients
of finite dimensional representations of K. For V a finite-dimensional representation of K (just a
continuous representation of a compact group), define

ϕ : V ∨ ⊗C V → C[K]

f ⊗ v 7→
(
k

ϕf,v−−→ f(kv)
)
.

Fact 3.1.7
C[K] is a finite type reduced algebra. Such algebras correspond to an affine variety, i.e. it is the
ring of functions on some affine variety. Thus C[K] = C[G] for G ∈ AffVar/C where K ⊆ G.

Theorem 3.1.8(Chevalley).

1. G is a reductive algebraic group.
2. Every locally finite continuous representation of K extends uniquely to an algebraic

representation of G, and every algebraic representation of G restricts to a locally finite
representation of K.

Remark 3.1.9: So despite C[G] being infinite dimensional, every representation is contained in
some finite dimensional piece. Note that there is an equivalence of categories between algebraic
and compact groups, but there are differences: e.g. there are no irreducible infinite dimensional
representations of compact groups.

Side note, see stuff by David Vogan!

Remark 3.1.10: The next result reduces representations to Cartans, which are almost tori, and is
along the lines of what Langlands was originally thinking about.

Theorem 3.1.11(Cartan-Weyl).
There is a bijection

Ĝ :=
{
Irreducible representations

of G

}


{
Irreducible dominant representations

of a Cartan subgroup H≤G

}
Moreover,

1. If G is finite, {e} = B ⊇= {e}, so there is no reduction in this case, noting that the
centralizer ends up being the whole group.

2. If G is connected reductive, then T = H and there reduce to dominant characters of a
torus.

3.1 A Lightning Introduction to Groups and Representations 17



4 More Broad Overview (Wednesday, August 25)

Remark 3.1.12: See David Vogan’s orange book on unitary representations of real reductive
groups.

Exercise 3.1.13 (?)
Try proving this directly!

Definition 3.1.14 (Dominant characters)
Define

X(T ) :=
{
T

f−→ C×
∣∣∣ f is algebraic

}
,

which is a moduli of irreducible representations of G. Then

X(T ) ⊇ DZ :=
{
χ ∈ X

∣∣∣ χ is dominant for B
}
.

Note that this may make more sense after seeing root systems.

Remark 3.1.15: Given λ ∈ DZ, define a G-equivariant line bundle on the flag variety as L(λ) :=
(G× C−λ)/B, where (−λ)t := λ(t)−1. This can be extended to a representation of B by

B → B/Ru(B) ∼= T
λ−→ C×.

This makes sense thinking of a Borel as upper-triangular matrices, tori as diagonal matrices, and
unipotent as strictly upper triangular. So we can extend representations by making them trivial on
a normal subgroup?

Check

We refer to λ as the map and Cλ as the vector space in the representation G→ GL(V ). Note that
B acts on the right of G× C−λ by

(g, z)b := (gb, b−1z) := (gb, λ(b)−1z).

Fact 3.1.16
L(λ) is an algebraic variety.

4 More Broad Overview (Wednesday,
August 25)

Remark 4.0.1: We’ll assume background in affine varieties, but not necessarily sheaves. Today’s
material: see Springer.

More Broad Overview (Wednesday, August 25) 18



4 More Broad Overview (Wednesday, August 25)

Definition 4.0.2 (Ringed Spaces)
Let X ∈ Top, then a ringed space is the data of X and for all U ∈ Open(X) an assignment
O(U) ∈ AlgC a C-algebra of complex functions satisfying restriction and extension, also known
as a sheaf of C-valued functions. A morphism of ringed spaces ξ : X → Y is a continuous
function such that for all W ∈ Open(Y ), one can form the pullback

ξ∗W f : ξ−1(W ) ξ−→W
f−→ C,

and we require that there is a well-defined induced map ξ∗W : OY (W )→ OX(ξ−1(W )).

Example 4.0.3(?): For X an affine variety, the sheaf OX of regular functions satisfies this property.
Note that O can be an arbitrary sheaf though, not necessarily just regular functions.

Definition 4.0.4 (Prevariety)
A prevariety X is a quasicompact space X such that every x ∈ X admits a neighborhood
U ⊆ X such that (U,Res(OX , U)) is isomorphic to an affine variety. A prevariety is a variety
if it is additionally separated, so ∆X ⊆ X×2 is closed.

Remark 4.0.5: Last time we said that L(λ) is an algebraic variety, so it satisfies the above
definitions.

Remark 4.0.6: From now on G will be a connected reductive group. π : G→ L(λ) will always be
the map from the group to the flag variety.

Remark 4.0.7: Let X ∈ AlgVar/C and H ∈ AlgGrp be linear where H y X. Then X/H is a
quotient in Top, by just taking the quotient topology. Let ρ : X → X/H be the projection, then
define the ring of functions as

OX/H(U) :=
{
f ∈ Hom(U,C)

∣∣∣ Res(f ◦ ρ, ρ−1(U)) ∈ OX(ρ−1(U))
}
.

In this way OX/H(U) can be identified with H-invariant functions OX(ρ−1(U))H . This makes X/H
a ringed space, which is often (but not necessarily) an algebraic variety.

Example 4.0.8(?): This is not always an algebraic variety, e.g. taking C× y C by multiplication.
This yields two orbits (0 and everything else) and isn’t a variety.

Remark 4.0.9: If π : G → G/H has local sections, then (G × X)/H ∈ AlgVar using (g, x)h :=
(gh, h−1x). Note that this is a fiber bundle for the Zariski topology, and doesn’t have local sections
(contrasting the analytic topology).

Claim: The map π : G→ G/B has local sections (but no global sections).

Remark 4.0.10: Side note: we have the Bruhat decomposition G =
∐
w∈WBwB as a partition

into double cosets, quotienting by an action of B×B. The theorem is that these are parameterized
by the Weyl group.

More Broad Overview (Wednesday, August 25) 19



4 More Broad Overview (Wednesday, August 25)

Remark 4.0.11: Let B = TU where T is a torus and U unipotent (so upper triangular, ones along
the diagonal) and set U− to be the opposite unipotent radical (e.g. lower triangular, ones along
diagonal). Define a map

ϕ : U i ×B → G

(u, b) 7→ ub−1.

Then im(ϕ) = U−B, and ϕ is injective since U− ∩B = {e}. The argument on matrices holds more
generally: B are the upper triangular matrices and U− has ones on the diagonal, so these intersect
only at the identity. ϕ is an open embedding: one can show that the derivative is surjective:

dϕ(1, 1) : u− × b→ y

(x, y) 7→ x− y.

Rewriting the target as u− ⊕ h⊕ u+ where b = h⊕ u+, one can find preimages of any element.

Define a local section: σ : U → G where U ⊆ G/B. Use the composite U−×B → G→ G/B ⊇ U−
to view U− as a subset of the flag variety. An explicit formula for section is the following:

σ(u) := (u, 1) ∈ U− ×B ⊆ G.

Although this only constructs a section for one open set, translating by elements of g yields an open
cover, and everything is equivariant.

Remark 4.0.12: Using this, (G × X)/B is always an algebraic variety, since G → G/B always
has local sections. For other groups, X quasiprojective will also make the quotient algebraic, but
the proof is more difficult. However it still involves constructing local sections. It turns out that
G×

B
X → G/B is a locally trivial fiber bundle.

Remark 4.0.13: A note on notation: (G×X)B is sometimes written G×
B
X (as above), but this

is not a fiber product. In this notation, L(λ) = G×
B
C−λ. Note that this is a line bundle on G/B,

so we can take sections.

Theorem 4.0.14(Borel-Weil).

1. There is a correspondence

H0(G/B;L(λ)) ∼=
{
f : G→ C

∣∣∣ f(g) = bf(gb)
}

G ∈ C[G].

A section σ : G/B → G×
B
C−λ gets sent to σ(gB/B) = [g, f(g)]. Use that the quotient acts like

a tensor over B, so

gB/B = gbB/B = [gb, f(gb)] = [g, bf(gb)].

2. H0(G/B;L(λ)) = Lλ
∨ for λ a dominant character in DZ, where Lλ is the irreducible

finite dimensional representation of G with highest weight λ. Note that in the finite case,
we have Lλ∨ = Lw0λ, but in the Kac-Moody case one doesn’t have w0.

More Broad Overview (Wednesday, August 25) 20



5 Starting Kumar (Friday, August 27)

Example 4.0.15(?): For λ = 0 ∈ X(T ) a character, we get{
f : G→ C

∣∣∣ f(g) = f(gb)
}

= C[G/B] = OG/B(G/B) = C.

Remark 4.0.16: Chapter 1 of Kumar, Cartan matrices.

5 Starting Kumar (Friday, August 27)

E 5.1 1.1: Definition of Kac-Moody Algebras e

Definition 5.1.1 (Realization)
Let A ∈ Mat(`× `,C) be rank r. A realization of A is a triple (h, π, π∨) where h ∈ C-Mod,
π = {α1, · · · , α`} ⊆ h∨ are column vectors, and

{
α1
∨, · · · , α`∨

}
⊆ h are row vectors are indexed

sets satisfying

1. π, π∨ are linearly independent sets.
2. αj(αi∨) = ai,j
3. `− r = dimC(h)− `

Proposition 5.1.2(?).
There exists a realization of A that is unique up to isomorphism. Moreover, realizations of
A,B are isomorphic iff B is similar to A via a permutation of the index set.

Proof (?).
Assume A is of the form

A =
[
A1
A2

]
,

where A1 is r × ` block where rankA1 = r and A2 is l − r × ` Set

C :=
[
A1 0
A2 I`−r

]
∈ Mat(`× (2`− r)).

For h = C2`−r, set α1, · · · , α` to be the first ` coordinate functions α1
∨, · · · as the rows of C.

This is a realization.
Conversely, given a realization (h, π, π∨), we can produce a matrix: complete π to a basis of
h∨. This can done in such a way that αj(αi∨) = [A1, B;A2, D

−1] ∈ Mat(` × 2` − r. Using
column operations, i.e. multiplication on the right, this can be mapped to [A1, 0;A2, I].

�

Starting Kumar (Friday, August 27) 21



5 Starting Kumar (Friday, August 27)

Definition 5.1.3 (Free Lie algebra generated by a vector space)
Let V ∈ C-Mod and T •(V ) be its (associative) tensor algebra. Set [ab] = ab − ba and take
F (V ) ⊆ T (V ) to be the free Lie algebra generated by T 1(V ). We call F (V ) the free Lie
algebra generated by V . There is a universal property: for any linear hom θ : V → sl, there
is a commuting diagram

V s

F (V )

θ

F ∃θ̃

Link to Diagram
Note that U(F (V )) = T (V ).
This can be constructed as

h⊕ 〈e1, · · · , e`〉
⊕
〈f1, · · · , f`〉 / ∼

∼:=


[eifi] = δijαi

∨ i, j = 1, · · · , `
[hh′] = 0 h, h′ ∈ h

[hei = αi(h)ei
[hfi = αi(h)fi i = 1, · · · , `, h ∈ h

.

Then set g̃(A) := F (V )/ ∼ We’ll find that this only depends on the realization of A.

Definition 5.1.4 (Generalized Cartan Matrices)
A matrix A = (αij) is a generalized Cartan matrix (GCM):

• αii = 2
• αij ≤ 0, i 6= j
• αij = 0 if αji = 0

Definition 5.1.5 (Kac-Moody Lie Algebras)
The Kac-Moody Lie algebra is defined by g := g(A) := g̃(A)/ ∼, where we mod out by the
Serre relations:

(ad ei)1−aij (ej) = 0
(ad fi)1−aij (fj) = 0.

Remark 5.1.6:
• There is an injection h ↪→ g, so we refer to h as the Cartan subalgebra.
• The ei, fi are Chevalley generators.
• The nilradicals are n := 〈{e1, · · · , e`}〉 and n− := 〈{f1, · · · , f`}〉.
• b := h⊕ n is the standard Borel.
• b− := h⊕ n

5.1 1.1: Definition of Kac-Moody Algebras 22
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• ñ, ñ−, b̃, b̃− can similarly be defined for g̃.

Remark 5.1.7: A big theorem from algebraic groups: a connected reductive group G corresponds
to a root datum(g, {αi}i≤` ,

{
αi
∨}

i≤`) where αi, αi∨ ∈ Zn such that aij :=
〈
αi, αi

∨〉 form a Cartan
matrix A := (aij).

Example 5.1.8(?): Consider pairs of K,G where G is the complexification of K:

• Spn  Sp2n(C), Z(G) = Z/2 for n ≥ 1
• SUn  SLn(C), Z(G) = Z/4n for n ≥ 3
• Spinn  Spinn(C), Z(G) = (Z/2)2, n ≥ 8 even
• F4, Z(G) = Z/4 for n ≥ 7 odd
• G2
• E6
• E7
• E8

Here we take the simply connected groups for the last 5, and the last 4 have cyclic centers.

Theorem 5.1.9(?).
There exist

1. Simple, simply connected, connected groups G1, · · · , Gk,
2. A finite central subgroup F ⊆

∏
Gi × T ′ where T ′ is a (not necessarily maximal) torus,

such that G ∼= (
∏

Gi × T ′)/F . All connected reductive groups arise this way!

Example 5.1.10(?): Let G := GLn = SLn · C×, and they intersect at roots of unity, so

GLn = (SLn × C×)/
〈
ζnIn, ζ

−1
n

〉
.

The map (in the reverse direction) is (g, z) 7→ gz, and if gz = I in GLn then g = ζknIn and z = ζ−1
k .

Remark 5.1.11: Assume G is semisimple, simply connected, and connected. Then

1. The equivariant cohomology is

H∗T (G/B;Q) ∼= SQ ⊗SWQ SQ

2. The equivariant K-theory

KT (G/B) = A(T )⊗A(T )W A(T )

Note that

W = NG(T )/T
S = S(h∨), π ⊆ h∨

A(T ) = Z[X(T )].
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6 Kac-Moody Groups (Monday, August 30)

Remark 5.1.12: Think about semisimple, simply connected, and connected groups most of the
semester.

6 Kac-Moody Groups (Monday, August 30)

Remark 6.0.1: See exercises in first two sections, 1.1 and 1.2. See also the proof of the Borel-Weil
theorem.

E 6.1 1.2: Root Space Decompositions e

Remark 6.1.1: Starting with a generalized Cartan matrix A, we produced a Lie algebra g̃(A) by
taking the free Lie algebra and modding out by certain relations. This algebra only depended on
the realization of A, namely (g, π, π∨), which we thought of as (g, h∨, h), yielding g(A) modulo Serre
relations.

Definition 6.1.2 (Root Lattice)
Define

Q := Zπ ⊆ h∨ the root lattice
Q+ := Z≥0π ⊆ h∨

gα :=
{
x ∈ g

∣∣∣ ∀h ∈ h, [hx] = α(h)x
}

for α ∈ h∨.

Theorem 6.1.3(?).

1. g = n− ⊕ h⊕ n, which are all nonzero.
2. n±α =

⊕
α∈Q+\{pt}

g±α.

3. dimC gα <∞.
4. n := 〈e1, · · · , e`〉 subject only to the Serre relations, i.e. no additional relations are needed

for this subalgebra.

Proof (?).
First step: prove for g̃ and put a tilde on everything appearing in the theorem statement.
Let {v1, · · · , v`} be a basis for V and fix λ ∈ h∨. Define an action of generators of g̃ on T (V )
in the following way:

1. α : Set fi(α) := vi ⊗ a for a ∈ T (V )
2. β : set h(1) := 〈λ, h〉1 := λ(h) · 1, and inductively on s set

h(vj ⊗ a) := −〈αj , h〉vj ⊗ a+ vj ⊗ h(a) a ∈ T s−1(V ), h ∈ h, 1 ≤ j ≤ `.

Kac-Moody Groups (Monday, August 30) 24



6 Kac-Moody Groups (Monday, August 30)

3. γ : Set ei(1) := 0 to kill constants, and inductively on s,

ei(vj ⊗ a) = δijα
∨
i (a) + vj ⊗ ei(a) a ∈ T s−1(V ), 1 ≤ j ≤ `.

One should show that these define a representation by checking the Serre relations. Consider
instead how this works in the g = sl2 case:
Example 6.1.4(?): For sl2, take the realization (C, {α} ,

{
α∨
}
) corresponds to the matrix

A = (s). Here T (V ) = C[x], and since there are no Serre relations, g̃ = g. We have
e = [0, 1; 0, 0], f = [0, 0; 1, 0] which generate the positive/negative unipotent parts respectively.
Then h = {diag(h,−h)}. Checking the action:

1. α :
[
0 0
1 0

]
p = xp which raises degree by 1. M

2.

β : h(1) = λ(h)1 =⇒ h(xp) = −α(h)xp+ x(hp),

where p ∈ C[x]g−1. For example,

h(x) = −α(x) + xλ(h) = (λ− α)(h)x
h(x2) = (λ− 2α)(h)x2,

so this acts diagonally and preserves degree.

3. Check [
0 1
0 0

]
· (1) = 0[

0 1
0 0

]
· (xp) = p+ x

[
0 1
0 0

]
p.

