# Tuesday, August 24 :::{.remark} Last time: if $K$ is a number field and $X\slice K$ is geometrically irreducible, then $X(K_v) \neq \emptyset$ for almost all $v$. ::: :::{.proof title="?"} Choose $X\slice{\OO_K\invert{N}}$ such that $X$ has geometrically integral fibers. It's enough to show that $X(K(v)) \neq \emptyset$ for almost all $v$, where $K(v)$ is the residue field at finite places $v$. Now use the following theorem: ::: :::{.theorem title="Lang-Weil Estimates"} If $X$ over $\OO_K\invert{N}$ is geometrically integral, then \[ \# X(\FF_{q^k}) = ( 1 + O(q^{1\over 2}) ) q^{k\dim X} .\] ::: :::{.claim} If $X\slice{\OO_{K_v}}$ is smooth then \[ X(K(v)) \neq \emptyset \implies X(K_v) \neq \emptyset .\] ::: :::{.proof title="?"} Use - Slice and Hensel, or the formal smoothness criterion, i.e. \begin{tikzcd} {\spec R} && X \\ \\ {\spec R'} && Y \arrow["\smooth", from=1-3, to=3-3] \arrow["\cl", from=1-1, to=3-1] \arrow[from=1-1, to=1-3] \arrow["\exists"{description}, dashed, from=3-1, to=1-3] \arrow[from=3-1, to=3-3] \end{tikzcd} Taking $R \da R'/I$ with $I$ nilpotent. > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXHNwZWMgUiJdLFswLDIsIlxcc3BlYyBSJyJdLFsyLDIsIlkiXSxbMiwwLCJYIl0sWzMsMiwiXFxzbW9vdGgiXSxbMCwxLCJcXGNsIl0sWzAsM10sWzEsMywiXFxleGlzdHMiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwyXV0=) See Hartshorne chapter 3, in the exercises! ::: :::{.remark} As a black box, we'll use that this is true for $\dim_{{\OO_{K_v}}} X = 1$, i.e. for curves. This follows from the Weil conjectures for curves, see Severi/Bombieri. If $X$ is genus $g$, then in fact we have a finer estimate: \[ \abs{ \# X(\FF_{q^k}) - q^n } \leq q^{1\over 2} + 1 .\] ::: :::{.proof title="?"} We'll show this for $\dim_{\OO_K\invert{n}} = 2$. Idea: try to fiber with curves. - Suppose $\reldim X = 1$ for $X \to S$ over $\OO_K\invert{n}$ where $S$ is a curve with geometrically integral fibers. - Without loss of generality, $X\to S$ where - $S$ is smooth of genus $g'$, - $X/S$ is smooth with fibers of genus $g$. - Now take the count \[ X(\FF_{q^k}) &= (1 + O_{g'}(q^{- {k \over 2} }) )q\cdot (1 + O_g(q^{- {k\over 2} }))q \\ &= (1 + O_{g, g'}(q^{- {k\over 2} }))q^2 .\] - Such an $X\to S$ after replacing $X$ by an open subvariety. The proof of this follows from [Bertini](https://www.wikiwand.com/en/Theorem_of_Bertini): for $X \subseteq \PP^n$, take geometric projections and delete the singular locus. The fibers are slices by hyperplanes, and thus the fibers are geometrically integral. ::: ## Brauer Groups :::{.remark} Some upcoming topics: - Severi-Brauer varieties (so $X\slice{K}$ where $X\slice{\bar{K}} \cong \PP^n$) satisfy the Hasse principle. Implies Hasse-Minkowski! - The Brauer-Manin obstruction to the Hasse principle. ::: ### The Brauer-Manin Obstruction :::{.remark} Setup: - $X$ is a variety, - $\Br(X)$ is an abelian group - Given $X \mapsvia{f} Y$, there is an induced map $f^*: \Br(Y)\to \Br(X)$. For $K$ a number field (which we can view as a variety with a single point), we have \[ \Br(K_v) = \begin{cases} \QQ/\ZZ & v \text{ finite} \\ \ZZ/2 & v \text{ real} \\ 0 & v \text{ complex}, \end{cases} \] which fits into a SES \[ 0 \to \Br(K) \to \bigoplus_v \Br(K_v) \mapsvia{\Sigma} \QQ/\ZZ \to 0 .