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2 Thursday, August 19

1 Preface

Possible topics announcement from Daniel

The course will loosely follow Poonen’s book on ratio-
nal points, available here: https: // math. mit. edu/
~poonen/ papers/ Qpoints. pdf Planned topics in-
clude: the Hasse principle for quadratic forms, ob-
structions to the Hasse principle (i.e. the Brauer-
Manin obstruction and beyond), finding rational
points and some effective methods (e.g. Chabauty), as
well as some conjectural aspects of rational points. I
plan to cover topics in the second half of the semester
which depend on student interest; i.e. if there’s inter-
est I can say some things about Faltings’s proof of the
Mordell conjecture.

2 Thursday, August 19

Remark 2.0.1: Some useful prerequisites:

• Number theory (e.g. places)
• Class field theory

– See Cassels-Frolich (up through ch. 5 and 6)

• AG (although we’ll avoid the language of schemes)
• Galois and group cohomology
• Bjorn Poonen’s book

Remark 2.0.2: On notation:

• k·n will denote nth powers in k, and similarly for k×.
• kun denotes an unramified extension.

Remark 2.0.3: Setup: let k = Q or more generally a number field or a function field over Fq.
Consider a system of polynomial equations over k[x1, · · · , xm]:





f1(x1, · · · , xm) = 0
...

...

fn(x1, · · · , xm) = 0.

Some natural questions:

Preface 5
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2 Thursday, August 19

Remark 2.0.4(Topic 1: Are there any common solutions?): More generally, does X :=
V (f1, · · · , fn) have any rational points? How many rational points are there? Finitely many, or
infinitely many?

Remark 2.0.5(Topic 2: what is the distribution of points?): • Howmany points are there
of height at most N , where ht(a/b) = max(|a|, |b|)?

• Are they Zariski dense? I.e. are there solutions outside of the ideal 〈fi〉?
• Are they potentially dense, i.e. dense after some finite extension k ↪→ k′?
• Choosing k ↪→ C or Qp, are the solutions dense in the analytic topology on X(C), X(Qp)? If

not, what is the closure?

There are many conjectures around these questions, but few general results!

Remark 2.0.6(Topic 3: Local to Global Principles): Topic 3: local to global principles. Given
X/Q, if X(Qp) 6= ∅ for all p and X(R) 6= ∅, does this imply that X(Q) 6= ∅? More generally, for X/k

with X(Kv) 6= ∅ for all places v of K, is this enough to imply X(k) 6= ∅ If so, we say X satisfies
the Hasse principle. If not, are there obstructions?

Remark 2.0.7(Topic 3’: Weak and Strong Approximation): As an example,

X(k) ↪→
∏

v∈P (k)
X(kv)

where p(k) are the places of k. Is this map dense? Note the topology is the product topology, so
a basis for opens are sets with finitely factors with opens, and the remaining are the entire space.
Strong approximation is an adelic version of this.

Obstructions to this principle: if this is not dense, what is the closure X(k) in
∏

X(kv) or X(A)
for A the adeles? One example we’ll consider is the Brauer-Manin obstruction.

Remark 2.0.8(Topic 4: effectiveness and decidability questions.): Given a variety X/Q, is
there an actual algorithm that decides if X(Q) = ∅? This is known over Z, but open for Q and
most (not all) number fields. Are there special classes of varieties where the answer of yes? For
curves, this is only known contingent on open problems (the abc conjecture, the section conjecture,
Birch-Swinnerton-Dyer, etc).

Given a special X/k can you find X(k)?

Remark 2.0.9: Other possible topics:

• The Mordell-Weil theorem for X an abelian variety, and a generalization, the Néron-Lang
theorem which works over other fields.

• Falting’s theorem, that curves of genus 2 have finitely many rational points.

E 2.1 Examples of Hasse Principles e
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2 Thursday, August 19

Example 2.1.1(?): Let a ∈ Q, does x2 = a satisfy a local to global principle? This is related to
Chebotarev density.

Claim: any positive number a such that vp(a) is even for all p is necessarily a square. This follows
from writing a = ±

∏
pnii where ni ∈ Z and is equal to zero for all but finitely many i, then its

square root is obtained by halving all of the ni. Note that a ∈ (R×)2 implies a is positive, and
a ∈ (Qp×)2 implies that np is even.

Example 2.1.2(?): Let a ∈ Q and take xn = a, or more generally f(x) = a for f ∈ Q[x], where
f(x)−a is irreducible. Corollary of Chebotarev density: the set of primes where f −amod p has no
linear factors has positive density. This means that an even stronger theorem is true: there exists
a c < 1 such that if f − a has no roots mod p for a set of primes of density d > c, then f − a has no
roots. So this satisfies the Hasse principle.

Example 2.1.3(Conics): Take X := V (ax2 + by2 + cz2) ⊆ P2 for a, b, c ∈ Q. This also satisfies
the Hasse principle, but the proof is harder. Note that x2 + y2 + z2 = 0 has no rational points
(excluding zero since we’re in P2) since it has no solutions over R. It is potentially dense, noting that
one can take Q[i] over Q and get rational points 0, 1,∞. Given one point, one can stereographically
project to yield infinite many points by just taking lines through the fixed point and letting slopes
vary.

Something about using O(1) to give an embedding into P1. Start with O(−1), dualize, project?

Example 2.1.4(Severi-Brauer varieties): Taking X/k such that X/k
∼= Pn

/k
satisfy the Hasse

principle.

Example 2.1.5(Quadrics): A theorem by Hasse-Minkowski shows that these also satisfy the
Hasse principle.

Example 2.1.6(Genus 1 curves): The Selmer curve 3x3 + 4y3 + 5z3 = 0 does not satisfy the
Hasse principle, which can be understood in terms of the Tate-Shafarevich group or Brauer-Manin
obstructions.

Remark 2.1.7: Note that it doesn’t make sense to say a single variety satisfies the Hasse principle,
but rather a class. But it makes sense to say a single variety doesn’t.

Remark 2.1.8: A common generalization is that these are all torsors for an algebraic group, i.e. a
homogeneous space, for which there are cohomological methods to understand the Hasse principle.

Remark 2.1.9: A variety X/k is geometrically integral in the affine case if when X = V (f1, · · · , fn),
the ring k[x1, · · · , xn] is an integral domain.

Theorem 2.1.10(?).
Suppose K is a number field and X/K is geometrically integral. Then X(Kv) 6= ∅ for all but
finitely many v.

2.1 Examples of Hasse Principles 7



3 Tuesday, August 24

Proof (Sketch/idea).

1. Write X = V (f1, · · · , fn) with a nonempty smooth locus Xsm ⊆ X which is a variety
(just adjoin inverses of partial derivatives appearing in minors of Jacobian matrices). So
Xsm/OK,S = OK

[ 1
N

]
which is smooth over OK,S

2. Use Lang-Weil to show that Xsm(OK,S/p) 6= ∅ for almost all p.
3. Use smoothness and Hensel’s lemma to get Xsm(OK,S p̂).

�

3 Tuesday, August 24

Remark 3.0.1: Last time: if K is a number field and X/K is geometrically irreducible, then
X(Kv) 6= ∅ for almost all v.

Proof (?).
Choose X/OK [ 1

N ] such that X has geometrically integral fibers. It’s enough to show that
X(K(v)) 6= ∅ for almost all v, where K(v) is the residue field at finite places v.
Now use the following theorem:

�

Theorem 3.0.2(Lang-Weil Estimates).
If X over OK [ 1

N
] is geometrically integral, then

#X(Fqk) = (1 +O(q
1
2 ))qk dimX .

Claim: If X/OKv is smooth then

X(K(v)) 6= ∅ =⇒ X(Kv) 6= ∅.

Proof (?).
Use

• Slice and Hensel, or the formal smoothness criterion, i.e.

SpecR X

SpecR′ Y

smcl ∃

Taking R := R′/I with I nilpotent.

Tuesday, August 24 8



3 Tuesday, August 24

Link to Diagram
See Hartshorne chapter 3, in the exercises!

�

Remark 3.0.3: As a black box, we’ll use that this is true for dimOKv X = 1, i.e. for curves. This
follows from the Weil conjectures for curves, see Severi/Bombieri. If X is genus g, then in fact we
have a finer estimate:

∣∣∣#X(Fqk)− qn
∣∣∣ ≤ q 1

2 + 1.