Check that ex = 1 + 0 and ex2 = x+ x = 2x, so e acts by differentiation.
Note that h forms a subalgebra since it’s a nondegenerate map. This follows from the fact
that we get a representation ρλ of g̃ on T (V ), which for each h acts nontrivially on some T (V ).
So use ρλ to deduce the theorem for g̃:{

[x, y]
∣∣∣ x, y ∈ h =

〈
{ei, fi}`i=1

〉}
⊆ ñ− + h + ñ = g,

we’ll show this sum is direct.
Let u = n−+h+n+ = 0, then in T (V ) we have u(1) = n−(1)+〈λ, h〉1, which forces 〈λ, h〉 = 0
for all λ ∈ h∨ and thus h = 0. Use the restriction g̃ → ñ to get a map U(ñ−) → T (V ) out
of the enveloping algebra, using that T (V ) is an associative algebra. Using fi 7→ vi, this is
surjective and in fact an isomorphism. Sending n− 7→ n−(1) yields ñ− ⊆ U(ñ−) = T (V ). This
yields n− = 0, making the sum direct.
We can write ñ− = F 〈f1, · · · , f`〉
and ñ = F 〈e1, · · · , e`〉 and by the PBW theorem, dim g̃α < ∞. This uses that the weight
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7 Kac-Moody Groups (Monday, August 30)

spaces for ñ− are contained in U(ñ−). Note that there is a Cartan involution

ω̃ : g̃	
ei 7→ −fi
fi 7→ −ei
h 7→ −h.

Now to prove the theorem for g itself, write r̃ := ker(g̃ γ−→ gα) E g̃. This is an ideal, and thus
h-stable. We can thus write

r̃ =

 ⊕
α∈Q+\{pt}

r−α

⊕ r̃0 ⊕

 ⊕
α∈Q+\{pt}

rα


where r̃β := r̃ ∩ g̃β and r̃0 = r̃ ∩ h. We have ideals r̃± E ñ±, which are respectively generated
by {

ei,j = (ad ei)1−ai,j (ej)
∣∣∣ i 6= j

} {
fi,j = (ad fi)1−ai,j (fj)

∣∣∣ i 6= j
}
,

where ad fk(ei,j) = 0 for all k and i 6= j. Skipping a few things that are spelled out in the
book, e.g. that r̃0 = 0, we conclude that r̃ = r̃+ ⊕ r̃−, both of which are ideals in g̃. Since
r̃0 = 0, we get h ⊆ g, and using that γ is surjective we have an isomorphism of C-modules

g = g̃/r̃ = ñ−/r̃− ⊕ h⊕ ñ/r̃+.

Write ∆ :=
{
α ∈ Q \ {pt}

∣∣∣ gα 6= 0
}
the set of roots and gα the root space, then set

∆+ := ∆ ∩Q+

∆− := ∆ ∩ (−Q+)
∆ := ∆+ ∪∆−.

Also for Y ⊆ {1, · · · , `} write

∆Y := ∆ ∩
(⊕
i∈Y

Zαi

)

gY := h⊕

 ⊕
α∈∆Y

gα

 .
We say Y is finite type if gY is finite dimensional, and given A we can associate some matrix
(ai,j)i,j∈Y .

�

Remark 6.1.5: See Ch. 13 for how this generalizes the semisimple case.

6.1 1.2: Root Space Decompositions 26



7 Weyl Groups, 1.3 (Wednesday, September 01)

7 Weyl Groups, 1.3 (Wednesday, September
01)

Remark 7.0.1: We’ll spend a few days discussing Weyl groups, since they’re important in the
study of Schubert varieties. For other references, see

• Björner and Brenti: Combinatorics of Coxeter Groups

E 7.1 Root Systems e

Remark 7.1.1: Recall that given a generalized Cartan matrix A, there is an associated realization
(h, π ⊆ h∨, π∨).

Definition 7.1.2 (Reflections)
For 1 ≤ i ≤ `, define a reflection si ∈ Aut(h∨) as

si(χ) := χ−
〈
χ, αi

∨〉αi ∀χ ∈ h∨.

Remark 7.1.3: One can check that this fixes a hyperplane, and s2
i = id.

Definition 7.1.4 (Crystallographic Root Systems)
A subset Φ of Euclidean space (V, 〈−, −〉) is a crystallographic root system in V iff

1. Φ is finite, spanRΦ = V , and 0 6∈ Φ.
2. If α ∈ Φ, then Rα ∩ Φ = ±α.
3. If α ∈ Φ, then sα leaves Φ invariant
4. If α, β ∈ Φ, then (β, α)

2(α, α) ∈ Z.

Remark 7.1.5: Note that for a Kac Moody Lie algebra, Φ is often infinite, so condition 1 can fail.
Condition 2 can fail if α is imaginary, in which case nα ∈ Φ for some n ∈ Z.

Definition 7.1.6 (Weyl Groups)
Let W ⊆ Aut(h∨) be the subgroup generated by

{
si
∣∣∣ 1 ≤ i ≤ `

}
, then W is said to be the

Weyl group of g.

Definition 7.1.7 (Lengths)
Let W be the group generated by a fixed set S of elements of order 2 in W . Then for w ∈ W,

the length `(w) is the smallest number ` such that w =
∏̀
i=1

si.
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Remark 7.1.8: Note that `(1) = 0, and for Y ⊆ S, we set WY to be the subgroup generated by{
s
∣∣∣ s ∈ Y }. We’ll prove that any Weyl group is a Coxeter group, but for now W is a Weyl group

and W is a Coxeter group.

Theorem 7.1.9(1.3.11).
Let (W, S) be as above, then TFAE:

1. The Coxeter condition: W is a quotient of the free group Ŵ generated by S, modulo the
following relations:

• s2 = 1 for all s ∈ S.
• (st)ms,t = 1 for all s 6= t in S and for some integers mt,s = ms,t ≥ 2 (or possibly ∞).

2. The root system condition: There exists a representation V of W over R together with
a subset ∆ ⊆ V \ {pt} such that

• Symmetric: ∆ = −∆

• W-invariance/stability: there exists a subset π := {αs}s∈S ⊆ ∆ such that for any α ∈ ∆
exactly one of α or −α belongs to the set of positive linear combinations of “simple roots”∑
s∈S

R>0αs. If α is in this subset, we’ll say α is positive, and if −α is in it, we’ll say α is

negative.

• For every s ∈ S, if α 6= αs and α > 0 is positive, then sαs < 0 is negative and sα > 0. a

• For s, t ∈ S and w ∈ W, then wαs = αt implies that wsw−1 = t, so the group action is
captured in a conjugation action.

3. The strong exchange condition: For s ∈ S and v, w ∈ W with `(vsv−1w) ≤ `(w), for any

expression w =
n∏
i=1

si with si ∈ S, we have vsv−1w =
n∏
i 6=j

si for some j.

4. The exchange condition: For s ∈ S,w ∈ W with `(sw) ≤ `(w), then for any reduced

expression w =
n∏
i=1

si, we have sw =
n∏
i 6=j

si for some j.

aSo the simple reflection changes the sign of only the corresponding simple root, and preserves the sign of all
other simple roots.

Remark 7.1.10: These conditions show up in a lot of proofs!

Definition 7.1.11 (Crystallographic Coxeter groups)
If S is finite (which it will be for us), we can take V to be finite dimensional. Writing
S := {s1, · · · , s`} and set mij := Ord(sisj). If every mij is one of {2, 3, 4, 6,∞}, call the
Coxeter group crystallographic.

Remark 7.1.12: An open problem is that all Coxeter groups should come from geometry, e.g. from
projective varieties (?), but it’s not clear what these varieties should be. The crystallographic ones
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will precisely come from Kac-Moody Lie algebras. This is closely related to problems concerning
KL polynomials: take an Ind variety, stratify it, and take intersection cohomology.

Remark 7.1.13: Every finite irreducible Coxeter group (with exceptions H3, H4, I2(m)) occur as
Weyl groups of crystallographic root systems.

Proof (of theorem, 1 =⇒ 2).
Let V be the R-module with basis

{
αs
∣∣∣ s ∈ S}. For any s ∈ S, define an inner product by

extending the following R-bilinearly:

(αs, αs) = 1

(αs1 , αs2) = cos( π

ms1s2
) s1 6= s2.

For s, v ∈ V , define

s(v) := v − 2(v, αs)αs.

A quick computation shows

s(αs) = αs − 2(αs, αs)αs = −αs.

One can check that the formula is R-linear, and using this we have

s2(v) = s(v − 2(v, αs)αs)
= s(v)− 2(v, αs)s(αs)
= (v − 2(v, αs)αs)− 2(v, αs)s(αs)
= (v − 2(v, αs)αs)− 2(v, αs)(−αs)
= v,

so s2 = id. By assumption, we have (s1s2)ms1s2 (v) = v. Using that this formula factors
through the relations, we can extend this to an action W y V . Then

(s(v), s(v′)) = (v − 2(v, αs)α2, v
′ − 2(v′, αs)αs)

= (v, v′)− 2(v′, αs)(v, αs)− 2(v, αs)(αs, v′) + 4(v, αs)(v′, αs)(αs, αs)
= (v, v′)− 4(v′, αs)(v, αs) + 4(v, αs)(v′, αs)
= (v, v′),

where we’ve used that (−,−) is symmetric. Thus (wv,wv′) = (v, v′).
Let ∆ :=

⋃
s∈S
W(αs), we’ll work with this more next time.

�
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Remark 8.0.1: Today: finish chapter one.

Definition 8.0.2 (Bruhat-Chevalley Partial Order)
For v, w ∈W we set v ≤ w ⇐⇒ there exists t1, t2, · · · , tp ∈ T such that

• v = tp · · · t1w
• `(tj · · · t1w) ≤ `(tj−1 · · · t1w).

Definition 8.0.3 (Minimal length representatives)
For Y ⊆ S we set

W ′Y := {`(wv) ≥ `(w)∀v ∈WY } .

Example 8.0.4(?): Consider W = S3 with S := {s1, s2} = {1, 2}. The Hasse diagram is the
following:

(3, 2, 1)

(2, 3, 1) (3, 1, 2)

s1 = (2, 1, 3) (1, 3, 2) = s2

(1, 2, 3)

Link to Diagram

We have

• ∅ ⊆ {1} ⊆ 1, 2

•

G/B =
{

0 ⊆ F 1 ⊆ F 2 ⊆ C3
}
→
{

0 ⊆ F 2 ⊆ C3
}

:= Gr2(C3)→
{

0 ⊆ C3
}

= G/G.

Note that Kumar writes

X∅ := G/B

X{1} = Gr2(C3)
X{1,2} = G/G.

• For Y := {1}, we just have to check how lengths change upon swapping the first two positions.
ThusWY = {e, s1} since (2, 3, 1) is minimal length. Similarly (1, 3, 2) and (1, 2, 3) are minimal
length.
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• For Y = {1, 2}, we get WY = W with a minimal element (1, 2, 3).

Lemma 8.0.5(?).
Fix a reduced expression w =

∏
i≤n

si. Then v ≤ w iff there exist indices 1 ≤ j1 < j2 < · · · <

jp ≤ n such that v =
∏
i 6=jk

si.

Example 8.0.6(?): For m12 = 3, if (s1s2)m12=3 = e, so s1s2s1 = s2s1s2, which is a braid relation
that corresponds to (3, 2, 1). Let w0 be the maximal element (which generally only works when the
Coxeter group is finite), so here w0 = s1s2s1. We can cross out various reflections to get closure
relations:
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w0 = s1s2s1 = s2s1s2

s1s2 s2s1

s1 s2

e

Link to Diagram

Here for Y = {1} = {s1}, we get minimal length elements e, s2, s1s2.

Example 8.0.7(?): In general, we start with a GCM A, take a realization (h, π, π∨), get Kac-
Moody Lie algebra g, and extract a group W which we now know is a Coxeter group. Write
{α1, α2, · · · , α`} ⊆ h∨ and S = {s1, · · · , s`}, then for any 1 ≤ i ≤ ` set

si(χ) := χ−
〈
χ, αi

∨〉αi ∀χ ∈ h∨.

Fix a real form hR of h satisfying

• π∨ ⊆ hR,
• αi(hR) ⊆ R for all 1 ≤ i ≤ `.

Definition 8.0.8 (Dominant Chamber)
Define the dominant chamber DR ⊆ hR

∨ := Hom
R-Mod

(hR,R) as

DR :=
{
λ ∈ hR

∨
∣∣∣ λ(αi) ≥ 0 ∀i

}
.

Definition 8.0.9 (Tits Cone)
Define the Tits cone as

C :=
⋃
w∈W

wDR.

Remark 8.0.10: Consider the reductive group Sp4(C), which is semisimple, simply connected, and
connected. One way to realize this group is as

Sp4(C) :=
{
g ∈ GL4(C)

∣∣∣ Θ(g) = g
}

for Θ some involution of GL4(C). Noting that we always have associated root datum (n, {αi}`i=1 ,
{
αi
∨}`

i=1),
here we have

Sp4(C) = (2, {(1,−1), (0, 2)} , {(1,−1), (0, 1)}).
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This yields a GCM

A =
[

2 −2
−1 2

]
,

which comes from computing (A)ij := αi(αj∨). Here

G/Z(G) = (2, {(1, 0), (0, 1)} , {(2,−2), (−1, 2)}).

Note that these two root data are distinct over Z. We can consider the real form hR
∨:

We have

• χ ∈ hR
∨ = {(x, y)},

• s1(x, y) = (x, y)− 〈(x, y), (1,−1)〉(1,−1) = (y, x)
• s2(x, y) = (x, y)− 〈(x, y), (0, 1)〉(0, 2) = (x,−y)

We can look at the W -orbits of these, and it turns out to recover all of the roots:
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8 Wednesday, September 08

W ⊆ Aut(hR∨) is the subgroup given by {s1, s2}, and there are maps

s1s2 : (x, y) 7→ (−y, x)
s2s1s2 : (x, y) 7→ (y,−x)

s1s2s1s2 : (x, y) 7→ (−x,−y)
s2s1s2s1s2 : (x, y) 7→ (−x, y)

...
...

(s1s2)4 : (x, y) 7→ (x, y) =⇒ m12 = 4.

Here we’ve used that (s1s2)2 = (s2s1)2. We can then find the dominant chamber:
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9 Category O (Friday, September 10)

For λ ∈ DR, we set Wλ :=
{
w ∈W

∣∣∣ w(λ) = λ
}
. This is generated by the simple reflections it

contains. Setting Y = Y (λ) =
{
si ∈ S

∣∣∣ λ(αi∨) = 0
}
, we actually get Wλ = WY .

Remark 8.0.11: Recall what regular weights are!

9 Category O (Friday, September 10)

Counterexamples: Kac Moodys that aren’t usual Lie algebras: affine Kac Moodys.

Remark 9.0.1: Our setup: A  (h, π, π∨). Fix λ ∈ h∨ and c ∈ Cλ 3 z a representation of h by
x.· := λ(x)z. Recall that we have a triangular decomposition g = n− ⊕ h ⊕ n with h ⊕ n ≤ b a
subalgebra of the Borel. Since n E b is an ideal, we can quotient to extend the representation

b→ b/n ∼= h
λ−→ Cλ.

This extends from h to b by making it zero on n, and generally one can do this with nilradicals.
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9 Category O (Friday, September 10)

Definition 9.0.2 (Verma Modules)

M(λ) := U(g)⊗U(b) Cλ ∈ g-Mod,

where by Cλ extends to the universal enveloping algebra.

Remark 9.0.3: The PBW theorem implies that every M(λ) ∼= U(n−) ⊗C Cλ as vector spaces,
which is in fact an isomorphism in b−-Mod. This means M(λ) is a weight module for h, i.e. there
is a decomposition M(λ) =

⊕
µ∈h∨

M(λ)µ where

M(λ)µ :=
{
v ∈M(λ)

∣∣∣ h · v = µ(h)v, h ∈ h
}
.

Definition 9.0.4 (Highest weight modules)
Any nonzero quotient L of M(λ) in g-Mod is a highest weight module with highest weight
λ.

Remark 9.0.5: Why highest weight? There is a partial order on weights:

µ ≤ λ ⇐⇒ λ− µ ∈ Q+ := Z>0π.

Also note that M(λ) is a highest weight module.

Definition 9.0.6 (Category O)
There is a full subcategory O ≤ g-Mod where every M ∈ Ob(O) satisfies the following:

• (Finite multiplicities) M is a weight module with finite-dimensional weight spaces.
• There exist finitely many weights λ1, λ2, · · · , λk ∈ h∨ (depending on M) such that
P (M) ⊆

⋃
1≤j≤k

h∨≤λj :
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9 Category O (Friday, September 10)

Lemma 9.0.7(?).
Any M(λ) has a unique proper maximal g-submodule M ′(λ). In particular, λ 6∈ M ′(λ), and
there is a unique irreducible quotient L(λ) := M(λ)/M ′(λ).

The proof is easy: use that λ generated M(λ) as a
g-module.

Lemma 9.0.8(?).
For any irreducible L ∈ Ob(O), there exists a unique λ ∈ h∨ such that L ∼= L(λ).

Definition 9.0.9 (Dominant Integral Weights)
Define the dominant integral weights

D :=
{
λ ∈ h∨

∣∣∣ ∀αi∨ ∈ π∨, 〈λ, αi∨〉 ∈ Z>0
}
.

Definition 9.0.10 (Maximal integrable highest weight modules)
For λ ∈ D, define M1(λ) ⊆ M(λ) as the submodule generated by

{
f
λ(αi∨)+1
i ⊗ 1

}`
i=1

, and
define

Lmax(λ) := M(λ)
M1(λ) ,

the operators that act locally nilpotently (so there is an exponent depending on the vector)

Example 9.0.11(?): Let A = [2] be a 1 × 1 GCM, which yields (C, {2} , {1})  sl2(C). Given
λ ∈ C, we have

M(λ) = U(sl2)⊗U(b) Cλ
∼= U(n−)⊗C Cλ
= C[y]⊗C Cλ.

where noting that n− = 〈fi〉 and n = 〈ei〉, we identify the variable y with f .

This has weights λ, λ− 2, λ− 4, · · ·, identifying elements as yk ⊗ 1. How do e, f, h ∈ g act in this
basis?

• h(yk ⊗ 1) = (hyk)⊗ 1 = (λ− 2k)(yk ⊗ 1).
• f(yk ⊗ 1) = y(yk ⊗ 1) = yk+1 ⊗ 1.
• e: more complicated!

