# Chabauty-Coleman (Thursday, November 11) :::{.theorem title="Coleman-Chabauty"} For $X\in \Sch\slice \QQ$ a proper curve with $g(X) \geq 2$ and $\rank_\ZZ \Jac(X)(\QQ) < g$ where $X$ has good reduction at $p>2g$, $\size X(\QQ) \leq \size X(\FF_p) + 2g-2$ ::: :::{.remark} Idea: choose $x\in X(\QQ)$, define a map \[ \AJ_x: X &\mapsvia{\text{Abel-Jacobi}} \Jac(X) \\ y &\mapsto [\OO(y-x) ] .\] Then $X^n\to \Jac(X)$ by $\vector y \mapsto \sum \AJ_x(y_i)$ is surjective for $n\geq g$. Note that \[ \Hom(T, \Jac(X)) = \ts{ \mcl \in \Pic(X\times T) \st \mcl \text{ has degree 0 on each fiber of } X\times T\to T}/\Pic(T) \] This equals $\ts{\mcl\in \Pic X\times X \st \mcl \text{ has fiberwise degree } 0}/\Pic(X)$. Note that the LHS is $\OO(\ts{x}\times X\to \Delta)$. ::: :::{.claim} For $X^n \mapsvia{\sum \AJ_x} \Jac(X)$ is surjective for $n\geq g$. ::: :::{.proof title="?"} ETS that the following map is surjective: \[ X^n &\to \Pic^n(X) \\ \vector y &\mapsto \OO\qty{ \sum y_i } .\] Given $[\mcl]\in \Pic^n(X)$, for $\mcl = \OO(D)$ for $D$ effective iff $H^0(\mcl) = 0$, so ETS $H^0(\mcl\neq 0)$ for $\deg \mcl \geq g$. By Riemann-Roch: \[ \dim H^0(\mcl) - \dim H^1(\mcl) = \deg \mcl + 1 - g .\] The RHS is 1, so $\dim H^0(\mcl) \geq 1$. ::: :::{.slogan} $X$ generates $\Jac(X)$, and $\Jac(X)$ is the Albanese of $X$. ::: :::{.remark} Let $\Gamma = \Jac X(\QQ) \subseteq \Jac X(\QQpadic)$. We have a factorization: \begin{tikzcd} {X(\QQ)} && \Gamma \\ \\ {X(\QQpadic)} && \bar\Gamma && {\Jac X(\QQpadic)} \arrow[from=1-1, to=3-1] \arrow[from=1-1, to=1-3] \arrow[curve={height=18pt}, from=3-1, to=3-5] \arrow[from=1-3, to=3-5] \arrow["\exists"', dashed, from=1-1, to=3-3] \arrow[from=3-3, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCJYKFxcUVEpIl0sWzAsMiwiWChcXFFRcGFkaWMpIl0sWzIsMCwiXFxHYW1tYSJdLFsyLDIsIlxcYmFyXFxHYW1tYSJdLFs0LDIsIlxcSmFjIFgoXFxRUXBhZGljKSJdLFswLDFdLFswLDJdLFsxLDQsIiIsMCx7ImN1cnZlIjozfV0sWzIsNF0sWzAsMywiXFxleGlzdHMiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMyw0XV0=) Here $\bar \Gamma$ has $\dim n < g$ and $\Jac X(\QQpadic)$ has dimension ??. A fact from \(p\dash \)adic Lie groups: they're all direct sums of balls! Now construction functions on $\Jac X (\QQpadic)$ vanishing on $\bar\Gamma$. Then $\ro{f_i}{X(\QQ_p)}$ vanish on $X(\QQpadic) \intersect \bar\Gamma \contains X(\QQ)$. This will show $X(\QQ)$ is finite. We'll show that not all of the $f_i$ are identically zero: ETS that $X(\QQpadic) \not\subseteq \bar\Gamma$, which will be true since $X$ generates its Jacobian. Take whichever $f_i \not\equiv 0$, which is an \(p\dash \)adic analytic function, then $f_i$ will have finitely many zeros. ::: :::{.remark} There is a hypothesis that $\rank_\ZZ \Jac X(\QQ) < g$ can be replaced by $\dim \bar\Gamma < g$. ::: ## Proofs :::{.lemma title="?"} Let $\Gamma \leq A(\QQpadic)$ be a finitely-generated abelian subgroup for $A\in \Ab\Var$. Then $\dim_{\QQpadic} \bar\Gamma \leq \rank_\ZZ \Gamma$. ::: :::{.fact} Any \(p\dash \)adic manifold $X$ is locally isomorphic to $\ZZpadic\cartpower{\dim X}$. ::: :::{.proof title="?"} For $\Gamma' \subseteq \ZZpadic\cartpower{n}$ a finitely-generated abelian group, $\dim \bar{ \Gamma}' \leq \rank_\ZZ \Gamma'$. Pick generators $g_1, \cdots, g_n$ generators, then write a linear map \[ \gamma: \ZZpadic^r &\to \ZZpadic^n \\ e_i &\mapsto g_i .\] The image is closed of dimension $n = \rank \gamma$. We'll now reduce the original lemma to proving this statement. This is because any *abelian* \(p\dash \)adic Lie group is of the form $\ZZpadic\cartpower{n} \times \text{something finite}$ for some $n$. If $A$ has good reduction at $p$, then $A(\QQpadic) \cong \ZZpadic \times A(\FF_p)$. Recall that there are maps: \[ \exp: T_0 A(\ZZpadic) &\to A(\QQpadic) \\ \log: \mathrm{sp}\inv(0) &\to A(\ZZpadic) ,\] where $\mathrm{sp}$ is the specialization map, and this induces an isomorphism of abelian groups. The goal is to now construct a \(p\dash \)adic analytic function on $A(\QQpadic)$ vanishing on $\bar\Gamma$. This construction: due to Coleman. Fix $\omega \in H^0(A_{\QQpadic}, \Omega^1_{A/\QQpadic})$, then there exists a \(p\dash \)adic analytic function \[ A(\QQpadic) &\to \QQpadic \\ Q &\mapsto \int_0^Q \omega .\] This map is determined by - $Q\to \int_0^Q \omega$ is a morphism of topological groups, - FTC: locally near 0, if $f$ is a \(p\dash \)adic analytic function with $\omega = df$, then $\int_0^Q \omega = f(Q) - f(0)$. ::: :::{.remark} Take $\bar\Gamma \subseteq \QQpadic$, then for $U \da \bar\Gamma \in B_0$ a ball around the origin, consider $\log(U) \subseteq T_Q(A) = \QQpadic\cartpower{n}$. Let $v_1,\cdots, v_s \subseteq \T_0\dual A$ be dual vectors vanishing on $\log \bar \Gamma$. Then - $\T_0\dual A \cong H^0(A, \Omega^1_{A})$ - $f_i(Q) = \int_0^Q v_i$, viewing $v_i$ as a 1-form. :::