Proof (?).
We’ll show this for dimOK [ 1

n ] = 2. Idea: try to fiber with curves.

• Suppose reldimX = 1 for X → S over OK [ 1
n
] where S is a curve with geometrically

integral fibers.

• Without loss of generality, X → S where

– S is smooth of genus g′,
– X/S is smooth with fibers of genus g.
– Now take the count

X(Fqk) = (1 +Og′(q−
k
2 ))q · (1 +Og(q−

k
2 ))q

= (1 +Og,g′(q−
k
2 ))q2.

• Such an X → S after replacing X by an open subvariety. The proof of this follows from
Bertini: for X ⊆ Pn, take geometric projections and delete the singular locus. The fibers
are slices by hyperplanes, and thus the fibers are geometrically integral.

�

E 3.1 Brauer Groups e

Remark 3.1.1: Some upcoming topics:

• Severi-Brauer varieties (so X/K where X/K
∼= Pn) satisfy the Hasse principle. Implies Hasse-

Minkowski!

• The Brauer-Manin obstruction to the Hasse principle.

3.1 Brauer Groups 9
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3.1.1 The Brauer-Manin Obstruction

Remark 3.1.2: Setup:

• X is a variety,
• Br(X) is an abelian group
• Given X f−→ Y , there is an induced map f∗ : Br(Y )→ Br(X).

For K a number field (which we can view as a variety with a single point), we have

Br(Kv) =





Q/Z v finite
Z/2 v real
0 v complex,

which fits into a SES

0→ Br(K)→
⊕

v

Br(Kv) Σ−→ Q/Z→ 0.

Note that most of the terms in the middle sum are Q/Z, making Br(K) a large group.

Remark 3.1.3: The yoga of the Hasse principle says we should try to solve things in adelic points
first. Write

AK =
′∏

v

(Kv,Ov) ⊆
∏

v

Kv

where we take the restricted product. There is a map X(K)→ X(AK), and taking α ∈ Br(X) one
gets a map α∗ : X(K)→ Br(K). This yields a diagram

X(K) X(AK)

Br(X) Br(Ak) ∼=
⊕

v

Br(Kv)

α∗ α̃∗

Link to Diagram

Using that Σ : Br(AK)→ Q/Z, for a fixed α ∈ Br(K),

X(K) ⊆ (Σ ◦ α̃)−1(0) ⊆ X(AK),

and (Σ ◦ α̃)−1(0) = X(AK)α. Thus the Hasse principle is violated if X(AK) is nonempty but
X(AK)α is empty. More generally, it’s violated if

X(AK)Br :=
⋂

α∈Br(X)
X(AK)α = ∅.

3.1 Brauer Groups 10
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3.1.2 The Hasse Principle for Severi-Brauers

Remark 3.1.4: Let X/K be a Severi-Brauer, then [X] ∈ Br(K) and X ∼= Pn/K ⇐⇒ [X] = 0.
Using that

⊕ιv : Br(K) ↪→
⊕

v

Br(Kv),

we have

[X] = 0 ⇐⇒ ιv(X) = 0 ∀v since ιv(X) = [XKv ] ∈ Br(Kv).

Fact 3.1.5
It turns out that X ∼= Pn ⇐⇒ X(K) 6= ∅.

E 3.2 Brauer Groups and Galois Cohomology e

Definition 3.2.1 (Brauer Groups)
Let K ∈ Field, then

Br(K) := H2
Gal(K,K×) = H2

Grp(Gal(Ks/K), (Ks)×).

Remark 3.2.2: Let G ∈ Grp be discrete, so we’re not considering any topology on it. Let M ∈
G-Mod, or equivalently M ∈ Z[G]-Mod.

We can take invariants and coinvariants:

MG :=
{
m ∈M

∣∣∣ gm = m ∀g ∈ G
}

= Hom
Z[G]

(Z,M)

MG := M/
〈{
gm−m

∣∣∣ g ∈ G
}〉

= Z⊗Z[G] M.

These are the largest submodules/quotient modules respectively on which G acts trivially.

Exercise 3.2.3 (?)
Why are these equal to homs and tensors respectively?

Definition 3.2.4 (Group cohomology)

H i(G;M) := ExtiZ[G](Z;M)

Hi(G;M) := TorZ[G]
i (Z;M).

3.2 Brauer Groups and Galois Cohomology 11



4 Group Cohomology (Thursday, August 26)

Example 3.2.5(Cyclic groups): For G := Z, we have Z[G] = Z
[
x, x−1

]
. Take a projective

resolution

0→ Z[G] ·(x−1)−−−−→ Z[G] x 7→1−−−→ Z→ 0.

Deleting the augmentation and applying Hom
Z[G]

(−,Z) yields 0→ Z f :·(x−1)−−−−−→ Z→ 0, and noting that
x acts by 1, f is the zero map. This yields

H∗(G;Z) =
{
Z ∗ = 0, 1
0 else.

H∗(G;Z) =
{
Z ∗ = 0, 1
0 else.

4 Group Cohomology (Thursday, August 26)

See Cassels-Frohlich, Stein, etc for group cohomology.

E 4.1 Computing Examples e

Example 4.1.1: For G = Z, take the resolution

0→ Z[x, x−1] x−1−−→ Z[x, x−1]→ 0.

Then H∗(G;Z) = H∗(G;Z) is Z in degrees 0 and 1, and 0 otherwise. For M ∈ G-Mod, we have

H∗(G;M) = H∗(M x−1−−→M) =





MG ∗ = 0
MG ∗ = 1
0 else,

H∗(G;M) = H∗(M x−1−−→M) =





MG ∗ = 0
MG ∗ = 1
0 else.

Example 4.1.2(?): For G = Z/n, write σ as the generator so that Z[G] = Z[σ]/ 〈σn − 1〉 We can
take a resolution

· · · → Z[σ]/ 〈σ − 1〉 σ−1−−→ Z[σ]/ 〈σ − 1〉 1+σ+···+σn−1
−−−−−−−−−→ Z[σ]/ 〈σ − 1〉 σ−1−−→ Z[σ]/ 〈σ − 1〉 → 0.

Group Cohomology (Thursday, August 26) 12



4 Group Cohomology (Thursday, August 26)

Now apply Hom
Z[G]

(−,Z), use that Hom
Z[G]

(Z[G],Z) = Z, and take homology of the complex

Z σ−1−−→ Z
∑

σi−−−→→ Z σ−1−−→ · · ·Z 0−→ Z n−→→ Z 0−→ · · · .

This yields

H∗(G;Z) =





Z ∗ = 0
0 ∗ odd
Z/n ∗ even.

Remark 4.1.3: For the free abelian group Zn, we get H∗(Zn;Z) =
∧∗(Zn). For the free group

Fn, we get H∗(Fn;Z) is Z in degree zero (always true for the trivial module, since the invariants
are everything) and Zn in degree 1.

Fact 4.1.4
If X is a CW complex with π0(X) = 0, π1(X) = G, π>2(X) = 0, then H∗Grp(G;Z) = H∗Sing(X;Z).
Note that X ∼−→ BG in this case, and the proof is easy: take the universal cover, then the
simplicial/cellular cohomology resolves Z as a Z[G]-module.

Proposition 4.1.5(?).
Suppose G is finite and M ∈ G-Mod, then H>n(G;M) is torsion. 1. It suffices to show this
for ∗ = 1 by using dimension shifting. Choose M ↪→ I into an injective object to get a SES

0→M → I →M/I → 0

to get a LES in cohomology, and use that Ext into injectives vanishes to get H∗(G;M) ∼=
H∗(G;M/I)[−1].

2. We want to show H1(G;M) = Ext1
Z[G](Z;M) is torsion, and it suffices to show

Ext1
Z[G](Z;M) ⊗ Q = 0, which we can replace with Ext1

Z[G](Q,M ⊗ Q). So we con-
sider SESs of the form

0→M ⊗Q→W → Q,

which we’d like to split as a SES of G-representations over Q.

See uniquely divisible groups?
This splits by Maschke’s theorem: all SESs of irreducible representations of G for G finite over
ch k = 0 split. The usual proof over C doesn’t work for Q, but one uses a splitting instead of
an inner product.