The game: move es across the tensor product to kill terms:

• For k = 0:

e(1⊗ 1) = e⊗ 1 = 1⊗ e(1) = 0

since we extended λ by zero on n.
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10 Category O (Friday, September 10)

• For k = 1:

e(y ⊗ 1) = e(f ⊗ 1)
= (ef)⊗ 1
= ([ef ] + fe)⊗ 1
= [ef ]⊗ 1
= α∨ ⊗ 1
= 1⊗ α∨ · 1
= λ(α∨)(1⊗ 1)
= λ,

using ef = [e, f ] + fe = ef − fe+ fe and fe⊗ 1 = f ⊗ e(1) = 0.

• For k = 2:

eff ⊗ 1 = ([ef ] + fe)f ⊗ 1
= (α∨f + fef)⊗ 1
= (α∨f + f([ef ] + fe))⊗ 1
= (α∨f + f [ef ])⊗ 1
= (α∨f + fα∨)⊗ 1 fα∨ ∈ h

= (α∨f + λf)⊗ 1
= ([α∨, f ] + fα∨ + λf)⊗ 1
= (−α(α∨)f + 2λf)⊗ 1 using Kac-Moody relns.
= 2(λ− 1)f ⊗ 1.

Then general pattern is e(yk ⊗ 1) = k(λ− (k − 1))
(
yk−1 ⊗ 1

)
.

Here

D =
{
λ ∈ h∨ = C

∣∣∣ 〈λ, α∨〉 ∈ Z>0
}

= Z>0 ⊆ C = h∨

and for λ ∈ D,

M1(λ) =
{
fλ(αi∨)+1 ⊗ 1

}
1≤i≤`=1

=
{
fλ+1 ⊗ 1

}
.

Note that e · fλ+1 ⊗ 1 = 0, which can be checked from the above formula:

e(yλ+1 ⊗ 1) = (λ+ 1)(λ− λ)yλ = 0.

Thus M1(λ) = C
〈
yλ+1, yλ+2, · · ·

〉
. Finally,

M(λ)
M1(λ) = Lmax(λ) = L(λ).

Category O (Friday, September 10) 38



10 Tits Systems, 5.1 (Monday, September 13)

10 Tits Systems, 5.1 (Monday, September
13)

Remark 10.0.1: The basic setup from the book:

A (h, π, π∨) g (W,S).

We’ll think of G (h, π, π∨) as the root data associated to a semisimple simply connected connected
algebraic group. Warning: this association isn’t unique in the non-semisimple case! Noting that
(W,S) is a Coxeter group, is there a way to recover an algebra g and a Kac-Moody group G?

For today: take

• G := GLn, Note that G is not semisimple or simply connected.

• B the fixed Borel (maximum connected closed solvable subgroup) of upper-triangular matrices.
Flag varieties are homogeneous projective spaces, so G/B is a flag variety.

• T the maximal torus of diagonal matrices

• N = NG(T ) to be the subgroup generated by all permutation and scalar matrices.

• The Weyl group W := N/B ∩N = N/T since B ∩N = T . Note that W ∼= Sn is a Coxeter
group.

• S ⊆ W is the subset of simple reflections, writing w = (w1, · · · , wn) and taking only those
permutations that transpose two adjacent coordinates, so

τk : (w1, · · · , wk, wk+1, · · · , wn) 7→ (w1, · · · , wk+1, wk, · · · , wn).

This can be written as 〈τk〉 :=
〈

(k, k + 1)
∣∣∣ 1 ≤ k ≤ n− 1

〉
.

Remark 10.0.2: More generally, G ⊇ B ⊇ T and we setW := NG(T )/ZG(T ) and show ZG(T ) = T ,
but what is B ∩N generally? Maybe use the fact that NG(B) = B? Or that the unipotent radical
intersects it trivially.

Definition 10.0.3 (Tits Systems)
A Tits system is a tuple (G,B,N, S) where B,N ≤ G are subgroups and S ⊆W = N/B∩N ,
which collectively adhere to the following axioms:

1. B ∩N E N ,
2. B,N generate G,
3. For all si ∈ S, we have sBs−1 6⊆ B
4. For w ∈ Sn and s ∈ S, defining C(x) := BxB ⊆ G for any coset representative x of x in
N , we require C(s)C(w) ⊆ C(w) ∪ C(sw).
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10 Tits Systems, 5.1 (Monday, September 13)

Remark 10.0.4: Consider elements in BN for GLn: B is upper triangular, N has one (possibly)
nonzero entry in each row/column, and multiplying this can “smear” the entries upward by filling
a column above an entry:

Similarly, multiplying on the right smears rightward, and it’s not so hard to convince yourself that
these generate GLn.

For the conjugation axiom, consider the following:
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10 Tits Systems, 5.1 (Monday, September 13)

We also have BsBwB ⊆ BwB ∪BswB. To prove this, we’ll show

• sBw ⊆ the RHS,
• The right-hand side is stable under the B ×B action of left/right multiplication.

To see the first, consider the example:
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10 Tits Systems, 5.1 (Monday, September 13)

For the second, consider

(1, 3, 2, 4)(3, 4, 1, 2) = (2, 4, 1, 3).

The hard case is when lengths of the result change.

Definition 10.0.5 (Parabolics)
Any B ⊆ P ⊆ G is called a standard parabolic. Any subgroup Q conjugate to P is called
parabolic.

Remark 10.0.6: Standard parabolics correspond to subsets Y of simple reflections ∅ ⊆ Y ⊆ S.
Any subgroup containing the upper triangular matrices looks like the following:
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10 Tits Systems, 5.1 (Monday, September 13)

For PY , we take everything but skip the first index.

Remark 10.0.7:
• Take S ⊆

{
w ∈W

∣∣∣ w2 = id
}
a subset of order 2 elements.

• PY = BWYB =
∐
s∈U

BsB ⊆ G.

• G =
∐
w∈W

C(w)

• There is a decomposition into double coset orbits:

G =
∐

w∈WY�W�WY ′

PY wPY ′ .

• We have

C(s)C(w) =
{
C(sw) `(sw) ≥ `(w)
C(w) ∪ C(s) `(sw) = `(w).
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11 Generalized Flag Varieties, 7.1 (Wednesday, September 15)

• (W,S) is a Coxeter group.

• For any parabolic P (not necessarily standard), its normalizer satisfies NG(P ) = P . Note
that you can plug in a Borel here. Moreover G/P = G/NG(P ), which parameterizes parabolic
subgroups of G.

– w ∈ W ′Y (Y ) ∼= W/WY . Fixing a reduced decomposition w = w1 · · ·wk, i.e. `(w) =
k∑
i=1

`(wi).

– For any Ai ⊆ C(wi) where Ai → C(wi)/B is bijective (resp. surjective), the multiplica-
tion ϕ : A1 × · · ·Ak → BwPY /PY is bijective (resp. surjective).

11 Generalized Flag Varieties, 7.1
(Wednesday, September 15)

Remark 11.0.1: Most of the things we’ll look at will be motivated by the finite-type case, but the
statements still go through more generally. The setup: A a GCM root datum (h, π, π∨) g a Kac-
Moody Lie algebra  (W,S) a Coxeter group  T ⊆ B a maximal torus, where T = Hom

Z
(hZ,C×)

and B plays the role of the Borel,  G a Kac-Moody group. Here hZ is the integer span of coroots,
using that h ⊆ π∨. Note that since G arises from a Tits system, so even though we haven’t described
it set-theoretically yet, we know many nice properties it has by previous propositions.

Fact 11.0.2
For G ∈ AlgGrp arbitrary and H ≤ G, the quotient space G/H is a variety (See Springer’s book for
a proof). Write G/H = (X, a) where a = H/H is a distinguished point. Quotients have a universal
property: for any pair (Y, b) of pointed G-spaces whose isotropy (stabilizer) group contains H, there
exists a unique equivariant pointed morphism ϕ : G/H → Y such that ϕ(a) = b.

Remark 11.0.3: Today: we defined a flag variety to be any projective homogeneous space, and
today we’ll see that G/B is a projective variety. In fact, we’ll show that G/PY is a projective
ind-variety, where PY is the standard parabolic coming from the Tits system.

Definition 11.0.4 (Ind-varieties)
An Ind-variety is a set with a countable filtration X0 ⊆ X1 ⊆ · · · such that

• X = colim−−−−−→
n

Xn =
⋃
n

Xn,

• Each Xn ↪→ Xn+1 is a closed embedding of finite-dimensional varieties.

X will be projective/affine iff its filtered pieces are projective/affine.
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11 Generalized Flag Varieties, 7.1 (Wednesday, September 15)

Remark 11.0.5: Note that we don’t require a stratification here, but there will be a stratification
on the flag varieties we’ll use, which induces a filtration.

Example 11.0.6(?): Infinite affine space A∞/k can be written as

A∞/k =
{

(a1, a2, · · · )
∣∣∣ ai ∈ k, finitely many ai 6= 0

}
.

The filtration is given by

A1 ↪→ A∞

x 7→ (x, 0, 0, · · · )

A2 ↪→ A∞

(x, y) 7→ (x, y, 0, · · · )
...

Example 11.0.7(?): For V ∈ C-Mod with dimC V =∞, we have V ∼= A∞/C as Ind-varieties.

Example 11.0.8(?): For any V ∈ C-Mod, the space P(V ) := Gr1(V ) (the space of lines in V ) is a
projective Ind-variety.

Remark 11.0.9: For any integrable highest weight g-module V = V (λ) for λ ∈ DZ an integral
dominant weight, this will yield a G-module. Here for g semisimple, it integrates to the simply
connected G.

Definition 11.0.10 (?)
For any vλ 6= 0 ∈ V , define

ιv : G → P(V )
g 7→ [gvλ],

Definition 11.0.11 (?)
For any Y ⊆ {1, · · · , `}, define D0

Y the Y -regular weights by

D0
Y :=

{
λ ∈ DZ

∣∣∣ 〈λ, αi〉 = 0 ⇐⇒ i ∈ Y
}
.

This partitions the integral dominant chamber:
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11 Generalized Flag Varieties, 7.1 (Wednesday, September 15)

D0
{1,2}

D0
{1}

D0
{2}

D0
∅ = D0

Lemma 11.0.12(?).
For λ ∈ D0

Y the map ιv factors through G/PY to give an injection

ιv : G/PY ↪→ P(V ).

So any Kac-Moody maps into an Ind-variety.

Remark 11.0.13: We’ll show that im ιv ⊆ P(V ) is closed, i.e. that its intersection with any finite
filtered piece is closed. The variety structure will be induced from this embedding.

Proof (?).
We have a distinguished point [vλ] ∈ P(V ), so StabG([vλ]) ⊇ PY . Showing this amounts to
showing that for all s ∈ Y , s ∈ G fixes [vλ], but this follows from the definition of vλ.

�

Remark 11.0.14: A great class of varieties: Bott-Samelson-Demazure-Hansen varieties, which
capture the geometry of words in Coxeter groups. We’ll have w ∈ W,w ∈ N , and we’ll define
W 3 w as words:

W :=
{
w = (si1 , · · · , sin)

∣∣∣ n ≥ 0
}
,

which is a poset under deleting symbols. For any w ∈ W, define Zw :=
∏
k≤n

Pik/B
×n , where the
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12 7.1 (Friday, September 17)

action of the Borel is the right mixed space action:

(p1, · · · , pn)(b1, · · · , bn) = (p1b1, b
−1
1 p2b2, b

−1
2 p3b3, · · · , b−1

n−1pnbn).

Example 11.0.15(?): Take G = GL3(C), so S = (s1, s2) and w = (si1 , si2), then

Zw = (Pi1 × Pi2)/B×2 = Pi1
B

× Pi2/B = Pi1×
B
Pi2/B → Pi1/M

∼= P1,

so these are all bundles over P1 with fibers P1, and are in fact Hirzebruch surfaces.

Fact 11.0.16

1. Zw is an irreducible smooth variety with a Pi1-action.

2. Zw → Pi1/B is locally trivial with fiber Zw′ where w′ is obtained from w by deleting the first
reflection, so s′ = (si2 , · · · , sin).

3. Zw
ψ−→ Zw1 where w1 := w[n− 1] := (s1, · · · , sin−1) where [p1, · · · , pn] ψ−→ [p1, · · · , pn−1]. This

admits a section [p1, · · · , pn−1] σ−→ [p1, · · · , pn−1, 1].

4. Zw is a projective variety.

Remark 11.0.17: Why projective: it’s a fiber bundle of compact varieties, thus compact and
complete. A bit more goes into fully showing projectivity.

Definition 11.0.18 (?)
Define a map

mw : Zw → G/B
[p1, · · · , pn] 7→ p1 · · · pnB,

then immw =
⋃
v≤w

BvB/B ⊆ G/B.

Remark 11.0.19: This is where the projective variety structure comes from, and we’ll discuss
when the image hits Schubert varieties.

12 7.1 (Friday, September 17)

Remark 12.0.1: See Fulton, Young Tableaux.

7.1 (Friday, September 17) 47



12 7.1 (Friday, September 17)

Remark 12.0.2: Given A we produce G a Kac-Moody group, with standard parabolics Pλ ⊆ G.
We’ll show G/Pλ ↪→ P(V ) for some projective space over V an integrable highest weight space in
g-Mod, which is generally an Ind-variety, and if we show it’s closed it will inherit the structure of a
projective variety. Write V = Lmax(λ) = Vλ as a highest weight module.

Idea: for mw : Zw → G/B for Zw a BSDH, for any word w ∈ W, if w ∈ W ′Y is reduced, compose
the above map with G/B → G/PY to get a map

mY
w : Zw → G/PY .

We’ll show Zw is projective, which is easier since it’s an iterated line bundle. Let v0 ∈ Vλ (thought of
in the finite type case as a highest weight vector in the irreducible, but may generally not coincide)
consider the maps

ιV : G → P(V )
ιV : G/PY → P(V )

mw(v0) = ιv0 ◦mY
w : Zw → P(V ).

Theorem 12.0.3(?).

1. mw(v0) a morphism of varieties: easy to believe, hard to show! See the book.

2.

im(mw(v0)) =
⋃

v≤w,v∈W ′Y

BvPY /PY ⊆ G/PY ,

which is some subvariety of the flag variety which we’ll define as the Schubert variety
XY
W .

Proposition 12.0.4(5.1.3).
For Y ⊆ S,w ∈ W ′Y , and let w = w1 · · ·wk a reduced decomposition, `(w) =

∑
`(wi). Let

Zi ⊆ Pwi := P{wi} be a subset of a simple parabolic such that Zi � Pwi/B. a

Then

im
(∏

Zi
mult−−−→ G� G/PY

)
=
⋃
v≤w

BvPY /PY .

aSee Fulton for an explicit description, taking a Plucker embedding and studying actual equations.

Remark 12.0.5: Where does the additional condition v ∈W ′Y come from in the theorem statement?
Take a Bruhat decomposition

G/B =
∐
v≤w

v∈W�WY�WY

PY ′vPV .
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12 7.1 (Friday, September 17)

Example 12.0.6(?): Take G = GLn, then

• λ ∈ X∨(T )
• λ(t) = t1 · · · tk for 1 ≤ k ≤ n,
• λ ∈ DZ and Vλ =

∧k
Cn.

• S = {1, · · · , `} where ` = n− 1.
• G/PY ⊆ P(

∧k
Cn),

• Y (λ) :=
{

1 ≤ i ≤ `
∣∣∣ λ(αi∨) = 0

}
.

Then

λ ∈ (1, · · ·k , 1, 0, · · ·n−k , 0)
αi
∨ = (0, · · · , 1,−1, 0, · · · , 0),

so we can write Y (λ) = {1, · · · , k − 1, k + 1, · · · , n− 1} = k. Then set F k ∈ P(
∧k

Cn) = Grk(Cn),
so 0 ⊆ F k ⊆ Cn, and define the map

ιλ(F k) = [f1 ∨ f2 ∨ · · · ∨ fk],

where {fi} is a choice of ordered basis.

Fact 12.0.7

Some facts about Zw =
B∏

1≤k≤m
Pik/B, recalling the action of B given last time. Set w =

(si1 , · · · , sim) ∈ W. There is a map

ϕ : Pi1
B

× · · ·
B

× Pim → B/B ×G/B × · · · ×G/B
[p1, · · · , pm] 7→ [B/B, p1B/B, p1p2B/B, · · · , p1 · · · pmB/B].

Showing this is well-defined: follows from universal property of quotients, looking at where point
stabilizers are contained. Then

imϕ = B/B ×
G/Pi1

G/B ×
G/Pi2

× · · · ×
G/Pim

G/B.

How to define the BSDH: construct a lattice by deleting elements in the sequence of flags corre-
sponding to various words, and take the right-most flag in the result:
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13 Equivariant K-theory (Wednesday, September 22)

i1 = n− 2 im = n− 2

Cn Cn Cn Cn Cn Cn

Cn−1 An−1 En−1 Fn−1 Cn−1 En−1 En−1

Cn−2 An−2 En−2 Fn−2 Cn−2 An−2 Fn−2 Fn−2

...
...

...
...

... C2 D3 D3

C1 A1 E1 F 1 C1 B1
. . . C2

0 0 0 0 0 B1

0

can differ can differ

Link to Diagram

Here the word is (in−2, i1, i2, i3, in−1, in−2).

13 Equivariant K-theory (Wednesday,
September 22)

Remark 13.0.1: The setup: Gy X a topological group acting on a space.

• Gelfand (30s): replace X with a topological vector space T , e.g. “generalized functions” on X.
This linearises the problem, but is usually something like a infinite dimensional Hilbert space.

• Harish-Chandra, Vogan: Replace T with an algebraic object (usually finite-dimensional) and
apply K-theory. Here K-theory simplifies the problem, since all invariants that are additive
on exact sequences can be recovered from it.