\] Note that most of the terms in the middle sum are $\QQ/\ZZ$, making $\Br(K)$ a large group. ::: :::{.remark} The yoga of the Hasse principle says we should try to solve things in adelic points first. Write \[ \AA_K = \prod_v' (K_v, \OO_v) \subseteq \prod_v K_v \] where we take the restricted product. There is a map $X(K)\to X(\AA_K)$, and taking $\alpha\in \Br(X)$ one gets a map $\alpha^*: X(K) \to \Br(K)$. This yields a diagram \begin{tikzcd} {X(K)} && {X(\AA_K)} \\ \\ {\Br(X)} && {\Br(\AA_k) \cong \bigoplus_v \Br(K_v)} \arrow["{\alpha^*}", from=1-1, to=3-1] \arrow["{\tilde\alpha^*}", from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \arrow[from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJYKEspIl0sWzAsMiwiXFxCcihYKSJdLFsyLDAsIlgoXFxBQV9LKSJdLFsyLDIsIlxcQnIoXFxBQV9rKSBcXGNvbmcgXFxiaWdvcGx1c192IFxcQnIoS192KSJdLFswLDEsIlxcYWxwaGFeKiJdLFsyLDMsIlxcdGlsZGVcXGFscGhhXioiXSxbMCwyXSxbMSwzXV0=) Using that $\Sigma: \Br(\AA_K) \to \QQ/\ZZ$, for a fixed $\alpha\in \Br(K)$, \[ X(K) \subseteq (\Sigma \circ \tilde \alpha)\inv (0) \subseteq X(\AA_K) ,\] and $(\Sigma \circ \tilde\alpha)\inv(0) = X(\AA_K)^\alpha$. Thus the Hasse principle is violated if $X(\AA_K)$ is nonempty but $X(\AA_K)^\alpha$ is empty. More generally, it's violated if \[ X(\AA_K)^{\Br} \da \Intersect_{\alpha\in \Br(X)} X(\AA_K)^{\alpha} = \emptyset .\] ::: ### The Hasse Principle for Severi-Brauers :::{.remark} Let $X\slice{K}$ be a Severi-Brauer, then $[X] \in \Br(K)$ and $X\cong \PP^n\slice{K} \iff [X] = 0$. Using that \[ \oplus \iota_v: \Br(K) \embeds \bigoplus_v \Br(K_v) ,\] we have \[ [X] = 0 \iff \iota_v(X) = 0\,\, \forall v && \text{since } \iota_v(X) = [X_{K_v}] \in \Br(K_v) .\] ::: :::{.fact} It turns out that $X\cong \PP^n \iff X(K) \neq \emptyset$. ::: ## Brauer Groups and Galois Cohomology :::{.definition title="Brauer Groups"} Let $K \in \Field$, then \[ \Br(K) \da H^2_\Gal(K, \bar{K}\units ) = H^2_{\Grp}(\Gal(K^s/K), (K^s)\units ) .\] ::: :::{.remark} Let $G \in \Grp$ be discrete, so we're not considering any topology on it. Let $M \in \mods{G}$, or equivalently $M\in \modsleft{\ZZ[G]}$. We can take invariants and coinvariants: \[ M^G &\da \ts{m\in M \st gm=m \,\, \forall g\in G } = \Hom_{\ZZ[G]}(\ZZ, M) \\ M_G &\da M /\gens{\ts{gm-m \st g\in G}} = \ZZ \tensor_{\ZZ[G]} M .\] These are the largest submodules/quotient modules respectively on which $G$ acts trivially. ::: :::{.exercise title="?"} Why are these equal to homs and tensors respectively? ::: :::{.definition title="Group cohomology"} \[ H^i(G; M) &\da \Ext^i_{\ZZ[G]}(\ZZ; M)\\ H_i(G; M) &\da \Tor_i^{\ZZ[G]}(\ZZ; M) .\] ::: :::{.example title="Cyclic groups"} For $G\da \ZZ$, we have $\ZZ[G] = \ZZ\adjoin{x, x\inv}$. Take a projective resolution \[ 0 \to \ZZ[G] \mapsvia{\cdot (x-1)} \ZZ[G] \mapsvia{x\mapsto 1} \ZZ \to 0 .\] Deleting the augmentation and applying $\Hom_{\ZZ[G]}(\wait, \ZZ)$ yields $0\to \ZZ \mapsvia{f: \cdot (x-1)} \ZZ\to 0$, and noting that $x$ acts by 1, $f$ is the zero map. This yields \[ H^*(G; \ZZ) &= \begin{cases} \ZZ & * = 0, 1 \\ 0 & \text{else}. \end{cases} \\ H_*(G; \ZZ) &= \begin{cases} \ZZ & * = 0, 1 \\ 0 & \text{else}. \end{cases} \] :::