E 4.2 Functoriality e

4.2 Functoriality 13



4 Group Cohomology (Thursday, August 26)

Remark 4.2.1: Given M → N ∈ G-Mod there are maps

H∗(G;M)→ H∗(G;N)
H∗(G;M)→ H∗(G;N).

Suppose ι : G→ T with M ∈ T-Mod, then there are induced maps

ι∗ : H∗(T ;M)→ H∗(G;M)
ι∗ : H∗(T ;M)→ H∗(G;M)

coming from the functoriality of Ext and Tor under change of rings.

We’ll use the following as a black box: for G ≤ T finite index, there is a trace map (or corestriction)

trG/T : H∗(G;M)→ H∗(T ;M).

It’s functorial in M , and trG/T ◦ι∗ is multiplication by m := [G : T ]. This yields another proof of
the previous element: take G = 1 to get H∗(G;M) = 0 and check trG/T ◦ι∗ is multiplication by |T |
and zero, making the group torsion.

Remark 4.2.2: Some interpretations:

• H1(G;Z) = Gab = G/[G,G] is the abelianization (which can still be torsion).
• H1(G;Z) = Hom

Grp
(G;Z), which is always torsionfree.

• H2(G;M) classifies extensions of G by M in the following sense: G′ occurring in a “SES”
ξ : 0 → M → G′ → G → 1 such that the action of G on M by conjugation is the given
G-module structure on M . Moreover ξ = 0 in H2(G;M) iff ξ splits, then G′ ∼= GoM . For
M a trivial G-module, these are central extensions.

4! Warning 4.2.3
Note all SESs yield semidirect products: take 0→ Z ·n−→ Z→ Z/n→ 0, which has no sections since
Z has no n-torsion. This in fact represents a generator H2(Z/n;Z).

Definition 4.2.4 (Galois cohomology)
Let L/k be a finite Galois extension, M ∈ G-Mod for G := Gal(L/k). Then

H∗Gal(L/k;M) := H∗Grp(G;M).

If M is a discrete continuous Gal(ks/K)-module, then

H i(k;M) := colim−−−−−→
U E Gal(ks/k)

H∗(Gal(ks/k)/U ;M).

The stabilizer of any point is open (and finite index).

Definition 4.2.5 (Brauer Groups)

Br(k) = H2(K; (ks)×).

4.2 Functoriality 14
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Example 4.2.6(?): Consider Br(Fq), then Gal(Fsq/Fq) = Ẑ
〈

Frob
q

〉
. Then

Br(Fq) := H2
(
Ẑ
〈

Frob
q

〉
;F×q

)

= colim−−−−−→
Un⊆Ẑ→Ẑ→Z/n

H2
(
Z/n; (F×q )Un

)

= colim−−−−−→H
2
(
Z/n

〈
Frob
q

〉
;F×qn

)

= colim−−−−−→H
2(Gal(Fqn/Fq);F×qn)

= colim−−−−−→H
2
(
F×qn

Frob−1−−−−−→ F×qn
Nm−−→ F×qn → · · ·

)

= colim−−−−−→F
×
q /Nm(Fqn ,Fq)F×qn

= colim−−−−−→ 0
= 0.

Note: we’ve used that

ker(Frob−1 : x 7→ xq−1) = F×q .

Exercise 4.2.7 (?)
Show that the norm is surjective.

5 Tuesday, August 31

Remark 5.0.1: Today: a systematic way to compute group cohomology by taking standard
resolution. For a fixed group G, we want to resolve Z by free Z[G]-modules, so take a simplicial
resolution

· · · G×
3

G
×2

G

Taking free Z-modules yields

· · · Z[G×3 ] Z[G×2 ] Z[G]

Note that this is a simplicial set whose realization is EG.

Tuesday, August 31 15
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Proposition 5.0.2(?).
C•(G) is exact, and Z[G×n ] is free in Z[G]-Mod where Gy G×

n diagonally and this extends
linearly.

Proof (?).
Z[G×n ] is a free Z[G]-module, using that

{
(1, g1, · · · , gn−1)

∣∣∣ gk ∈ G
}

is a free basis, since
these are representatives for G-orbits on G×n .
That this is an exact complex will follow from a nullhomotopy h : Z[G×n−1 ]→ Z[G×n ] so that
hd+ dh = id. Take the map h(g1, · · · , gn) = (e, g1, · · · , gn), then

(hd)(g1, · · · , gn) = h
∑

(−1)i(g1, · · · , ĝi, · · · , gn)

=
∑

(−1)i(e, g1, · · · , ĝi, · · · , gn).

and

(dh)(g1, · · · , gn) = d(e, g1, · · · , gn)
= (g1, · · · , gn)−

∑
(−1)i(e, g1, · · · , ĝi, · · · , gn),

and adding these two cancels the two summed terms and yields the identity.
Then just recall from homological algebra that x ∈ ker d implies x = hdx + dhx = dhx, so
x ∈ im d, so this makes the complex exact.

�

Corollary 5.0.3(?).
For G ∈ Grp discrete and M ∈ G-Mod,

H∗(G;M) = H∗(Hom•Z[G](C•(G),M))
H∗(G;M) = H∗(M ⊗Z[G] C•(G)).

Remark 5.0.4: Can we find a smaller way to represent this? Note that

Z[G×n] =
⊕

(g1,··· ,gn)∈Gn−1

Z[G](1, g1, · · · , gn−1),

and there is a free/forgetful adjunction between modules and sets that yields

Hom
Z[G]

(Z[G×n ],M) ∼= Hom
Set

(G×n−1
,M).

Definition 5.0.5 (Reduced Complex)
For G ∈ Grp discrete and M ∈ G-Mod, set

C̃r(G;M) := Hom
Set

(G×r ,M).

Tuesday, August 31 16
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The boundary maps are given by

δ : C̃0(G,M)→ C̃1(G,M)
δf(σ) = σf(−)− f(−)

δ : C̃1(G,M)→ C̃2(G,M)
δf(σ, τ) = σf(τ)− f(στ) + f(σ)

δ : C̃2(G,M)→ C̃3(G,M)
δf(σ, τ, ρ) = σf(τ, ρ)− f(στ, ρ) + f(σ, τρ)− f(σ, τ).

The pattern is multiply by σ on the outside, cycle through multiplying it to each argument,
and for the last term leave σ off.

Remark 5.0.6: Punchline: in principle, group cohomology is computable – however, the complex
is quite large and not practical for large groups.

E 5.1 Some Formal Properties e

Proposition 5.1.1(Spectral Sequences).
For H E G and M ∈ G-Mod, the Hochschild-Serre spectral sequence reads

Ep,q2 = Hp(G/H;Hq(H;M))⇒ Hp+q(G;M).

Remark 5.1.2: This is useful for inducting on the lengths of composition series, since e.g. for
solvable groups one can take G/H to be cyclic and H a smaller solvable group.

Proposition 5.1.3(Inflation/Restriction Exact Sequence).
This spectral sequence induces an inflation/restriction exact sequence

0

H1
(
G

H
;MH

)
H1 (G;M) H1 (H;M)

G
H

H2
(
G

H
;MH

)
H2 (G;M)

Link to Diagram

5.1 Some Formal Properties 17

https://q.uiver.app/?q=WzAsNixbMCwxLCJIXjFcXHF0eXsge0cgXFxvdmVyIEh9OyBNXkh9Il0sWzIsMSwiSF4xXFxxdHl7RzsgTX0iXSxbNCwxLCJIXjFcXHF0eXtIOyBNfV57R1xcb3ZlciBIfSJdLFswLDMsIkheMlxccXR5eyB7RyBcXG92ZXIgSH07IE1eSH0iXSxbMiwzLCJIXjJcXHF0eXtHOyBNfSJdLFswLDAsIjAiXSxbNSwwXSxbMCwxXSxbMSwyXSxbMiwzXSxbMyw0XV0=


5 Tuesday, August 31

Remark 5.1.4: This comes from the bottom-left corner of the HS spectral sequence, which is
a general principle for first quadrant spectral sequences. Note that the G/H action comes from
G y H by conjugation, which yields a G-action on H∗, and since H acts trivially on H∗(H;M)
(since e.g. MH has a trivial action), this action factors through G/H.

E 5.2 Forms, Torsors, and H1 e

Definition 5.2.1 (Forms/descent, a pseudo-definition)
Let X/k be an object (e.g. a variety, a group scheme, a variety with extra structure), then a
form of X over k is an object X ′/k with an isomorphism X ′/ks

∼−→ X (i.e. a descent of X).