Classical literature on this is phrased in terms of X a separated algebraic space, since even nice
quotients of varieties are often not again varieties. We’ll assume X is an algebraic variety, auto-
matically separated, and quasiprojective. This will imply that X ⊆ G/P embeds into a flag variety,
e.g. for G = GLn and P a parabolic this covers Pn. For us, projective will mean that X ⊆ G/P is
closed, which will turn out to admit ample line bundles.
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13 Equivariant K-theory (Wednesday, September 22)

Definition 13.0.2 (?)
Let (−)gp denote taking the Grothendieck group, then

G0(G,X) := CohG(X)gp

K0(G,X) := Bun (GLr)G/X ,

i.e. the G-equivariant coherent sheaves and vector bundles respectively.

Remark 13.0.3: Note that vector bundles don’t form an abelian category – here instead you take
the additive monoid generated by addition of vector bundle. However coherent sheaves do form an
abelian category, so this denotes the usual Grothendieck group for abelian categories. Of modern
interest: split Grothendieck groups, triangulated, etc.

Here one should think of G as something analogous to Borel-Moore homology, and K is closer to
cohomology. Note that in classical settings, one could cap against the fundamental class to get a
map between them.

Proposition 13.0.4(?).
If X is a smooth G-variety admitting an equivariant ample line bundle, then there is an
isomorphism

K0(G,X) ?−→ G0(G,X).

Remark 13.0.5: This map records how a vector bundle can be regarded as a coherent sheaf! For
the rest of today, we’ll assume X admits a G-equivariant ample line bundle and refer to this as
condition ?. If this proposition holds, notationally we’ll always write KG(X) = K0(X) = G0(X).

Example 13.0.6(?): Consider the coherent sheaf Ox⊕
n , which should correspond to the trivial

bundle X × Cn → X. If ξ is a vector bundle, then the sheaf of sections is a locally free coherent
sheaf.

Proposition 13.0.7(?).
Every G-equivariant coherent sheaf F ∈ CohG(X) on X admits a finite resolution by
G-equivariant locally free sheaves of finite type.

Example 13.0.8(?):
• If G = 1, then admitting an ample line bundle as above is equivalent to X ⊆ G/P being a

subvariety. Then KG(X) = K(X), the algebraic K-theory, of X.

• If X = pt, it is smooth, and KG(X) = R(G), the representation ring of G. This holds for G
any linear algebraic group.

Remark 13.0.9: So this mixes usual K-theory and representation theory! It turns out that for
X = pt, there is an equivalence of categories CohG(pt) = Bun (GLr)G = G-Modfd.
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If X is projective and G is semisimple, then ? is true. If E → X is a G-vector bundle on X smooth
projective, then we’ll write KG(X) for G0(G,X) = K0(G,X).

Lemma 13.0.10(?).
Every F ∈ CohG(X) is a quotient of a G-equivariant locally free sheaf E of finite type on X.

See proof: Borho, Byrlinksi, MacPherson. Geometric
perspective on ring theory?

Remark 13.0.11: Let G ∈ AlgGrp be linear acting on V ∈ C-Mod possibly infinite dimensional.
This is common, e.g. when G consists of regular functions. This is infinite dimensional, but not
so bad – it’s not quite as big as a Hilbert space. We’ll say the action is algebraic if it acts
locally finitely: the G-orbit of any vector should be a finite dimensional subspace. Consider
Maps(G,M) := Hom

Set
(G,M) = {f : G→M} with no conditions at all on the functions. There is a

subspace of “regular functions with coefficients in M”, using the following well-defined map:

C[G]⊗CM → Maps(G,M)∑
fi ⊗mi 7→

∑
f(gi)mi,

using that the f(gi) are scalars in M .

For a fixed m, there is a G-action g 7→ gm, and so letting m vary yields a map M aM−−→ Maps(G,M).

Claim: G acts algebraically on M iff im am ⊆ C[G]⊗CM .

If the action is algebraic, take Gm ⊆ V ⊆ M with V a G-stable finite dimensional subspace.
Expanding in a basis and writing g 7→ gm in this basis yields the fi, which are regular.

Lemma 13.0.12(?).
If F ∈ CohG(X), then Γ (X;F) has the natural structure of an algebraic G-module.

14 Localization in Equivariant K-theory
(Friday, September 24)

E 14.1 Localization Theorems e

Reference: Thomason.

Definition 14.1.1 (Localization theorems)
Suppose A ∈ AbAlgGrp is reductive, and X ⊆ G/P is contained in a flag variety (so X is
quasiprojective). Fix a ∈ A, and consider the fixed point set Xa and the inclusion ι : Xa ⊆−→
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X. We’ll say the localization theorem holds for X if the following induced hom is an
isomorphism:

i∗ : KA(Xa) [ma−1]→ KA(X) [ma−1] .

Remark 14.1.2: Thomason shows that this is true in this situation. Recall that we identified
R(A) = KA(pt). Taking the trace of a representation yields a map R(A) ↪→ C[A], the ring of regular
functions. For varieties, we can obtain OX,x by localizing rings at their maximal ideals, thinking of
these as functions on X. Let

Ra := R(A) [(R(A)\ma)−1]
Ma := R(A)⊗R(A) M.

E 14.2 Proper Pushforward e

Remark 14.2.1: We’ll need proper maps for the ever-popular decomposition theorem. However,
almost every scheme we use in this class will be reduced, although one does rarely have to worry
about this.

Definition 14.2.2 (Proper Maps (and prerequisite notions))
Pullbacks are universal with respect to the following squares, and have a concrete description
for us: {

(x, z) ∈ X × Z
∣∣∣ f(x) = z(g)

}

X×
Y
Z Z

X Y

g

f

g′

f ′

y

Link to Diagram
The diagonal is the unique morphism ∆ : X → X×

Y
X whose compositions with projections

are the identity:
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X

X×
Y
X X

X Y

y

idX

idX

∆

Link to Diagram
A morphism is separated if the diagonal is a closed embedding.
A morphism f : X → Y is universally closed if for any g : Z → Y , the base change
f ′ : X×

Y
Z → Z is a closed morphism. This replaces the notion of “K compact =⇒ f−1(K)

compact” for analytic varieties.
A morphism f is proper if f is separated, finite type, and universally closed.

Example 14.2.3(?):
• Closed embeddings are proper, and open maps are usually not.
• If f is proper, its base change f ′ is always proper.
• Compositions of proper morphisms are again proper.
• Any morphism between projective varieties is proper.

Theorem 14.2.4(18.8.1, Rising Sea).
Let f : X → Y be proper and F ∈ Coh(X). Note that Γ (X,−) is exact and Coh(X) is abelian,
so we can take its derived functor. Let f∗ : Sh/X → Sh/Y , then e.g.

Rif∗F(U) = H i(f−1(U);F).

This satisfies several properties:

1. Rif∗ : Coh(X)→ Coh(Y ) is a covariant functor. Without properness, one can just replace
Coh with QCoh.

2. R0f∗ = f∗

3. A SES 0→ F1 → F2 → F3 → 0 induces a LES.

Theorem 14.2.5(Rising Sea, 18.8.5).
If f : X → Y is a proper projective morphism, then Ri>df∗F = 0 for d defined as the maximum
dimension of the fiber, d := max

y∈Y
dim f−1(y).

Definition 14.2.6 (Proper Pushforward)
Let X,Y be arbitrary quasiprojective varieties and f : X → Y be proper and G-equivariant.
Then there is a natural direct image morphism f∗ : KG(X)→ KG(Y ).
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15 Line Bundles on X Y (Monday, September 27)

We define it as follows: note that a map such as f∗([F ]) := [f∗F ] won’t necessarily be well-
defined, since SESs are additive in the Grothendieck group. For F ∈ CohG(X), then it turns
out that Rf∗F ∈ CohG(Y ) and the higher direct images vanish in large enough degree. We
then define

f∗ : KG(X)→ KG(Y )
[F ] 7→

∑
(−1)i[Rif∗F ].

Example 14.2.7(?): Let G be connected reductive with A := T a maximal torus, which is abelian
reductive. Then take a ∈ A a regular element, so Xa = XT . In our case, XT = W ′Y , and X = G/PY .
Then K-theory is concentrated on the fixed locus:

i∗KT (XT ) [ma−1] ∼−→KT (X) [ma−1] .

15 Line Bundles on X Y (Monday, September
27)

Remark 15.0.1: Notation: X will denote a Kac-Moody flag variety, and X a usual flag variety. For
any λ ∈ D0

Y , define the algebraic line bundle L(−λ) → X Y to be the pullback of the tautological
bundle on P(Lmax(λ)) via the morphism ιλ : X Y → P(Lmax(λ)). Recall that we defined Y -regular
weights to get an embedding into a flag variety.

Let X be a finite dimensional variety, then a vector bundle on X is a map E π−→ X with each fiber a
C-module and for all x ∈ X there exists an open U ⊆ X and a homeomorphism ϕ : U×Cn → π−1(U)
over U , so the following diagram commutes:

π−1(U) U × Cn

U

π pr1

ϕ

Link to Diagram

We refer to ϕ as a trivialization. Writing U12 := U1∩U2, given trivializations over Ui we require that
the trivializations on U12 are related by an element T12 ∈ GLn, and the induced map U12 × Cn	
are essentially given by matrices with entries given by functions on U12 The key is that these satisfy
the cocycle condition:

Tkj
∣∣∣
Uijjk

Tji
∣∣∣
Uijk

= Tki
∣∣∣
Uijk

.
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Given a vector bundle, set F to be the sheaf of sections of π : E → X. If for example U ⊆ X is
trivializable, then Γ (U,F) are n-tuples of functions U → C, so F|U ∼= OU

⊕n , making it locally free.

Proposition 15.0.2(about locally free sheaves).
Given a vector bundle, set F to be the sheaf of sections of π : E → X. Then

1. If F is locally free, then Hom
Sh/X

(F ,OX) ∈ Sh/X is locally free.

2. If n = 1, then F ⊗ F∨ ∼= OX , making it an invertible sheaf under the monoidal tensor
product.

3. Pullbacks of locally free sheaves are again locally free:

Z×
X
E E

Z X

where we equivalently write f∗F .

Remark 15.0.3: How to think about a flag variety: given w ∈W ′Y and UW ⊆ XY , so U− ⊆ G/P .
Then {Uw}w∈W ′Y ⇒ XY is an open cover with Uw ∼= C`(w

′
0) with w0 the longest element and w′0 is

a minimal coset representative. If v ∈ Uw ⇐⇒ v = w for any T -fixed point v, so there’s only one
such fixed point in every open. We have elements wP/p ∈ XY , so
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P/P

wP/P

Example 15.0.4(?): For G := SLn+1, we have Y = {2, · · · , n} ,W = Sn+1 = {(w0 · · ·wn)} and
the minimal length representatives have increasing coordinates, so we get

W ′Y =
{

(0
∣∣∣ 1, 2 · · · , n), (1

∣∣∣ 0, 2, · · · , n), · · · , (n
∣∣∣ 0, 1 · · · , n− 1)

}
.

For every i ∈W ′Y = {0, · · · , n}, we have Ui ⊆ XY ⊆ G/PY . We can obtain Pn ∼= C×�Cn+1
, which

is G/P Y = XY here. So we can take Ui :=
{

[x0, · · · , xn]
∣∣∣ xi 6= 0

}
⊆ Cn, which is dimension n

since the longest element is (n
∣∣∣ 0, 1, · · · , n− 1).

Example 15.0.5(?): Let k ∈ Z, we’ll define OPn(k), a line bundle on Pn. Taking n = 1 to get
SL2 and P1 above, we have W ′Y = {0, 1} and C = U1 = SpecC[x0/1] and U0 = SpecC[x0/1], then
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on their intersection we have x0/1 = x−1
1/0. So transitioning U0 → U1 is given by xk0/1 = x−k1/0, and

U1 → U0 by xk1/0 = x−k0/1, which defines a line bundle denoted E := O(k). What are the global
sections Γ

(
P1;O(k)

)
? This requires f(x−1

0/1)xk0/1 = g(x0/1), so the global sections are C[x, y]k the

homogeneous polynomials of degree k. One can check that dim Γ (Pn;O(k)) =
(
n+ k

k

)
.

Remark 15.0.6: Next time: we’ll try to match these up with line bundles of the form G
P

× Cλ.

16 Wednesday, September 29

Remark 16.0.1: Ch. 7 and 8 in Kumar: algebraic vector bundles, particularly line bundles on
ind-varieties. Let E π−→ X be an algebraic vector bundle, so there are local trivializations:

π−1(U) U × Cn

U

π

pr1

i.e. these look like projections onto the first coordinate of an actual product on sufficiently small
sets. We write Ex := π−1(x). The key data: transition functions.

Our first examples were OPn(k), particularly for n = 1.

Remark 16.0.2: Equivariant coherent sheaves yields algebraic representations by taking global
sections. Kumar uses character formulas to compute global sections.

Definition 16.0.3 (Equivariant vector bundles)
For G ∈ AlgGrp is linear (and e.g. connected reductive), if π is G-equivariant and G maps
Ex → Egx linearly, then π yields an equivariant vector bundle.

Remark 16.0.4: For G connected reductive and T ⊆ G a maximal torus, a character λ ∈ X∗(T )
is a map λ : T → C×, and using T ⊆ B ⊆ G we get a representation λ : B → C× of the Borel. We
then define

G
B

× Cλ := (G× C)/B.

There is a map
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G× C G
B

× Cλ [g, z]

G G/B gB/B

pr1

−/B

Link to Diagram

Even better, if Y =
{

1 ≤ i ≤ `
∣∣∣ 〈λ, αi∨〉} then taking λ ∈ D0

Y so λ : P → C× yields a map

G
P

× Cλ
π−→ G/P where G/P ⊇ Uw. Write P = LU and P− = LU− for L the Levi and U± the

unipotent radical and its opposite:

There is an embedding

U− ↪→ G/P

u 7→ uP/P.

For w ∈W ′Y , we have

ηw : wU− → G/P

wuw−1 7→ wuP/P,

Wednesday, September 29 59

https://q.uiver.app/?q=WzAsNixbMiwwLCJHXFxtaXh7Qn1cXENDX3tcXGxhbWJkYX0iXSxbMiwyLCJHL0IiXSxbNCwwLCJbZywgel0iXSxbNCwyLCJnQi9CIl0sWzAsMCwiR1xcdGltZXMgXFxDQyJdLFswLDIsIkciXSxbNCw1LCJcXHByXzEiXSxbNSwxLCJcXHdhaXQvQiJdLFswLDFdLFs0LDAsIiIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsyLDMsIiIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=


16 Wednesday, September 29

and wU− = wU−w−1 for w ∈W = NG(T )/T .

Example 16.0.5(?): Let P1 = G/P for G = SL2. Here W = {e, s} ∼= C2 and S = {s} ⊇ Y ,
and we want Y = ∅. Any λ ∈ X∗(T ) needs to be orthogonal to α∨. We can take a realization
SL2(C, {2} , {1}) which yields X∗(T ) = Z. So

〈
λ, α∨

〉
= 0 ⇐⇒ 1 · λ 6= 0, forcing λ 6= 0 for this to

be a flag variety. For λ = k, we have λ ·
[
t 0
0 t−1

]
= tk. We get a line bundle G

B

×Cλ
π−→ G/B = P1,

how does this compare to OP1(k)? The flag varieties look like the following:

s

e

e

s

Us Ue

Here s, e are the two T -fixed points. We have Us ∩ Ue ∼= C×, and we’ll replace Us → sU− and
Ue → eU− = U−. The transition functions read:

sU− × C π−1(Us) π−1(Ue) U− × C

Us Ue

πpr1

∼= ∼=

pr1π

on Ue∩Us

Link to Diagram

We have Us ∩ Ue ∼= C×, so what map C×	 do we get? Consider U−B/B ∩ sU−B/B, so

uα(x) =
[
1 x
0 1

]
u−α(x) =

[
1 0
x 1

]
.
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Then and u−α(x) = suα(−x)s−1, so

u−α(x)B = u−α(y)B
suα(−x)s−1B = su−α(y)B
uα(−x)s−1B = u−αB.

Now check that[
1 −x
0 1

][
0 −1
1 0

]
=
[
1 0
y 1

][
a b

0 a−1

]
for some

[
a b

0 a−1

]
∈ B

[
−x −1
1 0

]
=
[
a b

ay yb+ a−1

]
,

so we have −x = y−1. Thus

TesU
×
s × C→ U×e × C
(x, z) 7→ (x−1, x−kz)

TseU
×
e × C→ U×s × C
(x, z) 7→ (x−1, x−kz).

These computations are hard, even in the case of SL2!
Perhaps a motivation for having character formulas.

We then identify G
B

× Cλ
π−→ G/B with O(−k), and L(λ) = G

B

× Cλ.

17 Kumar Ch. 8: Demazure Character
Formulas (Friday, October 01)

Remark 17.0.1: For any λ ∈ D0
Y define the algebraic line bundle LY (−λ) over XY = G/PY to be

the following pullback:

G/Py η

X Y P(Lmax(λ))ιλ

y
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Link to Diagram

Let HY = Grk(Cn) = G/P Y for G := GLn.

Definition 17.0.2 (The Tautological Bundle)
Then define a vector bundle

E :=
{

(x, v) ∈ XY × Cn
∣∣∣ v ∈ x} =

{
(E, v) ∈ Grk(Cn)× Cn

∣∣∣ v ∈ E} ,
and define E π−→ XY = Grk(Cn) to be projection to the first factor such that

1. π−1(E) ∼= E ∈ C-Moddim=k is a k-dimensional vector space for any E ∈ XY .
2. π is G-equivariant: π(g · (x, v)) = g · π(x, v), where the first action is g · (x, v) = (gx, gv),

and π(x, v) = gx. Moreover G acts on fibers linearly, so g · (−) : π−1(x) → π−1(gx)
which sends E → gE as subspaces in Cn, and we require that this map of subspaces is a
C-linear map.

