# Tuesday, September 21 :::{.remark} Last time: for $k$ a \(p\dash \)adic field, we have $\Br(k) = \QQ/\ZZ$. The plan for today: - Examples - A SES for $L$ a number field: \[ 0\to \Br(L) \to \bigoplus_{v\in \places{k} } \Lv \to \QQ/\ZZ\to 0 .\] - Possibly the Hasse-Minkowski theorem - The Brauer-Manin obstruction. ::: ## Construction of Brauer classes over $K$ :::{.remark} Fix a character to a cyclic group \[ \chi: \Gal(k\sep \slice k) \to C_n = \gens{\sigma} \] and set $k_\chi$ to be the fixed field. ::: :::{.definition title="Cyclic Algebra"} For $a\in k\units/(k\units)\powers{n}$, write \[ (\chi, a) = k_\chi \gens{\sigma} / \gens{ \sigma s = s^{\sigma} \sigma, \sigma^n - a} && s\in k_\chi .\] ::: :::{.remark} We have \[ [(\chi, a)] \da [X] \cupprod [a] \in H^1(K; C_n)\cup H^1(K; \mu_n) = \Br(k) .\] There are cases where it's not known if these types of algebras are generators of certain Brauer groups. ::: :::{.remark} For $k$ a \(p\dash \)adic field and $k_n$ the unique unramified degree $n$ extension, we can construct a character \[ \chi_n: \Gal(k\sep\slice{k}) \to \Gal(k_n{}\slice k) \caniso C_n ,\] where the isomorphism is canonical, sending the Galois group to the Frobenius. ::: :::{.theorem title="?"} Let $\pi$ be a uniformizer of $\OO_K$. Every CSA is equivalent to one of the form \[ (\chi_n, \pi^m) \to {m\over n} \in \QQ/\ZZ = \Br(k) .\] ::: :::{.remark} If $m, n$ are coprime one gets a division algebra. ::: :::{.proof title="Sketch"} This is mostly a computation that involves unwinding the isomorphism $\Br(k) \to \QQ/\ZZ$. A sketch: - The class $[(\chi_n, \pi)]$ has order $n$, - The class $[(\chi_n, \pi)]^m = [(\chi_n, \pi^m)]$, which is given by a cup product. ::: :::{.remark title="An algorithm to compute"} Let $D\slice k$ be a division algebra. - Find a copy of $k_n$ in $D$, which can be done since this is a division algebra of dimension $n^2$. - There exists a $\sigma \in D$ such that $\sigma\actson K_n$ by conjugation is the canonical generator of $\Gal(k_n {}\slice k) \caniso C_n$ (where we take $\Frob$ as the canonical generator). - Then $[D] \mapsto {v(\sigma) \over n} \in \QQ/\ZZ = \Br(k)$, where $v$ is the normalized valuation on $D$ we constructed previously. Note that this is well defined since changing $D$ changes the output by an integer. ::: :::{.example title="The simplest case: $n=2$"} Using that there is in fact a canonical isomorphism $\mu_2 \cong C_2$ since there's only one nontrivial element in each group, we have \[ H^1(k; C_2) = H^1(k; \mu_2) = k\units/(k\units)\powers{2} .\] Hence any character \[ \chi: \Gal(k\sep\slice k) \to C_2 = \mu_2 \] is represented by some $b_\chi \in k\units/(k\units)\powers{2}$. So we have an identification \[ (\chi, a) \leadsto (b_\chi, a)_2 = (a, b_\chi)_2 = \begin{cases} 0 & v(a) \equiv v(b) \mod 2 \\ {1\over 2} & \text{else}. \end{cases} \] For the corresponding extension to be unramified, one needs the valuation to be zero. So for example taking $k(\pi)\slice k$ yields a ramified extension since $v(\pi ) = 1$. > Note that here $(\wait, \wait)_n$ is generally a Hilbert or norm-residue symbol. ::: :::{.exercise title="?"} Prove that these cyclic algebras are CSAs. ::: ## The SES :::{.remark} Our goal for today: for $k$ a number field, show the following sequence is exact \[ 0\to \Br(k) \to \bigoplus_{v\in \places{k} } \kv \mapsvia{\sum} \QQ/\ZZ\to 0 .\] ::: :::{.proposition title="?"} For \( \alpha \in \Br(k) \), using the pullback of $i_v$, \[ \Br(K) \mapsvia{\prod_{i_v^*}} \prod_v \Br(\kv) \] factors through \( \bigoplus_v \Br(\kv) \), i.e. $i_v^*( \alpha) = 0$ for almost all $v$. ::: :::{.proof title="of prop, proof 1"} First represent $\alpha$ by $X\in \SB$, so $X(\kv) \neq \emptyset$ for almost all $v$. This implies $X_{\kv} \cong \PP^n\slice k$ for almost all $v$. ::: :::{.definition title="Ideles"} \[ \II_k \da \prod_v' (\kv\units, \OO_{\kv}\units) = \ts{ (x_v) \in \prod_v \kv\units \st x_v \in \OO_{\kv}\units \, \text{ for almost all } v} .\] A basis of open sets is given by $(x) \cdot \prod_v \OO_{\kv}\units$. ::: :::{.warnings} There is a map \[ \II_k &\embeds \AA_k^2 \\ x &\mapsto (x, x\inv) ,\] and there is a subspace topology -- but this is not equivalent to the topology above, and is in fact a source of an infamous error! ::: :::{.definition title="S-ideles"} If $S$ is a finite set of places of $K$ containing all infinite places, then define \[ \II_{k, S} = \prod_{v\in S} \kv\units \times \prod_{v\not\in S} \OO_{\kv}\units \subseteq \II_K .\] ::: :::{.fact} \[ \II_k = \colim_{S} \II_{k, s} .\] ::: :::{.remark} The idea will be to study the following SES of Galois modules: \[ 1 \to L\units \to \II_L \to C_L \to 1 ,\] where $C_L$ is the idele class group. ::: :::{.proposition title="?"} \[ H^2(L\slice k; \II_L) &= \bigoplus_{v\in\places{k}}\Br(\Lv {}\slice {\kv}) \\ H^2(k; \II_{k\sep}) &= \bigoplus_{v\in\places{k}} \Br(\kv) ,\] ::: :::{.theorem title="?"} \[ H^1(L\slice k; C_L) &= 0 \\ H^2(L\slice k; C_L) &= [d] \in \QQ/\ZZ, \quad d\da {1\over [L:k]} .\] This will imply \[ H^1(k; C_{k\sep}) &= 0 \\ H^2(k; C_{k\sep}) &= \QQ/\ZZ .\] ::: :::{.proof title="sketch"} We can write \[ H^2(L\slice k; \II_L) &= H^2(L\slice k; \directlim_T \II_{L, T}) \\ &= \directlim_T H^2(L\slice k; \II_{L, T}) ,\] so it's enough to show that for $S$ a finite set of places of $K$ and $T$ a set of places over $S$ that we have \[ H^2(L\slice k; \II_{L, T}) = \bigoplus_{v\in S} \Br(\Lv \slice {\kv}) .\] ::: :::{.exercise title="?"} Try to prove this, it uses Shapiro's lemma and isn't too difficult. :::