Example 5.2.2(?): For X := Pn/ks then a form of X/k is a Severi-Brauer variety, for example a
smooth conic.

Example 5.2.3(Severi Brauers): Let E be a genus 1 curve, then E is a form for its Jacobian
Jac(E), i.e. it becomes isomorphic to its Jacobian if it has a rational point. Not every curve has
such a point, so they only become isomorphic after base changing to a separable closure. Note
that Jac(E) y E by addition of divisors (since Jacobians have degree zero, curves have divisors of
degree 1, and adding them yields a degree 1 divisor). It is in fact a torsor.

Example 5.2.4(?): If L/k is a finite separable extension then L is a form of (ks)×n .

Example 5.2.5(?): The groups SO(p, q)/R, the matrices preserving a quadratic form

hp,q := diag(1, · · · , 1,−1, · · · ,−1)

with p copies of 1 and q copies of −1, and these are all forms of SO(p+ q)/C.

Proposition 5.2.6(?).
Suppose X/k is some object (e.g. a variety, then forms of Xks over k are canonically in
bijection with H1

Gal(k; Aut(Xks)) (recalling that this was defined as a direct limit). Note that
this automorphism group may be nonabelian, which we still need to define.

Proof (?).
Suppose Aut(Xks) is abelian, then we’ll show the following stronger claim:

Claim: X ′L
∼−→ XL since there is a bijection

{Forms of Xks
split by L/k

}

 H1

Gal(L/k; Aut(XL)).

5.2 Forms, Torsors, and H1 18
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Proof (?).
Recall that

H1(L/k; Aut(XL)) = H1(C̃•(Gal(L/k)); Aut(XL)).

Given X ′/k split by L, we want a map Gal(L/k) → Aut(XL). Choose an isomorphism
X ′L

∼−→ XL, noting that Galois acts on the LHS since it’s defined over k, which will be
different from the natural action on the right-hand side. So we can take a map

f : Gal(L/k)→ Aut(X ′/L) ∼−→ Aut(XL),

although this is not generally a homomorphism.
Instead, f(στ) = f(σ)f(τ)σ, a crossed homomorphism which involves acting on the
coefficients of defining equations (which come from L). This says that f ∈ ker δ, the
differential for C̃•. So we now have a map from forms split by L toH1(Gal(L/k),Aut(XL)),
and we’ll show it’s injective and surjective.

Injectivity: Suppose X ′, X ′′ are isomorphic forms of X, so we have an isomorphism
defined over k of the form X ′L

∼−→ X ′′L.

Exercise (?)
This changes f by an element of the form δ(g) for g ∈ Aut(XL).

Surjectivity: Given a crossed homomorphism f : Gal(L/k) → Aut(XL), we want to
produce a form of X/k mapping to it. This is the hardest part of the argument!
Suppose X/k is a variety. First suppose X ∈ AffVar, so X = SpecR and Gal(L/k) yf

RL = R⊗kL, which is only an L-semilinear action. Then X ′ = Spec(RL)Gal(L/k), and the
claim is that X ′L ∼= XL. The proof of this is Galois descent, i.e. there is an equivalence
of tensor categories

k-Mod⊗
(−)⊗L−⇀⊥↽−

(−)Gal(L/k)
L-Mod⊗ + a semilinear action of Gal(L/k)

Now for general X, one reduces to the case of affines. One can alternatively prove Galois
descent without reference to affine varieties.

�

�

6 Thursday, September 02

E 6.1 Correspondence of Forms e
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Remark 6.1.1: Last time: standard/reduced complexes, forms, and H1. A meta-definition for
today: let k, L ∈ Field with L/k finite and separable, and X/k an object over k (e.g. an algebraic
variety, possibly with extra structure). A form of X/k split by L is an object X ′/k of the same class
as X such that XL

∼−→ X ′L.

Theorem 6.1.2(A meta-theorem).
The theorem was that there is a canonical bijection

{
Forms of X
split by L

}

 H1

Gal(L/k; Aut
k

(XL))

Note that we didn’t assume the coefficients formed an abelian group, so we’ll explain this today.
It is true that Aut(XL) ∈ Gal(L/k)-Mod. We’ll say that X ′ is just a form of X if there exists
some L′ finite separable that splits k. In this case there is a correspondence

{Forms of X}
 H1
Gal(L/k; Aut

k
(Xks))

Proof (A meta-proof).
What is the map? Given a form X ′, we by definition have F : X ′L

∼−→ XL, and we want a
map Gal(L/k) → Aut

k
(XL) such that δf = 0 for the differential in cohomology. Since X ′ is

defined over k, we have an action Gal(L/k) y X ′L, i.e. a map Gal(L/k)→ Aut(X ′L), which we
can compose with the given isomorphism to obtain

f : Gal(L/k)→ Aut(X ′L)→ Aut(XL).

We have f(στ) = f(σ)f(τ)σ. What happens if we change the isomorphism F to some F ′,
changing by some g ∈ Aut(XL)

Exercise (?)
Here f changes by a map of the form σ → g(g−1)σ.

We’ll write an inverse map using Galois descent. Given f : Gal(L/k) → Aut
k

(XL) with
f(στ) = f(σ)f(τ)σ, we want to construct a form of X. Assume X ∈ AffSch, so X = Spec(A)
for some A ∈ Alg/k, then define

X ′ := Spec(A⊗k L)Gal(L/k)

where the action is given by f .
�

Remark 6.1.4: What is Aut
k

(X/L) is nonabelian? Then we just make this proof a definition, and
set

H1(L/k;G) :=
{
f : Gal(L/k)→ G

∣∣∣ f(στ) = f(σ)f(τ)σ
}
/(σ → g(g−1)σ).

Here the maps are of finite discrete groups. This is a pointed set, using the constant map as a
basepoint.

6.1 Correspondence of Forms 20
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E 6.2 Torsors e

Definition 6.2.1 (Torsor)
Recall that for G ∈ AlgGrp/k, a torsor for G (or a principal homogeneous space) is

1. A form of G under the left action of G on itself, i.e. a variety X with a left G-action
G×X → X where XL

∼−→ GL using the left-translation action.
2. A G-variety X such that G×X σ,π2−−→ X ×X is an isomorphism.

Claim: Note that these are equivalent if G is smooth, which for us will always happen in charac-
teristic zero.

Theorem 6.2.2(?).
If G is smooth, then G-torsors are canonically in bijection with H1(k;G(ks)), and G-torsors
split by L biject with H1(L/k;G(L)).

Exercise 6.2.3 (?)
Prove this! It suffices to show that Aut

GL
(GL) ∼= GL as a GrpSch/GL .

E 6.3 Example: Kummer Theory e

Example 6.3.1(Kummer theory): Suppose µp ⊆ k, so k contains all pth roots of unity. Then a
µp-torsor is the same as a Z/p Galois extension of k, where we allow kp = µp itself.

Theorem 6.3.2(?).
There is a bijection

{Z/p-extensions}
 H1(k;µp)

Proof (?).
Use the SES

1→ µp → (ks)× x 7→xp−−−→ (ks)× → 1,

which yields a LES

1→ H0(k;µp)→ H0(k; (ks)×) x 7→xp−−−→ H0(k; (ks)×)→ H1(k;µp)→ H1(k; (ks)×),

6.2 Torsors 21
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and identifying terms yields

0→ k×/(k×)p → H1(k;µp)→ H1(k; (ks)×).

�

Example 6.3.3(?): What is H1(k; (ks)×)? Use that L× = Aut(V/L) where V is a 1-dimensional
vector space over L. The claim is that by Galois descent, forms for a vector space split by L are
precisely vector spaces over k, which makes them all trivial. This in fact implies the more general
fact that H1(k; GLn(ks)) = 1.

Remark 6.3.4: Kummer theory gives us an explicit form of the map and identifying terms yields

0→ k×/(k×)p x 7→k[x
1
p ]−−−−−→ H1(k;µp)→ H1(k; (ks)×).

This can be found by unwinding the definition of the map from the snake lemma, or noting that
the kernel of a map from the absolute Galois group cuts out exactly this field.

E 6.4 Geometry of Brauer Groups e

Example 6.4.1(of H1): H1(k;G) are forms of objects with automorphism groups G.