Remark 17.0.3: Equivariant bundles on homogeneous spaces are determined by the representation
of the stabilizer on the corresponding fiber. We can pick a base point spanC {e1, · · · , ek} ∼= Ck ∈
Grk(Cn), whence StabG(Ck) = P is all but the lower-left block:
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Then π−1(Ck) = Ck. We conclude

E : G
P

× Ck → G/P

[g, v] 7→ gv.

Example 17.0.4(?): For k = 1, we’re considering Gr1(Cn) = Pn−1.

• T ⊆ GLn are diagonal matrices, and ty [x1, 0, · · · , 0] = [tx1, 0, · · · , 0].

• Y =
{

1 ≤ i ≤ n− 1
∣∣∣ 〈λ, αi∨〉 = 0

}
= {2, · · · , n− 1}.

• Taking λ = [1, 0, · · · , 0], we have a character

λ : T → C×

diag(t1, · · · , tn) 7→ t11t
0
2 · · · t0n.

• E = G
P

× C1 = G
P

× C[1,0,··· ,0] = L(−λ).

Note that since this weight λ is dominant (and not antidominant), there are no global sections.

Remark 17.0.5: Define

h∨Z,Y :=
{
λ ∈ h∨Z

∣∣∣ 〈λ, αi∨〉 = 0, i ∈ Y
}
.

For any λ ∈ h∨Z take λ1, λ2 ∈ D0
Y such that λ = λ1− λ2, i.e. we can write any weight as a difference

of dominant weights:
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Set

L(λ) := LY (−λ2)⊗ L(−λ1)∨.

For example, given T ⊆ G and λ ∈ X(T ), we have

L(λ) = G
P

× C−λ.

Remark 17.0.6: Given w ∈W , define

Lw(λ) := Pi1
B

× Pi2
B

× · · ·
B

× Pin
B

× C−λ.

Claim: Let

• w = (si1 , · · · , sin)
• iλ : G/PY → P(Lmax(λ))
• mw : Zw → G/PY

Then

Lw(λ) = mw
∨LY (λ).
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Proof (?).
Define

f : Lw(λ)→ Zw = Pi1
B

× Pi2
B

× · · ·
B

× Pin
B

× C−λ
[p1, p2, · · · , pn, z] 7→ [p1, p2, · · · , pnB/B]

g : Lw(λ)→ LY (λ)
[p1, p2, · · · , pn, z] 7→ [p1 · p2 · · · pn, z].

Exercise (?)
Check that these maps are well-defined.

Using the universal property of pullbacks, we get a diagram:

Lw(λ)

m∗wLY (λ) = Zw ×
G/P
LY (λ) LY (λ)

Zw G/P

π

mw

g

f

∃ϕ

Link to Diagram
The claim is that ϕ is an isomorphism, we’ll show this by explicitly construction its inverse
algebraic morphism. We have ϕ([p1, · · · , pn, z]) = ([p1, · · · , pnB/B]× [p1p2 · · · pn, z]). Define

ψ : m∗wLY (λ)→ Lw(λ)
[p1, · · · , pnB/B]× [g, z] 7→ [p1, · · · , pn, p−1

n · · · p−1
1 gz],

where p−1
1 · · · p

−1
1 g ∈ P . This will clearly be an inverse, it remains to show it’s well-defined.

Note that

p1 · · · pnP/P = gP/P =⇒ f−1p1 · · · pn ∈ P,

which follows from chasing the fiber product diagram around the two sides.
�

Exercise 17.0.8 (?)
Check that this is well-defined by showing a different representative has the same image. Then
compose ϕ,ψ in both orders.

Kumar Ch. 8: Demazure Character Formulas (Friday, October 01) 65

https://q.uiver.app/?q=WzAsNSxbMiw0LCJaX3ciXSxbNCw0LCJHL1AiXSxbNCwyLCJcXG1jbF5ZKFxcbGFtYmRhKSJdLFsyLDIsIm1fd14qIFxcbWNsXlkoXFxsYW1iZGEpID0gWl93IFxcZmliZXJwcm9ke0cvUH0gXFxtY2xeWShcXGxhbWJkYSkiXSxbMCwwLCJcXG1jbF93KFxcbGFtYmRhKSJdLFsyLDEsIlxccGkiXSxbMCwxLCJtX3ciLDJdLFszLDBdLFszLDJdLFs0LDIsImciLDAseyJjdXJ2ZSI6LTR9XSxbNCwwLCJmIiwwLHsiY3VydmUiOjR9XSxbNCwzLCJcXGV4aXN0cyBcXHZhcnBoaSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==


18 Cohomology of Certain Line Bundles Zw (Monday, October 04)

18 Cohomology of Certain Line Bundles Zw
(Monday, October 04)

Remark 18.0.1: Some references:

• Fulton, Intersection Theory. Similar difficulty to Hartshorne if you’re going through it yourself!

– See Young Tableaux books.

• Eisenbud-Harris, 3264 and All That. A more Vakil-style approach.

Definition 18.0.2 (Chow Group)
The Chow group of X ∈ Var/k is the quotient A∗(X) := Z(X)/Rat(X), where Z(X) =
Z[Sub(X)], the free Z-module on subvarieties of X. The group Z(X) are algebraic cycle,
and we mod out by rational equivalence.

Example 18.0.3: If G y X, then Y ∼ gY ∈ A∗(X), and something similar happens for many
algebraic group actions. Another example is that in P1, x ∼ x′ for all points x, x′ since PSL2 y P1.

Remark 18.0.4: Note that there is also an equivariant Chow group/ring. In general, A∗(X) is
difficult/impossible to compute (according to Harris) unless there is an affine stratification. In these
cases, it coincides with Borel-Moore homology.

Theorem 18.0.5(?).
If X is smooth, then A∗(X) forms a ring, where the grading is given by codimension of
subvarieties. Thus there is a multiplication [A] · [B] = [A ∩B] when A t B generically. Here
transversality refers to an open condition on tangent spaces.

Remark 18.0.6: We have three ways of thinking about line bundles:

• Local trivializations
• Algebraic morphisms with 1-dimensional fibers
• Invertible sheaves

Now we’ll add a fourth in terms of divisors. Define:

• An−1(X) ∈ Grp, Weil divisors
• Pic(X) ∈ Grp, the group of isomorphism classes of algebraic line bundles on X where [L1] ·

[L2] := [L1 ⊕ L2].

Proposition 18.0.7(?).
Taking the Chern class yields a group morphism c1 : Pic(X) → An−1(X). If the line bundle
is generated by global sections, take the zero section of the global section. If X is smooth,
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c1 is an isomorphism, and we write c1(OX(Y )) := [Y ] ∈ An−1(X). Note that this is slightly
different to the ideal sheaf definition in Vakil.

Remark 18.0.8: See relation to Schubert varieties and Grassmannians in the referenced books.
Bott-Samelson-Demazure and flag varieties will be smooth, although we’ll have to be careful for
Schubert varieties.

Proposition 18.0.9(8.1.2).
Define the length of a word w ∈ W to be the number of simple reflections, regardless of
whether or not w is reduced. Let n := `(w), then there is a formula for the canonical bundle
KZw of any Bott-Samelson-Demazure variety Zw (even Kac-Moody types):

Lw(−ρ)⊗OZw(−
n∑
q=1

Zw(q)).

Remark 18.0.10: Here ρ ∈ h∨Z (e.g. characters of the torus in the semisimple simply connected
case) is any element satisfying ρ(αi∨) = 1 for all 1 ≤ i ≤ `. Recall that

Zw = Pi1
B

× · · ·
B

× Pin/B = {[p1, · · · , pnB/B]} ,

and Zw(q) means deleting the qth factor, so Zw(q) = {[p1, · · · , 1, · · · , pnB/B]} has the qth coordi-
nate set to 1. Note that there is a quotient map Zw → Zw(n), which has a section, and we can use
this to induct.

Proof (?).
Consider G connected and reductive and let X = G/B be the flag variety, which is smooth.
Then for λ ∈ X(T ) corresponds to the algebraic line bundle L∅(λ) = G

B

× C−λ. This yields
a function X(T ) → Pic(X) c1−→ An−1(X) given by forgetting the G-action. This is a group
morphism, where adding characters maps to tensoring bundles.
Note that for T = C×, we have

X(T ) = Hom
AlgGrp

(C×,C×) =
{
z 7→ zk

∣∣∣ k ∈ Z} ∼−→ AbGrpZ,

where negatives are permitted since 0 6∈ C×. More generally, X(T ) ∼−→ AbGrpZn for n = rank T ,
where [t1, t2, · · · , tn] λ−→ λk1

1 · · ·λ
kn
n . Since we have an affine stratification by Schubert cells, we

can write A∗(X) =
⊕
w∈W

[Xw], and in fact Ak(X) =
⊕

`(w)=k
[Xw]. Considering the lattice for

W , there are ` dimension 1 Schubert cells, and identifying them as CW cells and applying
Poincare duality, there are ` codimension 1 cells:
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w

w0s1 w0sj w0sn

...
...

...

...
...

...

s1 · · · sj · · · sn

e

Link to Diagram
It turns out that the map is given as follows:

Zn ∼= X(T ) −→ An−1(X) ∼= Z`

λ 7→
∑̀
i=1

〈
λ, αi

∨〉[Xw0si ] n ≥ `.

�

Example 18.0.11(?): For G = SL2,L(λk) = OP1(k) and X(T ) ∼= Z. Recall that Γ
(
P1,OP1(k)

)
=

C[x, y]k are homogeneous polynomials of degree k when k ≥ 0, otherwise there are no global sections.
For example, C[x, y]2 =

〈
x2, xy, y2

〉
is dimension 3 = 2 + 1. All points are rationally equivalent, so

we can take the basepoint B/B, and so the map will need to track the multiplicity of points. The
composition is given by the following:

X(T ) Pic(X) An−1(X)

L(λk) OP1(k) k[B/B]

Link to Diagram

The cotangent bundle of X is given by G
P

× u = T∨G/P where P = LU . The canonical bundle is
the top wedge power, and here we get G

B

× n = G
B

×C2 = L(−2), noting that the canonical is equal
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to the cotangent bundle here, and we’ve identified which equivariant bundle this is.

19 Friday, October 08

Remark 19.0.1: Continuing some stuff from Kumar Ch. 8: the goal is to understand the Demazure
and Weyl-Kac character formulas. Open question: how can one compute the singular locus of a
given Schubert variety? This is surprisingly a hot topic this semester, c/o multiple Arxiv papers
that have come out over the past few months.

Our first goal: showing XY
w is normal. Note that most varieties in representation theory are not

normal, and this complicates things significantly, so normality is a great condition here.

Recall that for X ∈ Var, the stalks OX,x are local rings, and the cotangent space at x is defined
as mx/m

2
x.

Cohomology vanishing: some of the hardest and most
important results in this area!

Theorem 19.0.2(8.1.8, Main Result).
Let w = (si1 · · · , sin) ∈W be a word and consider j, k such that 1 ≤ j ≤ k ≤ n. Suppose that
the subword v = (sij · · · , sik) is reduced. Considering the associated BSDH-varieties, we have
a subvariety

Zv := Pij
B

× · · ·Pik/B ↪→ Zw := Pi1
B

× · · ·Pin/B.

Recall that LY (λ) := G
PY
× C−λ, and

Lw(λ) := Pi1
B

× · · ·
B

× PinC−λ = f∗LY (λ),

and we write w(n) for w with the nth letter omitted. Moreover codimension 1 subvarieties
correspond to line bundles under the Chern class isomorphism. Then for any integral dominant
λ ∈ DZ, there are 3 vanishing formulas:

1.

H≥1

Zw;Lw(λ)⊗OZw(−
k∑
q=0

Zw(q))

 = 0.

2.

H≥1 (Zw;Lw(λ)) = 0.

3. If k < n and v′ := (sik · · · , siksik+1) is not reduced, then
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H≥0

Zw;Lw(λ)⊗OZv(−
k∑
q=j

Zw(q))

 = 0

.

Remark 19.0.3: We’ll often use Serre duality in the following form: given a set of nice assump-
tions, there is a perfect pairing

H i(X;F)×Hn−i(X;KX ⊗F∨)→ C,

where F∨ := Hom
OX

(F ,OX) and KX is the dualizing sheaf. Note that if X is smooth and projective,
one can take KX to be the canonical sheaf.

Lemma 19.0.4(8.18).
For any finite-dimensional representation M of B×n , there is a functorial assignment a
Pi1-equivariant algebraic vector bundle Lw(M) → Zw on the BSDH variety. which is an
exact functor on B×n-Moddim<∞, given by

Lw(−λ) = Lw(Cλ).

This is induced by B×n prn−−→ B → Cλ.

Remark 19.0.5: Using this formula,

L(λ)∨ = L(C−λ)∨ = L(C−λ∨),

where given Vλ a highest weight representation of G (connected reductive finite type), we have
Vλ
∨ = V−w0λ. Here C−λ is a representation of the torus, for which w0 = id.

Example 19.0.6(?): For w = v = (s) and 1 ≤ j ≤ k ≤ n = 1, we have Z(s) = Ps/B ∼= P1. Noting
Z∅ = B/B = pt, using the formula we obtain

Hp(Ps/B;L(s)(λ)⊗OZ(s)(−B/B)).

This is an (equivariant) line bundle on P1, which are all of the form O(n) – which one is it? Write
a :=

〈
λ, α∨

〉
∈ Z≥0 since λ was dominant integral. Forgetting the group action yields an algebraic

bundle which we can write as

Hp(Ps/B;OP1(a)⊗OP1(−1)).

This can also be described by tensoring Cλ ⊗ Cµ ∼= Cλ+µ. Finally, we can identify this homology
with

Hp(Ps/B;OP1(a− 1)).
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Note that the canonical for P1 is G
B

×C2 = L(−2) = O(−2) (noting that −n has no global sections).
So if F = O(k) then F∨ = O(−k). Applying Serre duality yields

H i(P1;O(k))×Hn−i(P1;O(−2)⊗O(−k))→ C.

Note that H0(P1;O(k)) = 0 for k < 0, since these look like homogeneous polynomials in degree k
(and there are none of negative degree), so taking k = −1 we have H0(P1;O(−1)) = 0. By duality,
this pairs with H1(P1;O(−1)), and continuing yields a pairing:

0 0 00 0
Example 19.0.7(?): Let w = (s, s), v = (s), v′ = (s), η = ∅, µ = ∅. Write σ = ψ : Zw → Zv, which
is projection onto the first coordinates in the corresponding BSDH varieties:

Ps
B

× Ps/B → Ps/B

[p1, p2B/B] 7→ [p1B/B].

Note that

OZw(−B
B

× Ps/B) = σ∗(OZv(−B/B)).

There are 3 important facts we’ll revisit:

1. A projection formula,
2. Lemma 8.1.5,
3. The Leray spectral sequence.
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Remark 20.0.1: Chapter 8: actually equivariant K-theory without saying so! Also deals with
Demazure operators. Goal: show that XY

w is normal.

Definition 20.0.2 (Normal varieties)
Let X ∈ Var/k be irreducible, then X is normal at x ∈ X iff mx := OX,x is integrally closed
in its field of fractions ff(mx).

Remark 20.0.3: Note that there are implications smooth =⇒ factorial =⇒ normal in Var/k.
We write Σ(X) ⊆ X to be the singular locus, and if X is normal then codimX Σ(X) ≤ 2.

Example 20.0.4(Whitney’s Umbrella): Let f(x, y, z) = x2 − zy2 and consider X := V (f) ⊆
A3
/C ∈ AffVar/C. Checking normality for affine varieties just amounts to checking on regular

functions, so X is normal iff C[X] ↪→ C(X) is integrally closed. One direction involves checking
that localizations are integrally closed, which is an easy exercise in commutative algebra, while the
other direction is harder. Consider X(R):
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The claim is that X is not normal. Setting ξ = x/y is not a regular function on X since y vanishes
at some points of X, but ξ2 = x2/y2 = z ∈ C[X] is regular.

Remark 20.0.5: Motivating question: normality is a local condition, so where can X be non-
normal? There is a process of normalization which associates to X a unique normal variety X̃
with a unique finite birational morphism ν : X̃ → X. Here finite means points have finite fibers
and the map is proper.

Some properties: - ν is unique.

• X̃
ν−→ X satisfies a universal property: For X → Y for any Y normal, then there exists a

unique lift
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X̃

X Y
f

ν
∃!f̃

Link to Diagram

See also Stein factorization for proper morphisms.

• If f : X → Y is a birational projective morphism between irreducible varieties and Y is
normal, then f∗OX = OY .

See also Zariski’s main theorem.

Example 20.0.6(?): Let X be the umbrella from above. Consider ν(u, v) =
[
uv, v, v2

]
, so A2

/C
ν−→

X ⊆ A3
/C, and let f(x, y, z) = x2 − zy2, so f(uv, v, vw) = (uv)2 − u2v2 = 0 is a regular function on

X. One can check that =(ν) ⊆ X so this is surjective, and the conclusion is that X is irreducible
with 2-dimensional fibers. Consider the fibers of ν:

1. x = 0 yields ν−1(x) =
{

[u, v] ∈ A2
∣∣∣ [uv, v, u2

]
= 0

}
= pt.

2. x = [0, 0, z] with z 6= 0 yields ν−1(x) =
{[
uv, v, u2

]
= [0, 0, z]

}
= {p1, p2} which have nonzero

2nd coordinates, by choosing a square root of u.
3. x = [x, y, z] with x 6= 0 yields ν−1(x) =

{[
uv, v, u2

]
= [x, y, z]

}
. This forces v = y, and

x = uv = uy which is nonzero and can be solved for u, so we again get a single point
ν−1(x) = pt.

Note that just considering the real points misses the entire −z axis. This can be analyzed by
regarding u, v ∈ C as a pair of points in the same plane; then if u = v = 0 corresponds to (1), v = 0
with u varying yields (2) (and two-point fibers), and moving v from 0 yields (3). Here X is normal
at the points in (1), but not normal in (2) and (3).

Moral: we can study singularities by looking at fibers.

Remark 20.0.7: Next time: Schubert varieties.

21 Wednesday, October 13

Remark 21.0.1: Goal: show Schubert varieties are normal.
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Theorem 21.0.2(8.2.2).
Let v ≤ w ∈W , λ ∈ DZ ∩ h∨Z,Y where we take the extension PY

λ−→ C× to the parabolic. Then
part (b) of the theorem states that XY

W is normal.

Proof (?).
Let w ∈ W ′Y such that w′ is a minimal length representative in wWY . Write π(w′) = w for
the element obtained by multiplying the elements in the word w′, and choose a word w ∈ W
such that πw′ = w′. Then mY

W : ZW ′ → XY
w′ is surjective and birational, and so the following

induced hom is an isomorphism

(mY
W)∗ : H0(XY

W ,LYw(λ)) ∼−→H0(Zw′ ,Lw′(λ)).

Taking any λ0 ∈ D0
Y and applying A.32 (a deep AG fact) to the ample line bundle L = LYW (λ0),

we get the following important formula:

(mY
w′)∗OZw′ = OXY

W
.

This is what Kumar spends most of the time showing, and is essentially equivalent to the
following:
Fact (Zariski’s Main Theorem)
Let f : X → Y be birational and proper such that X is normal. Then Y is normal iff
f∗OX = OY , which implies that the fibers are connected. This is proved in Hartshorne.

Vogan: there are more statements in representation
theory that say “if normal” than there are that say
“then normal”.

Recall that the normalization Ỹ ν−→ Y satisfies a universal property with respect to maps from
normal varieties. Using functoriality, we have

f∗OX = (ν ◦ f̃)∗OX
= ν∗(f̃∗OX)
= ν∗OỸ Zariski’s Main Theorem, forward direction
= OY by assumption.

Use that f̃ is birational and proper, where properness can be shown by exhibiting it as the
pullback of a proper morphism. Using that Y is normal iff every open affine U ⊆ Y is normal,
we have

OY (U) = (ν∗OỸ )(U) = OỸ (ν−1(U)).

�

E 21.1 Borel-Weil Homomorphism e
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Remark 21.1.1: For any V ∈ C-Mod with dimC ≤ ∞, define a morphism

βV : V ∨ → H0(PV,LV ∨)
f 7→ (δ 7→ (δ, f |δ)),

where taking the dual of the tautological amounts to, for each line δ ∈ PV , quotienting by the
annihilator to get V ∨/δ⊥. Note that there is a projection π : LV ∨ → PV .

Take λ ∈ DZ and define a morphism of G-Mod

β = β(λ) : Lmax(λ)∨ → H0(X ,L(λ)),

where X denotes that this works in the Kac-Moody setting. Note that G acts naturally on LY (λ)
and thus on Hp(X Y ,LY (λ)), and recall G

PY
× C−λ → G/PY = XY . Then Xw ⊆ X and βw(λ) :

Lmax(λ)∨ → H0(Xw,Lw(λ))

Remark 21.1.2: How does this relate to representation theory? Let V be an irreducible integrable
g-module with highest weight λ, then every w ∈W induces Vw, and U(b)-submodule generated by
extremely weight vectors wwλ. Then β acts by pushing weights “up”, and so e.g. if one has weights
λ,w1λ,w2λ, · · · one can consider the Demazure submodule generated by any given wiλ. Often
we set V = Lmax(λ), and so

(Lmax(λ))w = Lmax
w (λ).

Remark 21.1.3: Going back to part (a) of the theorem, we have isomorphisms:

βYw : Lmax
w (λ)∨ ∼−→H0(XY

w ;LYw(λ))
α∨ : H0(XY

w ;LYw(λ)) ∼−→H0(Xw,Lw(λ)).

We have the following geometric picture:

Gw := BwB G

Xw G/B

XY
w G/P

⊆

⊆

⊆

Link to Diagram
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The connection between representation theory and geometry is th following:

H0(Z∞;L∞(λ)) ∼−→Lmax(λ)∨.

Remark 21.1.4: These statements are easy to remember and use but hard to prove! So we’ll move
on and look at the Demazure character formula.

22 Ch.8 Continued (Monday, October 18)

Remark 22.0.1: Today: looking at more examples of Schubert varieties in detail, e.g. Sp2n. One
can take G′ := GL2n and define involutions G′ Θ−→ G′. One example is g 7→ g−t, whose fixed points
are O2n, and it’s easy to check that this is an involution:

(Θ′)2(g) = Θ′(tg−1) = t(tg−1)−1 = t(tg) = g.

For Sp2n, taking

θ(g) = −J tgJ

where J is the matrix 

1
· · ·

1
−+−

−1
· · ·

−1


.

We can check that this is an involution:

Θ2(g) = Θ(−J tgJ)
= −J t(−J tgJ)−1J

= J(Jg−tJ)−1J

= JJgJJ

= g.

Definition 22.0.2 (?)
(G′)Θ :=

{
g′ ∈ G′

∣∣∣ Θ(g′) = g′
}
are the fixed points under the involution Θ.

Proposition 22.0.3(?).
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One can write

(G′)Θ =
{
g ∈ G′

∣∣∣ ω(g′x, g′y) = ω(x, y)
}
.

for ω the associated bilinear form ω(x, y) = txJy. Note that g′x, g′y should be column vectors
here.

Proof (sketch).
Write the RHS set as

{
g ∈ G

∣∣∣ tg′Jg′ = J
}
. Then check that if θ(g) = g for some g ∈ G′,

ω(gx, gy) = t(gx)J(gy)
= t(x−1)gJgy
= t(x−1)gJΘ(g)y
= t(x−1)gJ(−J tg−1J)y
= txJy.

So these two act the same on all elements x, y, and thus have the same matrix, yielding ⊆.
For the reverse containment, if ω(gx, gy) = ω(x, y), then

tgJg = J

=⇒ Jg = tg−1J

=⇒ Θ(g) = −J tg−1J

= −JJg
= g.

�

Remark 22.0.4: We can realize Sp2n as (G′)Θ.

Fact 22.0.5
How do we get a Borel? It is a general fact that these can be obtained by intersecting with Borels
in the ambient group, so take B′ ∩ Sp2n for B′ ⊆ G′ upper triangular. Then B′ is Θ-stable:
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Remark 22.0.6: Let G = (G′)Θ, then G y G′/B′ with finitely many orbits. So we get closure
relations:
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One can also fix T ′ ⊆ G′ as a maximal torus of diagonal matrices, and this is also Θ-stable. Then
T ′ ∩G is of the following form:



t1
. . .

tn
t−1
n

. . .

t−1
1


∼= (C×)×n .

Writing G′/B′ = {F • complete flags} = G′ · C• for the standard flag C• := (0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆
C2n). We can write this set as

{
F •

∣∣∣ (F k)⊥ = F 2n+1−k
}
, where (F k)⊥ :=

{
x ∈ C2n

∣∣∣ ω(x, y) = 0 ∀y ∈ F k
}
.

Generally the former will be flags C2n = F 2n → F 2n−1 → · · · → F 1 → 0, and this says we can
describe this more compactly as flags C2n → Fn → Fn−1 → · · · → F 1 → 0 where the F k are
isotropic, by inserting their orthogonal complements into the chain appropriately.

Question 22.0.7
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What are the Schubert varieties in G/B?

Answer 22.0.8
For w′ ∈W ′ = S2n, the Weyl group for G′ = GL2n and writing X ′ = G′/B′, the Schubert varieties
are exactly X ′w′ ∩ G/B. This is empty if there exists a k with ???, and is XW otherwise where
W ⊆ W ′ is

{
(w1, · · · , wn)

∣∣∣ w1 + w2n = 2n+ 1
}
. For example, take σ = (1, 3, 2, 4) ∈ W , then

X ′W ′ = (C4 → C3 → F 2 → C1) and XW = (C4 → C3 → F2 → C1), where F 2 is a Lagrangian
subspace of C4.

Remark 22.0.9: This produces a large collection of normal varieties: start with flags and add
conditions.

23 Wednesday, October 20

Remark 23.0.1: Last time: Schubert varieties for G ≤ G′ for G := Sp2n and G′ := GL2n. There are
Weyl groupsW ≤W ′ where hereW ′ = S2n andW =

{
w ∈ S2n

∣∣∣ w(k) + w(2n+ 1− k) = 2n+ 1− k
}
.

For Sp2 ≤ GL4, e.g. we can take w = (1, 3
∣∣∣ 2, 4) andXW =

{
F • ∈ G′/B′

∣∣∣ C4 → C3 → F 2 → C1 → 0
}
∼=

P1.

Remark 23.0.2: For G′ = GL4, we can produce a singular Schubert variety. Take G/P for P = PY
where Y = {1, 3}, so G/P = Gr2(C4). Take the following Young diagram:
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So XY
λ =

{
E2 ∈ Gr2(C4)

∣∣∣ dim(C2 ∩ E2) ≥ 1
}
, and XW = π−1(XY

λ ). The minimal length per-

mutation is w′ = (2, 4
∣∣∣ 1, 3) (obtained from the Young diagram above) and the maximal is

w = (4, 2
∣∣∣ 3, 1). Note this satisfies w(k) + 2(2n+ 1) = 2n+ 1 for n = 2 since 4 + 1 = 2 + 3 = 5, so

w ∈W = W (Sp4).

For this Y , we have a map

π : G/B → G/P

F • 7→ F 2,

where the full preimage is π−1(P/P ) = P/B. Writing X ′W =
{
F • ∈ G′/B′

∣∣∣ dim(C2 ∩ F 2) ≥ 1
}
⊆

G′/B′, we can realize

XW =
{
F • ∈ G/B

∣∣∣ dim(C2 ∩ F 2) ≥ 1, (F 1)⊥ = F 3, (F 2)⊥ = F 2
}
.

Remark 23.0.3: For G = Sp4, S = {1, 2}, Y = {1}, and G/PY =
{
C4 → F 2 → 0

∣∣∣ F 2 = (F 2)⊥
}

since the 1 ∈ Y implies omitting F 1, and we also omit (F 1)⊥ = F 3. This yields the Lagrangian
flag variety.

Remark 23.0.4: Let s1 = (2, 1, 4, 3) and s2 = (1, 3, 2, 4), then ws1 = (4, 2, 3, 1)(2, 1, 3, 4) =
(2, 4, 1, 3) and notably `(2, 4, 1, 3) < `(4, 2, 3, 1) and the length has strictly decreased. So w is
maximal length in wWY .
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We can conclude XY
w =

{
F 2 ∈ L := Gr0

2(C4)
∣∣∣ dim(C2 ∩ F 2) ≥ 1

}
where Gr0 denotes isotropic

subspaces. So this yields a normal but not smooth variety.

E 23.1 Statements in Equivariant K-theory e

See Chris-Ginzburg

Remark 23.1.1: On flat pullback: for f : X → Y a G-equivariant morphism of G-spaces, if f is
flat (so tensor-exact) then there is a morphism of G-equivariant K-theories:

f∗ : KG
i (Y )→ KG

i (X)

induced by an exact pullback functor

f∗ : CohG(Y )→ CohG(X)
F 7→ f∗F = OX ⊗f−1OY f

−1F .

Slogan 23.1.2
Flat implies sameness among fibers in a bundle.

E 23.2 Flat Pullback e

23.2.1 Equivariant Descent

Remark 23.2.1: A principal G-bundle can mean several things. The difference between local
triviality in the Zariski vs étale topology 1 Then π : P → X ∈ Prin Bun (G), since étale implies
flat there is an equivalence of categories Coh(X) ∼−→CohG(P ). Thus there is an isomorphism π∗ :
K(X) ∼−→KG(P ).

23.2.2 Restriction/Induction

Remark 23.2.2: For H ≤ G a closed subgroup and X an H-space, then G
H

× X is always an
algebraic variety. E.g. for X = pt, G

H

× pt = G/H. Note that there is a projection G ×X → G
where H acts diagonally on the left and G is an H-space, and this map is H- equivariant, so there
is an induced map G

H

×X → G/H. What’s hard is showing there are varieties. This is flat with
fiber X since it’s a fiber bundle in our case.

For F ∈ ShG(G
H

×X) a G-equivariant sheaf,
1Zariski locally trivial implies étale locally trivial.
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24 Toward the Demazure Character Formula (Friday, October 22)

There is a functor

IndGH : CohH(X)→ CohG(G
H

×X).

For p : G × X → X and F ∈ ShH(X) an H-equivariant sheaf, we can use a diagonal action to
obtain p∗F ∈ ShH(X) and write

IndGH = p∗F ∈ Coh(G
H

×X) ∼−→CohH(G×H).

This defines a G-equivariant structure on p∗F .

24 Toward the Demazure Character Formula
(Friday, October 22)

References: Chris-Ginzburg

Remark 24.0.1: Recall that we discussed proper pushforward and flat pullback.

Remark 24.0.2(on induction): For H ≤ G ∈ AlgGrp linear groups and X ∈ H-Spaces, it is a
fact that G

H

×X ∈ G-Spaces. There is a functor inducing an equivalence of categories:

IndGH : CohH(X) ∼−→CohG(X),

yielding an isomorphism of groups KH
i (X) → KG

i (G
H

× X). Induction can be constructed by
quotienting the projection map:

pr−1(F) F ∈ CohH(X)

G×X X

IndGH(F) ∈ CohH(G
H

×X) G
H

×X

pr

−/H

Link to Diagram

Remark 24.0.3: There is also a restriction functor inducing Res : KG
i (X)→ KH

i (X):
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24 Toward the Demazure Character Formula (Friday, October 22)

X G
H

×X

H/H G/H

Link to Diagram

Any linear G ∈ AlgGrp can be written as G ∼= Ro U where R is reductive and U is unipotent.

Proposition 24.0.4(?).
For any X ∈ G-Spaces,

KG(X) ∼= KR(X).

Slogan 24.0.5
Only the reductive groups matter for equivariant K-theory.

Proof (?).
Define the morphism KG(X) → KR(X) by forgetting the action away from the subgroup
R ≤ X:

G
R

×X ϕ−→ G/R×X
[g, x] 7→ (gR/R, gx).

This induces

KR(X)
IndGR−−−→ KG(G

R

×X) ∼−→
Kϕ

KG(G/R×X) ∼−→KG(X),

using that G/R is affine.
More generally, for E → X ∈ Bun (GLr)G, the
fibers are contractible and thus KG(E) ∼= KG(X).
See the Thom isomorphism, referenced in Borbo-
Brylinksi-MacPherson.

�

Remark 24.0.6: Let π : G/B → G/P where P corresponds to the simple reflection s, so P is the
smallest parabolic not equal to the Borel. Then

• Any map between projective varieties is proper, so π is proper and the fibers are copies of P1,
i.e. π−1(gP/P ) = gP/B ∼= P1.

• π is smooth in the sense of Hartshorne, i.e. so smooth fibers that are “the same”.
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24 Toward the Demazure Character Formula (Friday, October 22)

Consequently, π is flat, and G/B ∼= G
P

×P/B → G/P with G/B → G/P flat. We can push forward
along proper maps and pull back along flat maps, so here we can do both. So define a map

D : KG(G/B)→ KG(G/B)
[F ] 7→ π∗π∗[F ].

Note that this factors as KG(G/B) π∗−→ KG(G/P ) π∗−→ KG(G/B). The question is now what π∗π∗[F ]
actually is.

Slogan 24.0.7
The idea: we can recover representations as KG(pt), which is hard, so we apply these D operators
to larger parabolics to get to a point one step at a time.

Remark 24.0.8: We have A(T ) = Z[X(T )] ∼= KT (pt) for A(T ) representations of the torus. On
notation: write λ ∈ X(T ) as eλ ∈ A(T ). Note that KP (P/B) ∼−→KP (P

B

× pt) ∼−→KB(pt) and
A(T ) ∼−→KT (pt), so writing B = T o U , there is an isomorphism

A(T ) ∼−→KP (P/B)

Cλ 7→ [P
B

× Cλ] 7→ [G
B

× Cλ],

which is a composition IndBP ◦ IndPT . One can regard this as a line bundle on CP1 via the projection
P

B

× Cλ → P/B
∼−→P1.

Remark 24.0.9: A trick: recovering KG from KT and the Weyl group action on it. This is why we
reduce to KT so often! Write KG(pt) = R(G) on one hand and A(T )W on the other (taking Weyl
group invariants), define a map [V ] 7→

∑
λ∈X(T )

nλe
λ. Now assemble some maps:

KL(pt) KP (pt) KG(G/P )

A(T ) KP (P/B) KG(G/B)

∼= ∼=

π∗Ds π∗

∼= ∼=

Link to Diagram

What is Ds(eλ)? By defining of pushforward along proper morphisms, we can write Using these
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25 Demazure Character Formula (Monday, October 25)

identifications, write

π∗[G
B

× Cλ] = π∗[P
B

× Cλ]

=
∑
i

(−1)i[Riπ∗(P
B

× Cλ)]

= [H0(P/B, eλ)]− [H1(P/B, eλ)]
= [H0(P1, eλ)]− [H1(P1, eλ)].

Recall that for O(k), we have a pairing −1, 0 ⇐⇒ −2, 1 ⇐⇒ −3, · · · and
〈
λ, α∨

〉
= k.

Remark 24.0.10: Next time: the Demazure character formula.