• Vector spaces are obtained by taking G = GLn.
• Forms of Pn, i.e. Severi-Brauer varieties, come from taking G := PGLn+1.
• For G finite, a form of G is an étale k-algebra (product of separable extensions of k with total

Galois group G).

– For G simple, these are Galois extensions with Galois group G. For G := Z/p, this is
Kummer theory.

• For E an elliptic curve, all genus 1 curves are torsors for their Jacobian. So genus 1 curves C
with Jac(C) ∼= E biject with H1(k;E(ks)).

Remark 6.4.2: We’ll now look at H2, and there is a correspondence

H2(G;A) ∼−→


 ξ : 0 A G′ G 1

s




Given a set-theoretic section s : G→ G′, we get a map

fs : G×2 → A

(g1, g2) 7→ s(g1)s(g2)s(g1g2)−1.

Note that if s is a group morphism, this is just the constant map.

6.4 Geometry of Brauer Groups 22
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Claim: One needs to show the following:

1. δfs = 0, so one gets a cocycle.
2. Changing s changes fs by a coboundary.
3. Make the inverse.

The group operation here is G′ ·G′′ := G′×
G
G′′/A, and the multiplication map is

(a1, g1) · (a2, g2) := (a1a2fs(g1, g2), g1g2).

Remark 6.4.3: Suppose 1→ Z → H ′ → H → 1 is a SES of groups with a G-action such that Z
is in the center of H ′. Then there is a “LES”

1

ZG (H ′)G HG

H1(G;Z) H1(G;H ′) H1(G;H)

H2(G;Z)

δ0

δ1

Link to Diagram

Note that some terms here are only sets, so exactness means that differentials surject onto kernels,
and H1(G;Z) y H1(G;H ′) and H1(G;H) is the quotient by this action.
Remark 6.4.4:

Definition 6.4.5 (Brauer group)
Take 1→ Gm → GLn → PGLn → 1, then we get a map

H1(k; PGLn(ks)) ιn−→ H2(k, (ks)×).

Then define the Brauer group of k to be

Br(k) :=
⋃

n

im(ιn).

6.4 Geometry of Brauer Groups 23
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Remark 6.4.6: Studying H2 is hard in general, so this fact is the reason we can actually study
Brauer groups.

Something about Hilbert 90

This surjection gives us geometric objects to work with. We’ll show this is a group next time, along
with the following theorem:

Theorem 6.4.7(?).

⋃

n

im(ιn) = H2(k; (ks)×).

7 Tuesday, September 07

E 7.1 Intro: Historical POV on Brauer Groups e

Remark 7.1.1: Last time we defined Br(k) := H2(k; k×) and had a SES

1→ (ks)× → GLn(ks)→ PGLn → 1.

We identified a subset of PGLn -torsors in H1(k; PGLn(ks)) ιn−→ H2(k; (ks)×), and alternatively
defined Br(k) = ∪n im(ιn). We’ll now look at geometric interpretations of elements of H1.

Example 7.1.2(?): Aut(X) = PGLn for the following:

• Pn−1

• GLn
• Mat(n× n), by the Skolem-Noether theorem.

Corollary 7.1.3(?).
For any of the X above, there is an isomorphism:

H1(k; PGLn(ks)) ∼−→ {Forms of X}/∼
∼−→ {PGLn -torsors}/∼ .

Definition 7.1.4 (Severi-Brauers)
A Severi-Brauer variety over k is a form of Pn/k for some n.

Example 7.1.5(?):
• C a conic with no rational points, e.g. x2 + y2 + z2 = 0 over R.

Tuesday, September 07 24
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• SymnC is a nontrivial Severi-Brauer if n is odd. It’s difficult to write any down for even n,
e.g. there are no Severi-Brauer surfaces over R.

Definition 7.1.6 (CSAs/Azumaya Algebras)
A finite dimensional central simple algebra or Azumaya algebra over k is a associative
algebra over k with no nontrivial 2-sided ideals with center k which is finite-dimensional as a
k-vector space.

Theorem 7.1.7(Classification of CSAs).
Let A ∈ Alg/k, then TFAE:

• ∃ a finite separable extension L/k where after base-changing to L one obtains A⊗k L ∼=
Mat(n× n,L).

• A⊗k ks ∼= Mat(n× n, ks).
• ∃ a finite (not necessarily separable) extension L/k such that A⊗k L ∼= Mat(n× n,L).
• A is a finite dimensional central simple algebra / Azumaya algebra.
• A is a matrix algebra over a finite-dimensional central k-division algebra.

This is essentially a classification theorem: they’re all forms of matrix algebras over division
algebras. Moreover there is a bijection

{Central simple k-algebras } → H2(k; (ks)×).

Definition 7.1.8 (Opposite algebra)
If A ∈ CSA/k, then Aop ∈ CSA/k is an algebra with the same underlying vector space as A
with a ·op b := ba.

Definition 7.1.9 (Morita equivalence)
A,B are Morita equivalent if A⊗k Bop is isomorphic to a matrix algebra.

Theorem 7.1.10(?).
Given A,B ∈ CSA/k which correspond to elements [A], [B] ∈ H2, then

• [A] = [B] ⇐⇒ A,B are Morita equivalent.
• [A]−1 = [Aop].
• [A] · [B] = [A⊗k B].

E
7.2 The Boundary Map and Twisted Vector

Space e

Remark 7.2.1: We’d now like to make the boundary map explicit:

H1(k; PGLn(ks))→ H2(k; (ks)×).

Given [f ] ∈ H1, choose a representable cocycle f :

7.2 The Boundary Map and Twisted Vector Space 25
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Gal(ks/k) PGL(ks)

Gal(L/k) PGLn(L)

f

f̃

Link to Diagram

To compute this boundary, we use the original SES:

1 ks GLn(ks) PGLn(ks) 1

Gal(ks/k)

fChoose a set-theoretic lift f̃

Link to Diagram

So f̃ : Gal(ks/k) → GLn(ks) is a lieft of f , and δf measures the failure of f̃ to be a cocycle. We
have

δf̃(σ, τ) = f̃(στ)
(
f̃(σ)f̃(τ)σ

)−1
∈ (ks)×,

using exactness since for f it lands in PGLn and is trivial.

Definition 7.2.2 (Twisted vector spaces)
For L/k a separable extension and α : G×2 → L× a 2-cocycle, so [α] ∈ H2(L/k;L×), a twisted
vector space is a twisted semilinear action of Gal(L/k) on Ln. I.e. it is a map

f̃ : Gal(L/k)→ Aut(Ln) = GLn(L)
such that f̃(στ) = f̃(σ)g̃(τ)σα(σ, τ).

Remark 7.2.3: For each σ ∈ Gal(L/k) we get a σ-semilinear automorphism of Ln, i.e. a map

fσ : Ln → Ln

where fσ(s · v) = σ(s) · fσ(v),

which is just the definition of semilinearity, and moreover fστ = fσfτα(σ, τ).

Remark 7.2.4: If α = id, an α-twisted vector space is the same as a k-vector space by Galois
descent.

7.2 The Boundary Map and Twisted Vector Space 26
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Proposition 7.2.5(Properties of categories of twisted vector spaces).

1. α ∈ im
(
H1(k; PGLn(ks))→ H2(k; (ks)×)

)
⇐⇒ there exists an n-dimensional

α-twisted vector space.
The proof of this is just unwinding definitions, it’s literally the same data!

2. The category Twα of α-twisted vector spaces is abelian – the only nontrivial thing to
check is that there are enough injectives.

3. There are natural functors

(−)⊗ (−) : Twα × Twα′ → Twαα′

Hom(−,−) : (Twα)op × Twα′ → Twα′α−1

Symn,
∧n : Twα → Twαn .

4. If F/k is a separable field extension, then

(−)⊗ F : Twα/k → Twα/F .

5. There is an equivalence of categories

Twid/k
∼−→ k-Mod.

Proposition 7.2.6(?).
There is a 1-dimensional α-twisted vector space iff [α] = 1 ∈ H1(k; (ks)×).