25 Demazure Character Formula (Monday,
October 25)

See Anderson 1985

Remark 25.0.1: Today: A(T ) = Z[X(T )] ∼= KT (pt), where we write characters multiplicatively as
eλ. For π : G/B → G/P for P a simple parabolic corresponding to s ∈ S, we can push-pull to get
an endomorphism of KG(G/B), using that this morphism is both flat and proper. The goal is to
compute π∗π∗[G

B

×Cλ], and the major tool in K-theory is induction. Write G/B = G
P

×P/B = G
B

×pt
and P = LU , then there is a diagram

[G
B

× Cλ] [P
B

× Cλ]

KG(G/B) KL(P/B) KT (pt) eλ

KG(G/P ) KL(P/P ) KT (pt)WS ⊆ KT (pt) ?

π∗

Fact 25.0.2
KG(pt) = KT (pt)W .

Remark 25.0.3: Writing W = XT ⊆ X = G/B, we can use something due Bill Graham. It’s
a fact that i∗KT (X) → KT (XT ) is injective, and Bill shows i∗ is an isomorphism after inverting
certain elements.
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Corollary 25.0.4(Chris-Ginzburg, 5.11.3).
The composite i∗i∗KT (XT )→ KT (XT ) is multiplication by λT , so here λ−1. Moreover

λT =
∑

(−1)iΛiN∨ ∈ KT (XT )

where N∨ is the conormal.

Example 25.0.5(?): For X = P1 and W = {1, s}, we have

• TB/B(G/B) = g/b = C−α,
• TsB/B(G/B) = g/sb = Cα,
• N1

∨ = Cα,
• Ns

∨ = C−α.

Proposition 25.0.6(?).
A formula due to Bill, there is an element:

KT (X) 3 α =
∑
w∈XT

(iw)∗
( (iw)∗α
λ−1(N∨w)

)
.

Remark 25.0.7: Write π : G/B → G/P and its restriction P/B → P/P . Pullbacks are easy
enough to compute, and we have formulas

• (i1)∗[P
B

× Cλ] = [B
B

× Cλ],
• (is)∗[P

B

× Cλ] = [sB
B

× Cλ].

For [P
B

× ∈ Cλ], we can compute

π∗[P
B

× Cλ] = π∗
∑
1,s

(iw)∗

(iw)∗[P
B

× Cλ]
λ−1(Nw

∨)


= π∗

(i1)∗

 [B
B

× Cλ]
1− eα

+ (is)∗

 [sB
B

× Cλ]
1− e−α


= π∗

(
(i1)∗

(
eλ

1− eλ

)
+ (is)∗

(
esλ

1− eλ

))

=
(

eλ

1− eλ

)
+
(

esλ

1− eλ

)
∈ A(T ).

Proposition 25.0.8(?).

π∗[P
B

× Cλ] = eλ − ssλ+α

1− eα .
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Proof (?).
Let q = eα and k :=

〈
λ, α∨

〉
. Note that

sλ− λ = λ−
〈
λ, α∨

〉
− λ = −

〈
λ, α∨

〉
α.

Then

(eλ − esλ+α)(1− eα) = eλ(1− e−α) + esλ(1− eα),

and we can write the RHS as

eλ
(

1− esλ−λ+α

1− e−α

)
= eλ

(
1− q1−k

1− q

)
= eλc(q)

where

c(q) =


1 + q + · · ·+ q−k k ≤ 0
0 k = 0
−
(
q1−k + q2−k + · · ·+ q−1

)
k ≥ 1.

=


eλ + eλ+α + · · ·+ esλ k ≤ 0
0 k = 0
−
(
esλ+α + esλ+2α + · · ·+ esλ+(k−1)α

)
k ≥ 1.

.

�

Remark 25.0.9: By Kumar,

Ds(eλ) := eλ − esλ−α

1− e−α ,

where eλ corresponds to L(λ).

Theorem 25.0.10(8.?).
For any w ∈W , not necessarily reduced, and finite dimensional M of B,

1. There is an Euler characteristic formula

χ(Zw,Lw(M)) = Dw(chM),

where χ is given by
∑

(−1)p ch (Hp(Zw,Lw(M))) ∈ A(T ).

2. χ(Xw,Lw(λ)) = Dw(eλ).

Then if λ ∈ DZ,

3. chH0(Xw,Lw(λ)) = Dw(eλ)
4. chLmax

w (λ) = Dw(eλ).
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26 Wednesday, October 27

Remark 26.0.1: If H ≤ G ∈ AlgGrp is a closed linear subgroup and Y ∈ G-Spaces, then there is a
commuting diagram

G
H

× Y G/H × Y

G/H

pr1π

∼=

Link to Diagram

The isomorphism ϕ is given by

[g, y] 7→ (g, gy)
[g, g−1y] 7→(g, y).

More generally, if Y ⊆ X one often has H ≤ G with H y Y and G y X. In this case,
ϕ : G

H

× Y ϕ−→ G/H ×X may be an embedding instead.

Proposition 26.0.2(?).
For G connected reductive and T ≤ G is a maximal torus,

RG = KG(pt) ∼= KT (pt)W = RWT .

Slogan 26.0.3
To compute G-equivariant K-theory, it suffices to understand T -equivariant K-theory and the action
of the Weyl group.

Proof (?).
Define ρRG → RT by restriction to T , so explicitly ρ[v] =

∑
λ

mλe
λ ∈ RWT where the mλ are

the multiplicities of eλ in Vλ. Set Gsr to be the semisimple regular elements in G. Note
that a regular element t ∈ T satisfies t 6∈ kerα, and

1. Gsr ↪→ G is open and dense.
2. Every g ∈ Grs is conjugate to some t ∈ T .

Let f ∈ C[G]G be function invariant under G-conjugation, i.e. a class function, and suppose
f |T = 0. By (ii), f |Gsr = 0, so by (i) f ≡ 0 on G since f is continuous and zero on a dense
subset. There is a diagram:
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R(G) R(T )W

C[G]G C[T ]W

ρ

−⊗ZC

∴

−⊗ZC

Link to Diagram
Here the bottom map is injective by the previous argument. To prove ρ is surjective, fix
f ∈ R(T )W , then we’ll produce an h ∈ C[G]G such that h|T = f . Choosing B ⊇ T a Borel,
then for any such Borel containing T is a canonical isomorphism T ⊆ B → B/U where we
write B = T o U . So identify f with an element of R(B/U)W . Let Z := G

B

×B, and instead
of having the same action of B on both factors (which would be isomorphic to G by mapping
to B/B with fiber G) let B y G by conjugation. Define a map

µ : Z → G

[g, b] 7→ gbg−1,

which is a G-equivariant algebraic morphism. Then µ−1(g) =
{
B′ ⊇ g

}
are the Borels contain-

ing g: note the similarity to the Springer resolution with the nilpotent radical.

Exercise (?)
Prove this – a hint is that G

B

×B ⊆−→ G/B ×G.

Note the two extremal cases:

1. µ−1(1) = G/B.

2. For g ∈ Gsr regular semisimple, use conditions on dimensions of centralizers and dimT :=
dimZ(T ), how many Borels contain a fixed maximal torus T? There are at least two,
since T ⊆ B =⇒ T ⊆ B−. One can think of the flag variety as parameterizing Borels,
so these correspond to T -fixed points in the flag variety. The key is that W acts simply
transitively, so µ−1(g) ∼= W .

Define a map

ν : Z = G
B

×B → (G× U)
B

×B −/U−−−→ G
B

×B/U ∼−→G/B ×B/U pr2−−→ B/U

[g, b] 7→ (g, gb) trivial action−−−−−−−−→ b,

where we’ve used that relevant actions commute. Note that this composite map is rare, but
allows defining an abstract Cartan. We can then pull back f to a regular function on Z, so
set f̃ := ν∗f , so f̃ [g, b] = f(b).

Claim: f̃ ∈ C[Z]B.
Next restrict f̃ to Zsr = µ−1(Gsr), then W y Zsr freely and ν is W -equivariant. Since f is
W -invariant, f̃

∣∣∣
Zsr

to be W -invariant and f̃
∣∣∣
Zsr
∈ C[Zsr]W .
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27 Equivariant K-theory of G/P (Monday, November 01)

Fact
If ξ : X → Y is a quotient by a free action of a finite group, then ξ is generically Galois,
i.e. µ∗ : C(Gsr) ∼−→C(Zsr)W .

Claim: h is regular on G, i.e. h ∈ C[G].
See Chriss-Ginzburg 3.1.3.

�

Remark 26.0.6: Next time: equivariant cohomology.

27 Equivariant K-theory of G/P (Monday,
November 01)

Remark 27.0.1: We’ll stick to the finite-type case for today. Setup: let G ∈ AlgGrp/C be connected,
semisimple, simply connected, with T ≤ G a maximal torus. Goal: describe KT (G/P ).

Remark 27.0.2: Note that

KG(G/B) ∼−→KG(G
B

× pt) ∼−→KB(pt) ∼−→KT (pt),

which we sometimes write as KT or A(T ), the representation ring of T . General pattern: for KG(−),
look at KT (−)W instead, using that KG(pt) = KT (pt)W = A(T )W . Writing P = LU ⊇ T for P a
parabolic and L a Levi, we have

KG(G/P ) ∼−→KP (pt) ∼−→KL(pt) ∼−→KT (pt)WY ∼−→A(T )WY .

Thus there is a chain of isomorphisms:

KT (G/P ) ∼−→KB(G/P ) doesn’t see unipotent radical
∼−→KG(G

B

×G/P ) induction
∼−→KG(G/B

B

×G/P ) trivialization for algebraic fiber bundles
∼−→KG(G/B)⊗KG(pt) KG(G/P ) Kunneth
∼−→A(T )⊗A(T )W A(T )WY .

Note that A(T ) = Z[X(T )] = Z×` for some `.

Remark 27.0.3: This formula may hold in more generality, but we’re sticking with what’s in the
literature for now.

Remark 27.0.4: Phrasing this in terms of equivariant line bundles: starting with λ ∈ X(T ), we
write it as eλ ∈ A(T ), and we have two morphisms A(T )→ KT (G/B):
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27 Equivariant K-theory of G/P (Monday, November 01)

1. F1 : eλ → G/B × Cλ ∈ KT (G/B).
2. F2 : eλ → G

B

× Cλ ∈ KT (G/B).

Note that the latter can be projected onto G/B. If eλ ∈ R(G) = A(T )W , then G
B

×Cλ ∼= G/B×Cλ
since the B-action extends to a G-action. So these assemble to a map

F1 ⊗ F2 : A(T )⊗A(T )W A(T )→ KT (G/B).

The claim is that this is equivalent to the isomorphism from above.

E 27.1 Equivariant Cohomology e

Perhaps don’t try to learn this from Kumar as a first
pass! See Anderson-Fulton for a good treatment. For
fiber bundles, see Husemoller. For algebraic topology,
see May’s “Concise Course..”, chapter 18.

Slogan 27.1.1
Studying the equivariant geometry of a space X is the same as studying fiber bundles with fiber X.

Remark 27.1.2: Recalling some notions of axiomatic cellular cohomology: fix M ∈ AbGrp and
consider pairs (X,A) ∈ Top. Then there exist functors Hk(X,A;M) : hoTop×2 → AbGrp with
natural transformations δ : Hk(A;M)→ Hk+1(X,A;M), where Hk(A;M) := Hk(A, ∅;M). These
satisfy and are characterized by a set of 5 axioms, which we’ll omit. Note that these constructions
will work for any space we run into in this setting.

Exercise 27.1.3 (?)
If B ⊆ A ⊆ X, show that there is a LES

Hk+1(X,A;M) · · ·

Hk(X,A;M) Hk(X,B;M) Hk(A,B;M)

Link to Diagram

Definition 27.1.4 (Equivariant cohomology)
Let G ∈ Lie Grp with G y X ∈ Top acting on the left.a Write E ∈ Top for any contractible
space with a free right G-action, then define the G-equivariant cohomology of X as

Hk
G(X) := Hk(E

G

×X).
aNote that AlgGrp/C ≤ Lie Grp!
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28 Chern Classes and Intersection Theory (Wednesday, November 03)

Fact 27.1.5
Some facts:

• X ' E ×X.
• Hk

G(X) does not depend on the homotopy representative of E
• BG := E/G is the classifying space of G.
• If ξ : X → Y equivariant with respect to ϕ : G → H, there is a map EG

G

× X → EH
H

× Y
which induces ξ∗ : H∗H(Y ) → H∗G(X). In particular, X → pt always exists, which is why
H∗(BG) plays a large role.

• If G ⊇ H and EG is given, then EH = EG.

Example 27.1.6(?):

H∗G(pt) ∼−→H∗(E
G

× pt) ∼−→H∗(E/G) ∼−→H∗(BG).

Example 27.1.7(?): Examples of BG:

• For G = Cn, we have EG = G = Cn and H∗G(pt) = H∗(pt) = M .
• For G = C×, E = C∞ \ {0} which is a contractible Ind-variety, and BG = EG/G = P∞/C.

28 Chern Classes and Intersection Theory
(Wednesday, November 03)

E 28.1 Chern Classes e

See Eisenbud and Harris, 3264 and All That, and
Fulton.

Theorem 28.1.1(Klein’s Transversality Theorem).
Let G ∈ AlgGrp act transitively on X over k = k with ch k = 0 and let Y ≤ X be a subvariety.

a. If Z ≤ X is a subvariety then there is an open dense subset of group elements U ⊆ G
such that gZ t Y generically.

b. If ϕ : Z → X is a morphism of varieties, then for a generic g ∈ G, the preimage ϕ−1(gY )
is generally reduced and is of the same codimension as Y .

c. If G is affine then [gY ] = [Y ] in the Chow group A(X).

Remark 28.1.2: See ELC article, a consequence is Bertini’s theorem.
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Lemma 28.1.3(?).
Suppose E ∈ Bun (GLr)/Y and let 1 ≤ i ≤ r. Let σ0, · · · , σr−i be global sections of E
and Yσ = Y (σ0 ∨ · · · ∨ σr−i) be the degeneracy locus where they are linearly dependent, so
σ0 ∨ · · · ∨ σr−i are sections of

∧r−i+1
E → Y . Then

a. No component of Yσ has codimension greater than i,

b. If the σi are general elements of C-Mod and V ⊆ H0(E) be a subset of global sections
generating E , then Yσ is generically reduced with codimension i in Y .

E

Ey

y
Y

σ

Remark 28.1.4: For affine Y , locally thinking of functions, either f hits or misses completely any
given irreducible component.

Proof (of b).
Let V ∈ C-Mod with dimC V = m be the module of global sections σ0, · · · , σm−1 generating
E , and let ϕ : Y → Grm−r(V ) be given by y 7→ ker(V → Ey). If W ≤ V is a submodule
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28 Chern Classes and Intersection Theory (Wednesday, November 03)

of dimension r − i + 1 spanned by σ0, · · · , σr−i, then the locus Yσ ⊆ Y is the preimage
ϕ−1(Xλ(W )).

�

Remark 28.1.5: We can write X = Grm−r(V ) = G/P for G = GL(V ) to realize it as a projective
homogeneous variety. Then Xλ(W ) =

{
E ∈ Grm−r(V )

∣∣∣ dim(W ∩ E) ≥ 1
}
is a Schubert variety

for any subspace 0 ≤W ≤ V . In Young diagrams for a partition λ, this condition corresponds to a
valley:

Theorem 28.1.6(?).
There is a unique way of assigning to each vector bundle E on a X (assumed smooth) a class
c(E) = 1 + c1(E) + c2(E) + · · · ∈ A(X), noting that smooth X guarantees a ring structure on
the Chow group. These satisfy

a. (Line bundles): If L → X is a line bundle then c(L) = 1 + c1(L) where c1(L) ∈ A1(X)
is the class of the divisor of zeros minus the divisor of poles of any rational section of L,
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29 Chern Classes and Intersection Theory (Wednesday, November 03)

defined up to rational equivalence in A(X).

b. (Degeneracy locus): If σ0, · · · , σr−i are global sections of E and the degeneracy/depen-
dence locus Yσ ⊆ X has codimension i, then ci(E) = [Xσ] ∈ Ai(X)

c. (Whitney’s formula): If 0 → E → F → G → 0 is a SES in Bun (GLr)/X , then c(F) =
c(E)c(G) ∈ A(X).

d. (Functoriality/compatibility with pullback): If ϕ : X → Y then ϕ∗(c(E)) = c(ϕ∗(E)).

Remark 28.1.7: This induces a map c : K(X)→ A(X). Note that you can compose this with the
cycle class map A(X)→ H∗sing(X).

E 28.2 Singular Cohomology e

See Anderson-Fulton.

Remark 28.2.1: We can define a total Chern class c(E) =
∑
i

ci(E)ui ∈ R[u] for R := H∗sing(X).

Proposition 28.2.2(?).
Setup: take X paracompact and Hausdorff/T2, which will be necessary for partitions of unity.
For E π−→ X ∈ Bun (GLr)(C)/X , there exist ci(E) ∈ H2i(X) satisfying

1. If f : X → Y ∈ Top then f∗(ci(E)) = ci(f∗E).

2. ci(E) = 0 unless o ≤ i ≤ r := rank(E), and c0(E) = 1

3. Exact sequences of vector bundles yield Whitney’s formula.

If additionally X is smooth,

4. If L,M are line bundles, then c1(L ⊗M) = c1(L) + c1(M).

5. If s : X → L is a nonzero section, writing Z(s) ⊆ X for its zero set, [Z(s)] = c1(L) ∈
H2(X).

6. For the projectivization π : P(E)→ X, there is a Poincaré duality: considering O(−1) ⊆
π∗E and its dual O(1),

H∗(P(E)) = H∗(X)[ζ]/
〈
ζr − c1(E∨)ζr−1 + · · ·+ (−1)rcr(E∨)

〉
.

This is the tautological bundle, to be continued on
Friday!
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29 Friday, November 05

References: Chriss-Ginzburg (for an introduction),
Fulton’s Intersect Theory (does a lot).