Proof (?).
⇐= : First suppose α ≡ 1, then Twα

∼−→ Vect/k, so just take the vector space k. If α = δg
for some g : Gal(ks/k) → (ks)×. Then the action Gal(ks/k) y ks where fσ = g(σ) is a
1-dimensional α-twisted vector space by sending 1→ g(σ) and extending semilinearly.
=⇒ : Let V be a 1-dimensional α-twisted vector space. Choose an isomorphism V

∼−→ ks For
each σ ∈ Gal(ks/k) set g(σ) = g(1) and g(στ) = g(σ)g(τ)σα(σ, τ), then

α = δg = g(στ) (g(σ)g(τ)σ)−1 .

�

Theorem 7.2.7(?).
Suppose α ∈ H2(k; (ks)×) is in im

(
H1(k; PGLn)→ H2(k; (ks)×)

)
, then αn = 1.

Proof (?).
If α is in the image, there exists an n-dimensional α-twisted vector space V ∈ Twα, and so∧n

V ∈ Twαn .
�
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Definition 7.2.8 (Index and period)
Given H2(k; (ks)×) = Br(k) (which we’ll prove soon), the period of α is the order of α, and
the index is defined the minimal n such that α is in the above image. I.e.,

period(α) := Ord(α)

index(α) := min
{
n
∣∣∣ α ∈ im(H1 → H2)

}
.

Corollary 7.2.9(?).
Period divides index.

Question 7.2.10
An open question: how different are the period and index? See the period-index problem.

Remark 7.2.11: There are some maps between the categories Twα, SB (Severi-Brauers), and CSA:

V

Twα

P(V ) End
k

(V )

SB CSA

Link to Diagram

An analogy is that in vector spaces, Pn is to End(V ) as SB is to CSA in twisted vector spaces.
Note that Gal(L/k)” y ”V , which isn’t a true action but only fails to be one up to a scalar. Thus
projectivizing yields a semilinear action Gal(L/k) y P(V ), and Galois descent yields forms of P(V )/k.

Remark 7.2.12: Why is End(V ) a form of Mat(n×n)? Since V ∈ Twα, split it: choose an L such
that α|L is trivial. Then Twα|L = Vect/L.

8 Thursday, September 09

Remark 8.0.1: Last time: 3 geometric avatars of elements α of a Brauer group:

• α-twisted vector spaces Twα

Thursday, September 09 28

https://q.uiver.app/?q=WzAsNyxbMywxLCJcXFR3X1xcYWxwaGEiXSxbMSwzLCJcXFNCIl0sWzQsMywiXFxDU0EiXSxbMywwLCJWIl0sWzAsM10sWzAsMiwiXFxQUChWKSJdLFs1LDIsIlxcRW5kX2soVikiXSxbMCwyXSxbMCwxXSxbMyw1LCIiLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDYsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifSwiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d


8 Thursday, September 09

• After projectivizing: Severi-Brauer varieties
• Taking endomorphisms: central simple algebras.

Here we set G := Gal(L/k) and α : G×2 → L× representing [α] ∈ H2(G;L×), and defined an
α-twisted vector space as a V ∈ Vect/L with a semilinear map fσ : V → V for each σ ∈ G where
σ(`v) = σ(`)σ(v) such that fστ = fσ ◦ fτα(στ). Last time we used this to show that

im
(
H1(k; PGLn)→ H2(k; (ks)×)

)

is n-torsion.

Theorem 8.0.2(?).
The category Twα is semisimple, i.e. every SES splits, and every object is a direct sum of
simple objects.

Proof (?).
Note that in vector spaces, Hom

k
(A,B) ∼= B ⊗k A∨, so Hom

k
(−, B) = (−)⊗k B∨ as functors.

Take a SES

0→ V2 →W → V1 → 0 ∈ Twα.

We want to split this, a good trick to try every time: apply Mor
Twα

(V1, ·):

0→ Mor
Twα

(V1, V2)→ Mor
Twα

(V1,W )→ Mor
Twα

(V1, V1)→ 0.

This sequence is exact since we can write

Mor
Twα

(−, V1) = (−)⊗k V1
∨.

It’s enough to split this SES, since any splitting s : Mor
Twα

(V1, V2) → Mor(V1,W ) would allow
taking s(idV1) to split the original. But this sequence does split, since Mor

Twα
(V1, V1) is free, thus

projective.
�

Theorem 8.0.3(?).
Any two simple objects D1, D2 ∈ Twα are isomorphic.

Remark 8.0.4: This is an analog of showing that every vector space is a sum of 1-dimensional
sub-vector spaces, i.e. every vector space has a basis. In this situation, it’s essentially Schur’s
lemma.

Proof (?).
Mor
Twα

(D1, D2) ∈ Vect/L is of dimension d = dimL(d1) dimL(d2) > 0, so there exists a nonzero
map f : D1 → D2. The claim is that f is an isomorphism: since both objects are simple, just
use that kerD1 ≤ D1 and im f ≤ D2 are sub-objects.

�
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Corollary 8.0.5(?).
There exists a unique simple object D of Twα, and every other object is of the form D⊕

I .

Corollary 8.0.6(?).
Any CSA is a matrix algebra over a division algebra.

Proof (?).
End(D⊕n) = Mat(n× n,End(D)), so it’s enough to show End(D) is a division algebra. This
follows by the previous argument, again using Schur’s lemma.

�

Corollary 8.0.7(?).
For X/k a Severi Brauer, X ∼= Pn/k ⇐⇒ X(k) 6= ∅.

Proof (?).
=⇒ : Clear, since Pn has rational points!
⇐= : We’ll do a variant of the proof that uses Twα. Let X = P(V ) for V ∈ Twα, then any
point x ∈ X yields a 1-dimensional (twisted!) subspace R ⊆ V . Then [α] = 0 ∈ H2(k; (ks)×),
and by Hilbert 90 this comes from a point in the following composition:

H1(k; GLn) H1(k; PGLn) 0 ∈ H2(k; (ks)×)

[α] [X] 0

Link to Diagram
This forces X = Pn.

�

Proof (⇐= , classical proof).
Let X ∈ SB with X(k) 6= ∅, then Artin defines X∨, a dual Severi Brauer variety. This is
constructed using that Xks = Pn and sets Xks

∨ = (Pn)∨, which comes with descent data to
k. A rigorous construction is that if X = P(V ), we set X∨ = P(V ∨). If X has a k-point, then
X∨ has a rational hyperplane H. The claim is that X∨ = Pn: this follows from the fact that
O(H) is a line bundle on X∨ which is isomorphic to O(1) on (Pn)∨ after base changing to ks.
This follows from cohomology of base change, since

Γ
(
X∨,O(H)/ks

)
= Γ

(
Xks

∨,O(H)/ks
)

= Γ
(
Pn/Y ,O(1)

)
.

So O(H) yields a map X∨ → Pn which is an isomorphism after passing to ks. Now we can
write X = (X∨)∨ and X∨ = Pn, so

X = (X∨)∨ = (Pn)∨ ∼= Pn.

�
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Definition 8.0.8 (Reduced norm and trace)
Let A ∈ CSA/k, then there are maps

NmA/k : A→ k multiplicative
TrA/k : A→ k additive.

How they’re constructed: let A ∈ End(V ) = V ⊗ V ∨, then since
∧∗(−) is a functor, there is a

map

NmA/k : End(V )→ End
(∧dimV

V

)
= k

TrA/k : End(V ) ∼−→V ⊗ V ∨ 〈−, −〉−−−−→ k.

Proposition 8.0.9(?).
For A ∈ CSA/k, then if there exists a nonzero f ∈ A with NmA/k(f) = 0, then A is not a
division algebra.

Algebra: nontrivial matrix algebra over a field im-
plies existence of matrices with determinant zero.

Proof (?).
The norm is multiplicative, so if f is a unit then Nm(ff−1) = 1 6= 0.

�

Theorem 8.0.10(?).
There is a surjection

⋃

n

H1(k; PGLn)� H2(k; (ks)×).

Proof (sketch).
It’s enough to show the following surjection:

⋃

n

H1(L/k; PGLn)→ H2(L/k;L×).

Given α in the codomain, interpret it as a central extension:

1→ L× →Mα → Gal(L/k)→ 1.

Definition (Semilinear group rings)
Define L[Mα] to be the semilinear group ring of Mα:

L[Mα]
⊕

λ∈Mλ

L[eλ]

where eλ1eλ2 = eλ1λ2 and `eλ = eλλ(`).

Claim: Aα := L[Mα]/ 〈λe1 − 1eλ〉 is a CSA mapping to [α]. See Serre’s Local Fields.
�
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Question 8.0.12
Can this construction be done in SB or Twα?