Remark 29.0.1: Today: Borel-Moore homology. For example, characteristic cycles of D-modules
live here. Useful because e.g. H∗(C;Z) = C[0], which doesn’t see that dimRC = 2. On the other
hand, H∗(C;Z) = C[2], where H∗ denotes taking Borel-Moore homology. It turns out that if X is
compact, then H∗ ∼= H∗.

Definition 29.0.2 (?)
If X ↪→ G/P be a closed embedding, or more generally X ↪→ M for M any smooth complex
manifold (or quasiprojective variety?) with dimCM = n, define

Hk(X) := H2n−k(G/P, (G/P ) \X).

Remark 29.0.3: Goal: show this homology contains certain fundamental classes in top degree
[X] ∈ H2n(X).

Proposition 29.0.4(?).
There is a group morphism, the cycle class map,

cl : A∗(X)→ H∗(X),

such that

• cl is compatible with proper pushforward, i.e. covariant with respect to proper morphisms.
WhenX f−→ Y is proper, consider the pushforwards f∗ : A∗(X)→ A∗(Y ) and f ′∗H∗(X)→
H∗(Y ). For Z ⊆ X, we can write

f∗[Z] =
{
d[f(Z)] f |Z degree d
0 else.

.

• cl is compatible with Chern classes of vector bundles.

Remark 29.0.5: Fulton sets up A∗ to mimic Borel-Moore homology.

Lemma 29.0.6(Existence of fundamental classes).
If dimC(X) = n then H>2n(X) = 0 and H2n(X;Z) is a free abelian group with one generator
for each irreducible component of X.

Remark 29.0.7: On restrictions to opens: Let U ↪→ X be open with X ↪→ G/P closed, so that
Y := X \U ↪→ X is closed. Then U ⊂ (G/P ) \ Y = (G/P ) \ (X \U) ⊆ G/P is open. A mnemonic:
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29 Friday, November 05

G/P

X (G/P ) \ Y

U

closed

open closed

open

Link to Diagram

Then

((G/P ) \ Y, (G/P \ Y ) \ U) ⊆ (G/P, (G/P ) \X) ,

which yields a map

Hk(X) = H2n−k(G/P, (G/P ) \X)→ H2n−k((G/P ) \ Y, (G/P \ Y ) \ U) = Hk(U).

using that a subvariety of a smooth variety is again smooth of the same dimension. So we have a
map Hk(X)→ Hk(U), and this yields a LES:

Proposition 29.0.8(LES in Borel-Moore homology).
For U ⊆ X closed with X ⊆ G/P and Y := X \ U , there is a LES corresponding to

(G/P ) \X ⊆ (G/P ) \ Y ⊂ G/P,

given by

Hk+1(G/P, (G/P ) \ Y ) · · ·

Hk(G/P, (G/P ) \ Y ) Hk(G/P, (G/P ) \X) Hk((G/P ) \ Y, (G/P ) \X)

Link to Diagram
For H, this corresponds to

H2n−k(Y ) H2n−k(X) H2n−k(U)

H2n−k−1(Y ) · · ·

Link to Diagram
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30 Monday, November 08

Remark 29.0.9: Recall that for B ⊆ A ⊆ X, we got an inclusion of pairs (A,B) ⊆ (X,B) ⊆ (X,A).
Also note that we used

(G/P ) \X = ((G/P ) \ Y ) \ U

where Y := X \ U .

Proof (of lemma, there exist fundamental classes).
Let Y be the singular locus of X with n := dimCX, then

• Y ⊆ X is closed, and
• dimC Y < dimCX is strictly smaller.

Strategy: induct on dimX and use the LES applied to U := X \ Y and Y . Note that U is
smooth. We have

H2n(Y )→ H2n(X)→ H2n(U) δ−→ H2n−1(Y ),

and H2n(Y ) = 0 since dimY < 2n and H2n−1(Y ) = 0 for the same reason, making the middle
map an isomorphism. Write U =

∐
0≤i≤`

Ui as a union of irreducible (so connected) components.

Then

H2n(U) = H2n−2n(U,U \ U) = H0(U) = Z⊕`

where we can choose to embed U ↪→ U into itself since U is smooth. Any Zariski open has to
intersect every irreducible component, so each such component yields a fundamental class.

�

30 Monday, November 08

Remark 30.0.1: Today: Poincaré duality, relates to smooth loci, and rational (i.e. Q) smoothness.
Take all varieties to be quasiprojective subvarieties of a flag variety G/B.

From algebraic topology, there is a relative cup product in singular cohomology:

^: H i(X,U ;Z)⊗Z Hj(X,U ;Z)→ H i+j(X,U1 ∪ U2).

Even better, we have a pairing with Borel-Moore homology for Y ≤ X a closed subvariety:

_: Hj(X,X \ Y )⊗Z Hj(X)→ Hj−i(Y ).

This yields

_: Hj(X,X \ Y )⊗H2n−j(G/P, (G/P ) \X)→ H2n−j+i(G/P, (G/P ) \ Y ).

Think of Hj(A,B) as chains in A vanishing along B:
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G/P

X

Y

Proposition 30.0.2(Poincaré duality).
For X smooth and irreducible, capping against the fundamental class induces an isomorphism

H i(X) ∼−→H2n−i(X)
α 7→ α _ [X],

which is induced by

H i(X)×H2n(X)→ H2n−i(X)
(α, [X]) 7→ α _ [X].
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Remark 30.0.3: Recall that there is an affine stratification G/PY =
∐

w∈WY

BwPY /PY , and

H2k(G/P ) =
⊕

w∈WY

`(w)=k

Z[XY
w ].

Pulling back along the isomorphism there is some element such that dXY
w
_ [G/P ] = [XY

w ], so we
often identify dXY

w
= [XY

w ].

Remark 30.0.4: An alternative perspective on Chern classes: compose the maps

K(X) A(X) H∗(X) H∗(X)

ε c1(ε) c1(ε) c1(ε)

[Z(s)] [Z(s)] [Z(s)]

Link to Diagram

Here Z(s) is the zero divisor of a section s coming from the class of a bundle in K(X). For a line
bundle L, we have c1(L) ∈ A1(X) ∼−→H2n−2

∼−→H2(X).

Theorem 30.0.5(On nilpotent orbits, Borho-MacPherson).
TFAE:

• H i(X,X \ {x}) = Q[2n]
• RΓ (X, ICX) = Q[0]

Remark 30.0.6: Mentioned by Geordie: ICX ∼= QX , the constant sheaf.

Example 30.0.7(?): Let

f(x, y, z) = x3 + y3 − xyz.

Let X := V (f) ⊆ P2
/C, and define

ξ : P1
/C → X

[a : b] 7→ [ab2 : a2b : a3 + b3].

Check that this is well-defined:

(ab2)3 + (a2b)3 − a3b3(a3 + b3).
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30 Monday, November 08

Note ξ is projective and thus proper, and finite since it is quasifinite (finite fibers). One can check

ξ−1[0 : 0 : 1] = {[0 : 1], [1 : 0]}
ξ−1[x : y : z] = {pt} .

Exercise 30.0.8(?)
Check that ξ is birational.

Thus ξ is the normalization of X, but isn’t an isomorphism, so smoothness must fail.

Question 30.0.9
Is X rationally smooth?

Since X is compact, Hk(X) ∼−→Hk(X). Since X is connected we get H0 = Q, and by duality
H2(X) ∼= H2(X) ∼= H2(X) ∼= Q, we have Hk(X) = Q[0] ⊕ Q[1] ⊕ Q[2]. Note that the Poincaré
polynomial p(q) = 1 + q + q2 has symmetric coefficients. What this morphism looks like:
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P1
/C

X

Claim: X is not rationally smooth.

Proof (?).
By the projection formula,

ξ∗(ξ∗α _ β) = α _ ξ∗β.
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Let α ∈ H1(X) be nonzero, then

α _ [X] = a _ ξ∗[P1] = ξ∗(ξ∗α _ [P1]).

Since ξ is birational, ξ∗[P1] = [X] and Hk(P1) = Q[0]⊕Q[2]. Rationally smooth implies PD,
and since PD doesn’t hold here we can’t have rational smoothness.

�

31 Friday, November 12

Example 31.0.1(Projective space): Let Gy X ∈ C-Moddim=n be a linear algebraic group acting
on a C-module of dimension n, then there is a morphism G → GLn and we’ll regard G ⊆ GLn.
Then Gy Pn:

• P(V ) = C×�V \ {0}, and G acts linearly and commutes with scalar multiplication.
• P(V ) = GLn /P and theG-action descends since the projection GLn → GLn /P is GLn -equivariant.

Note that G also acts on the tautological bundle O(−1), since these are lines. We can write
O(−1) = GLn

P

×C[1,0,··· ,0], using the identification X∗(T ) = Z×n and taking the character associated
to [t1, · · · , tn] 7→ t1. Note that O(−1) → GLn /P is GLn equivariant. Write ζ := cG1 (O(1)) ∈
H2
G(P(V )) for the equivariant Chern classes.

Recall that if GLn
P

×Cλ → GLn /P for λ ∈ X∗(T ) is a G-equivariant bundle, we can construct
E

G

× GLn
P

×Cλ → E
G

× GLn /P ∼= E
G

× ×Pn−1, and the base here corresponds to H∗G(Pn−1). This
induces E

G

× Pn−1 → E/G = BG, where now the base corresponds to H∗G(pt).

Proposition 31.0.2(?).

H∗G(P(V )) ∼−→H∗G(pt)[ζ]/
〈

n∑
k=0

ckζ
n−k

〉
.

Proof (?).
Given E → X, we know H∗(P(E)) in terms of H∗(pt). We have

E
G

×GLn /P P(E
G

×GLn
P

×Cλ)

E/G = BG BG

=

=

Link to Diagram
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31 Friday, November 12

So ξ is a hyperplane class for a projective bundle, and thus cGi (V ) = ci(E
G

× V ).
�

Example 31.0.3: For G = GLn, we have H∗G(pt) = Z[c1, · · · , cn] ⊆ Z[t1, · · · , tn] = H∗T (pt). So
H∗GP(V ) = Z[c1, · · · , cn][ζ]/

〈
ζn + c1ζ

n−1 + · · ·+ cn
〉
.

Example 31.0.4(?): For G = T , H∗T (P(V )) = Z[t1, · · · , tn][ζ]/
〈 ∏

1≤i≤n
ζ + ti

〉
where cTi (V ) =

e2(t1, · · · , tn).

Theorem 31.0.5(Localization in equivariant cohomology).
Let X be an n-dimensional smooth algebraic variety with finitely many T -fixed points. Write
XT for the fixed point locus, write c :=

∏
p∈XT

cTn (TpX) ∈ H∗T (pt), noting that since X is smooth

these are all the same dimension. Let S ⊆ H∗T (pt) be a multiplicative set containing c, which
is nonzero since the fixed points are isolated. Assume there are m ≤ ]XT classes in H∗T (X)
restricting to a basis of H∗(X). Then there are isomorphisms induced by

H∗T (X) [S−1] S−1i∗−−−−→ H∗T (XT ) [S−1]

H∗T (XT ) [S−1] S−1i∗−−−−→ H∗T (X) [S−1] .

Note that XT i−→ X is T -equivariant, so i∗ on H∗ descends to H∗T . By Poincaré duality, we get
H(XT )→ H(X). Without the localization, there is still an injection:

H∗T (X) ι∗−→ H∗T (XT ) =
⊕

H∗T (pt).

Remark 31.0.6: Note that H∗T (pt;Z) = Z[t1, · · · , tn] and H∗(pt;C) = C[t1, · · · , tn] = S(h∨), the
symmetric algebra on the Cartan. This comes up when looking at Soergel bimodules. Compare to
KT (pt) = R(T ), the representation ring.

Example 31.0.7(?): For projective space, let T be any torus that acts linearly on a n-dimensional
C-module. Then V =

⊕
i

Cλi for some characters λi. Assume the λi are distinct, then

H∗T (Pn−1) = H∗T (pt)[ζ]/
〈∏

ζ + λi
〉
,

where ζ = cT1 (O(1)). So write XT as the set of coordinate lines for X = Pn−1 = P(V ), i.e. for
pi := [0, 0, · · · , 0, 1, 0, · · · , 0], XT = {p1, · · · , pn}. The tangent spaces are given by TpiP

n−1 =⊕
j 6=i
Cλj−λi = TpiUi where Ui ∼= Cn−1 by dividing out by the ith coordinate, so

t[x1 : · · · : 1 : · · ·xn] = [t1x1 : · · · : ti · 1 : · · · tnxn]

=
[
t1
ti
x1 : · · · : 1 : · · · tn

ti
xn

]
.

Thus (λj − λi)(t) = t1/ti. Thus cTn−1(TpiP
n−1) =

∏
j 6=i

(λj − λi).
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32 Monday, November 22

Proposition 31.0.8.
A self-intersection formula: if i : Y ↪→ X is a closed embedding of codimension d with normal
bundle N of rank d, then

i∗i∗(α) = cd(N)α.

Exercise 31.0.9 (?)
Show that the following composite is diagonal:

HT
⊕n → HT (Pn−1)→ HT

⊕n .

What is the determinant?

32 Monday, November 22

Remark 32.0.1: Considering the infinite dimensional case, Ã2. HereW = W (Ã2) =
〈
s1, s− 2, s3

∣∣∣ s2
i = 1, (sisj)3 = 1

〉
,

and we can form Xw ⊆ G/B for any w ∈ W . This will be a finite dimensional projective variety
with a Torus action, and there are BSDH resolutions for reduced words given by T -equivariant
maps

Pi1
B

× · · ·Pin/B
µ−→ Xw.

These are resolutions of singularities, and in particular birational. Note that W is infinite here.

Remark 32.0.2: Article by Graham-Li: say w ∈W is spiral iff w = (sjsjsk)` for i, j, k ∈ {1, 2, 3}.
This produces a nice family of Schubert varieties. For rankA = 2, we have dim h = 3 + 1 = 4. Up
to a change of coordinates, we can use α1

∨ = [1, 0]t and α2
∨ = [1, 0]t and let V := R⊗Z

{
α1
∨, α2

∨}
be the ambient Euclidean space and set L := Z 〈α1, α2〉. Then use the action of W to define
Waff := LoWf whereWf = W (A∨), and si(χ) = χ−〈α, λ, α〉∨. Here we think of L as translations.
The dual roots are α1 = [2,−1]t.α2 = [−1, 2] and so α̃ = α1 + α2 = [1, 1]t Define hyperplanes
Hα,n :=

{
v ∈ V

∣∣∣ 〈α, v〉 = n ∈ Z
}
. There is a fundamental alcove enclosed by the positive sides of

the various hyperplanes and within distance 1 of Hα̃,0. If you draw the picture and now act on the
fundamental alcove by simple reflections, the image “spirals” out away from the origin.

Remark 32.0.3: The article doesn’t use BSDH resolutions, maybe compare and contrast with
what we’ve done.

Remark 32.0.4: Back to µ. For ` = 1, we have

P1
B

× P2
B

× P3/B
µ−→ Xw.

The Bruhat order yields
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s1s2s3

s1s2 s1s3 s2s3

s1 s2 s3

1

Link to Diagram

Note that there are no braid relations. We can consider the T -equivariant multiplicity ETx Xw =∑
z∈µ−1(x)T

ETz (z) given by summing over the T -equivariant fixed points in the fiber. Here this just

equals ETz (z) where µ(z) = x, since there is a unique T -fixed point in the fiber. A basic AG argument
shows that the resolution is an isomorphism and thus Xw is smooth, so there is no singular locus.
The paper gives a nice formula for ` ≥ 6.

Remark 32.0.5: Starting the calculation:

1. Consider exXw ∈ ff(S(h∨)) the equivariant multiplicity, then x ∈ Xw is smooth iff a certain
change of basis cw,x corresponds to the equivariant multiplicity.

2. In the rationally smooth locus, they show smoothness iff there is a single T -fixed point in the
fiber.

33 Sasha’s Talk (Monday, November 29)

Remark 33.0.1: Topic: Segal-Sagawara construction. Define Witt = Lie(Diff+ S1), regarded as
polynomial vector fields on S1. H2(Witt;C) = C, so there is a 1-dimensional space of central
extensions, with a distinguished one: the Virasoro algebra. There is a SES 0→ Ccharge→ Vir→
Witt → 0, and for LG := C∞(S1, G), a SES 0 → S1 → L̃G → LG → 0. Here charge is some
distinguished central element. Does the Virasoro group act on this extension? Not quite, but
almost – pass to Lie algebras to get 0 → C → L̃g → g → 0. Theorem: for ρ : L̃g → End

C
(V ) an

admissible representation, there is a representation ρ′ : Vir → End
C

(V ). Note Lg := g⊗C C[t, t−1].
Write Xi 〈m〉 := Xi ⊗m.

Remark 33.0.2: Admissible representations: for all v ∈ V and X ∈ g, there exists an m such that
ρ(X 〈m〉)(v) = 0. Define the Casimir element

∑
i

XiX
i ∈ Z(U(g)). Levels: level ` if charge acts by
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34 ToDos

` · id. Critical level: ` 6= · · · some constant (roughly the dual Coxeter number), avoid this ` for the
reps in the theorem statement.

34 Appendix: Preliminary Notions

To define

• Sheaves

– Coherent sheaves

• Complete variety
• Homogeneous variety
• Algebraic group

– Morphisms of algebraic groups
– Reductive group

• Borel
• Parabolic
• Equivariant
• BG

– Some examples? CP∞,B GLn(R), etc.

• K-theory of an abelian category.
• Segre embedding
• Weyl group
• Modular representation
• Polar variety
• Chern class
• Borel-Moore homology
• Relative homology
• Ind-varieties and Ind-schemes

ToDos

List of Todos

Does this have a name? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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