E 8.1 Computing Brauer Groups e

Remark 8.1.1:

Claim: Br(Fq) = 0.

Theorem 8.1.2(?).
Let k be a C1-field, so any homogeneous polynomial in k with degree d < n has a nonzero
solution. Then Br(k) = 0.

Remark 8.1.3: Note that Chevalley-Warning exactly says that finite fields are C1.

Proof (of theorem).

Claim: Let A ∈ CSA/k, then NmA/k : A → k is a polynomial function on n2 variables of
degree n.

Proof (?).
This is true for the actual determinant, and this is a claim that can be checked after
passing to ks since the norm is a form of the determinant.

�

Corollary 8.1.4(?).
If k is C1 and rankA > 1, there exists a nonzero f ∈ A such that NmA/k(f) = 0.

But all k-division algebras are isomorphic to k, here all CSAs are of the form Mat(n× n, k),
so the Brauer group is trivial.

�

Theorem 8.1.5(Tsem).
If k = k and C/k is a smooth proper curve, then the function field k(C) is C1.

Proof (?).
Let f be a homogeneous polynomial, deg f = d, in n variables over k(C) with d < n. Then
regard f : k(C)n → k(C), we want to show f−1(0) is big. Let p ∈ C, and now f as a map

f : Γ (C;O(r · p)n)→ Γ (C;O(rd · p)),

which is a polynomial map of finite dimensional vector spaces that are subspaces of the
previous domain/codomain. Using Riemann-Roch, the dimension of the left-hand side grows
like r · n and the right-hand side grows like r · d, and for r large enough, rn > rd. Since f is
homogeneous, f−1(0) contains 0, so dim f−1(0) > 0. But a positive-dimensional variety over
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an algebraically closed field has lots of rational points!
�
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Remark 9.0.1: Goal: Severi-Brauer varieties satisfy the Hasse principle, and develop the Brauer-
Manin obstruction. We have the following theorem: if X ∈ SB/k, then TFAE:

• X has a rational point,
• X ∼= Pn for some n,
• [X] ∈ Br(k) is the trivial class.

We’ll soon prove the following theorem:

Theorem 9.0.2(Hasse principle for Severi Brauers).
For K a number field, there is an injective map

Br(k) ↪→
⊕

v∈Pl(k)
Br(kv),

which is a statement of the Hasse principle, since the previous theorem shows that if Br(kv) is
empty for all kv, it will have to come from a zero class in Br(k)

Remark 9.0.3: Note that the cokernel of this map is prominent in class field theory! Today we’ll
compute Br(kv), or more generally Br(F ) for F a local field.

E 9.1 Cyclic Algebras e

Remark 9.1.1: Setup: take k ∈ Field, L/k a Cn-Galois extension, which is the data of

χL : Gal(ks/k)→ Cn.

For a ∈ Ks, we’ll consider pairs (χ, a) = L[x]χ/ 〈xn − a〉 where commutation in L[x]χ is given by
lx = xσ(`) for l ∈ L where Cn = 〈σ〉. This is a k-vector space of dimension n2, and the claim is
that (χ, a) ∈ CSA.

Example 9.1.2(?): Take χ : Gal(C/R)→ C2 with a = −1, then (χ, a) = H = R[i, j]/
〈
i2, j2, [ij]

〉

is the (Hamilton) quaternions.

Fact 9.1.3
One can view χ ∈ H1

Gal(k;Cn) and
a ∈ H1

Gal(k;µn) = k×/(k×)·2.
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In this case

(χ, a) := χ ^ [a] ∈ H2(k;µn) ⊆ H2(k; (ksep)×).

Note that this cup product can be computed explicitly from the product on Ext or using the
standard resolution.

Remark 9.1.4: Now to compute more Brauer groups! So far, we’ve only done relatively trivial
examples. We’ll start with local fields: for algebraically closed fields, Galois cohomology vanishes,
so

• Br(C) = 0
• To compute Br(R) = H2(Gal(C/R);C×), take the resolution

...

P • : Z[x]/
〈
x2 − 1

〉

Z[x]/
〈
x2 − 1

〉

Z[x]/
〈
x2 − 1

〉

Z[x]/
〈
x2 − 1

〉
1

Z 1

x−1

x+1

x−1

Link to Diagram

Then we can take H∗( Hom
Gal-Mod

(P •,C×)):

1 zz

C× C× C× C×

z zz−1 z zz−1
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Link to Diagram

Check that zz−1 = 1 then z = z so z ∈ R× and ker d = R×. Similarly, im d = R×>0, so

Br(R) = R×/R×>0 = {±1} .

Example 9.1.5(?): H represents −1 in Br(R), as does the corresponding Severi Brauer
{
x2 + y2 + z2 = 0

}
⊆ P2

/R.

Note that +1 is represented by the field itself, regarded as a 1 × 1 matrix algebra, or projective
space.

Remark 9.1.6: Write kun for the maximal unramified extensions, where an extension is ramified
if the degree of the residue field changes (or the valuation remains an integer?) For example, for
k = Qp, we have kun = ff(W (Fp)) (i.e. the Witt vectors). In general, kun = k(µ′∞) where µ′∞ is the
set of roots of unity of order prime to the characteristic. As a corollary, Gal(kun

/k) = Fq/F1 = Ẑ.

Theorem 9.1.7(?).
For k a nonarchimedean local field (a finite extension of Qp), then Br(k) = Q/Z

• H2(kun
/k; (kun)×) = Q/Z

• H2(kun
/k, (kun)×) ∼−→H2(k; (ks)×) = Br(k) is an isomorphism.

Remark 9.1.8: Many proofs of this are delicate! We’ll follow a mix of Cassels-Frolich and Milne
for this proof.

Proof (of 1).
Take the SES coming from the valuation map:

1 Ukun (kun)× Z 0val

Link to Diagram

Claim:
• H2(kun

/k;Z) = Q/Z.
• H∗(kun

/k;Ukun) = 0

Remark 9.1.9: Why this implies the theorem: take the LES in cohomology to get the
following:

H2(kun
/k;Ukun) = 0 H2(kun

/k; (kun)×) H2(kun
/k;Z)

H3(kun
/k;Ukun) = 0
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Link to Diagram
A claim is that H2(kun

/k;Z) = H2(Ẑ;Z). One can compute this colimit explicitly, but there is a
SES

0→ Z→ Q→ Q/Z→ 0.

Now note that H>0(G;Q) = 0 for profinite groups, since this is necessarily a torsion Q-vector
space. For a full proof, use that multiplication by n is an isomorphism the annihilates it. As
a corollary, taking the LES above yields H i(G;Z) = H i−1(G;Q/Z) for i ≥ 2. Thus

H2(Ẑ;Z) = H1(Ẑ;Q/Z) = Hom
Top

(Ẑ,Q/Z) = Q/Z,

and in fact

H1(Ẑ;Q/Z) = colim−−−−−→
n

Hom(Cn;Q/Z).

�

Proof (of b).
Here we’ll have to use the structure of Ukun . It’s enough to show

H>0(kn/k;Ukn) = 0

for kn/k unramified of finite degree n, using that these are unique. We’ll use the following:

Definition (?)
There is a filtration FilrUkn =

{
u ∈ Ukn

∣∣∣ u = 1 modπr
}
for π a uniformizer.

Fact
We can identify

Filr/Filr+1 =
{
κ×n r = 0
κ+
n r > 0.

,

where κ denotes residue fields, κn/κ is the unique degree n extension, and κ+ is the additive
group. Why: use that these look like power series, and the associated graded picks off the rth
coefficient. Moreover, things like 1 + π2 can be units by formally inverting using geometric
series.

Thus it’s enough to show for residue fields that

H>0(κn/κ;κ×n ) = 0
H>0(κn/κ;κ+

n ) = 0,

since each graded piece of the associated grading having zero cohomology implies the entire
thing has zero cohomology.
For the first,
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• i = 1 is Hilbert 90,
• i = 2 follows from Br(κn/κ) = 0,
• i ≥ 3 uses that H∗ = H∗[−2], since the resolution used for cohomology of a cyclic group

was 2-periodic.

For the second, to compute the cohomology of a cyclic group we take the 2-periodic resolution:

x xq − x

kn kn kn · · ·

x
∑

xq
i

Frob−1

trκn/κ

Link to Diagram
Then

• H2 = ker / im, and ker = k since Frobenius fixes everything, and use that
∑

xq
i = x+ xq + xq

2 + · · · = trκn/κ(x).

• If n is invertible, so p
∣∣- n, writing Tr(1) = n we can take Tr(a/n) = a.

• It suffices to show this polynomial isn’t identically zero, but it’s a polynomial of degree
qn−1 but #κn = qn.

• Now use that a = tr(x) for some a•, then take b = tr(bx/a).

�
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E 10.1 Computing Brauer Groups e

Remark 10.1.1: Let k be a p-adic field, our goal is to show Br(k) = Q/Z. We were trying to show

1. H2(kun
/k; (kun)×) = Q/Z,

2. Any Brauer class is split by an unramified extension

This says that we can split the computation of Br(k) into an interesting part (the ramified case)
and a trivial part (the unramified case).
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Check 2!

To prove 1, we used

1→ Ukun → (kun)× → Z→ 0,

and

a. H2(kun
/k;Z) = Q/Z,

b. H>0(kun
/k;Ukun) = 0,

where we used a filtration

FilrUkun =




Ukun r = 0{
x
∣∣∣ x ≡ 1 modπr

}
r ≥ 1.

and

gr r(Fil•Ukun) =
{
κ× r = 0
κ r ≥ 1.

.

We now want to show

• H>0(kun
/k;κ×) = H>0(κ;κ×)

• H∗(kun
/k;κ×) = H∗(κ;κ×) = 0, and we were working on ∗ = 2.

Proposition 10.1.2(?).
For k any field, H1(k; (ksep)+) = 0, where k+ denotes taking the additive group.

Proof (?).
H1 here classifies forms of SESs

0→ k → V → k → 0,

since automorphisms of this SES correspond to matrices
{[

1 ∗
0 1

] ∣∣∣ ∗ ∈ k+
}
∼= k+. But any

form of this splits, since any SES of vector spaces splits.
�

Theorem 10.1.3(?).
For k any field, H>0(k; (ksep)+) = 0.

Proof (?).
It’s enough to show this for finite extensions, so consider H>0(L/k;L+) = 0. The normal basis
theorem implies that L+ ∼= k[G] as a G-module, since this is the regular representation. We’ll
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use the following common lemma:

Lemma 10.1.4(Shapiro’s Lemma).
If H ≤ G are finite groups and M ∈ H-Mod then

H∗(G; IndGHM) ∼= H∗(H;M), IndGHM = M ⊗Z[H] Z[G].

Now use that

H∗(Gal(L/k); k[Gal(L/k)]) = H∗(1; k) = 0 ∗ > 0.

�

Proof (of Shapiro’s lemma).
Let P • ⇒ Z ∈ Z[G]-Mod be a free resolution and use Frobenius reciprocity to write

H∗(G; IndGHM) = H∗(Hom(P •, IndGHM))

= H∗(Hom(
G

Res
H
P •,M))

= H∗(H;M),

where
G

Res
H
P • ⇒ Z ∈ Z[H]-Mod is a free resolution, since P • = Z[G]⊕I (using that it’s free)

and thus
G

Res
H
P • = Z[H]⊕I

′
.

�

Proof (of theorem, part b).
We now want to prove (3),

H∗(kun
/k;Ukun/Filr) = 0 ∗ > 0.

By induction on r, since we have a SES

0→ Filr−1/Filr → Ukun/Filr → Ukun/Filr−1 → 1,

where H∗ of the two outer terms vanishes and thus so does H∗ of the middle by the LES in
cohomology.
For (4), we want to show H∗(kun

/k;Ukun) → lim
r
H∗(kun

/k;Ukun/Filr). We can move an inverse
limit in:

lim←−−
r

lim←−−
n
H∗(kn/k;Ukun/Filr) = lim←−−

r
lim←−−
n
H∗(Hom(P •, Ukun/Filr))

= H∗(kun
/k; lim←−−

r
Ukun/Filr).

This uses the Mittag-Leffler condition to show that lim
1

vanishes, which applies because we
actually have surjectivity.

�
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Theorem 10.1.5(Hasse).
If D/k is a division algebra over k a p-adic field (or any local field) with dimkD = n2 (using
that it’s a form of a matrix algebra), then D is split by the unique unramified extension of k
of degree n.

Remark 10.1.6: That there is a unique such extensions follows from the fact that Ẑ has a unique
subgroup of every index.

E 10.2 Proof of theorem e

Remark 10.2.1: Write kn for the unique unramified extension of degree n. We’ll want to show

1. Show that it’s enough to show Kn ⊆ D,
2. Actually show kn ⊆ D.

Lemma 10.2.2(?).
For k any field and D/k any division algebra of dimkD = n2, then if L/k ⊆ D is a Galois
extension of degree n, then D splits over L.

This is true without the extension being Galois.

Proof (of lemma, using Tw).
Write D = End(V ) ∈ Tw/k for some V ∈ Tw of dimension n, then

D×
k
L = End(V×

k
L) ∈ Tw/L.

Then since L ⊆ D, we have L y V so L ⊗k L y VL, then use that L ⊗k L ∼−→Ln for
n := #Gal(L/k).

Why: write L⊗k L = k[x]/I and use the Chinese
remainder theorem!

We can write Ln = ⊕Lei, so VL = ⊕eiVL which is dimension 1 and thus its Brauer class is
trivial.

�

Remark 10.2.3: Other proofs of this seem much more difficult!

So now let’s show kn splits D. We’ll need to develop some valuation theory for division algebras.

Definition 10.2.4 (Valuations on division algebras)
Define a valuation v : D → Z ∪ {∞} extending the valuation on K ⊆ D given by
1/nval(NmD/k(x)). Equivalently, for x ∈ D, use that k(x) ⊆ D is a finitely generated k-algebra
in which every nonzero element is a unit, so it’s a field and carries a natural valuation.
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Definition 10.2.5 (Valuation ring)
Define

OD :=
{
x
∣∣∣ v(x) ≥ 0

}
⊆ D

mD :=
{
x
∣∣∣ v(x) > 0

}
⊆ D

I := OD/mD,

where mD ∈ mSpecD, and set

f := [I : k] Degree of field extensions
e := [val(k) : val(D)] Ramification index.

Remark 10.2.6: Note that I is a field, since all division algebras over finite fields are field extensions
(using our computation of the Brauer groups of fields).

Fact 10.2.7
ef = n2, where the same proof for extensions of p-adic fields goes through.

Claim:

e = f = n.

Remark 10.2.8: We’ll show

1. e ≤ n,

2. f ≤ n,

Then since ef = n2 this forces e = f = n.

Lemma 10.2.9(?).
Any commutative L ∈ Alg/k with L ⊆ D satisfies dimk L ≤ n.

Proof (?).
It’s enough to prove this for Mat(n× n; k), since the dimension won’t change after passing to
a finite extension, and proving here is classical.

Exercise (?)
Prove this!

�
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Proof (of claim).
For (1): chose π ∈ OD with v(π) = 1/e, i.e. something with minimal positive valuation. Then
k(π) ⊆ D is an extension over k of degree at most n, by the lemma.
For (2): Write I = κ(α) for α a primitive element, and let α̃ ∈ D be a lift. Then k(α̃) ⊆ D is
a field extension of degree ≤ n by the lemma, and its residue field is I.

�

Corollary 10.2.11(?).
We have an exact equality

[k(α̃) : k] = n,

so k(α̃)/k is unramified, and there’s a unique such extension, and since κ(α̃) ⊆ D.

Remark 10.2.12: A proof of this theorem using Tw or SB would be clarifying.

Claim: The following map is an isomorphism:
Q/Z ∼= H2(kun

/k; (kun)×) ∼−→H2(k; k×).

Proof (of claim).
Use that the LHS is isomorphic to H2(kun

/k;H0(kun; k×)), and consider the Hochschild-Serre
spectral sequence

Hp(kun
/k;Hq(kun; k×))⇒ Hp+q(k; k×).

The spectral sequence reads:

H2(kun
/k;H0(kun; k×)) = Q/Z

H1(kun
/k;H0(kun; k×)) =90 0 H1(kun

/k;H1(kun; k×)) = 0

H0(kun
/k;H0(kun; k×)) = k× H0(kun

/k;H1(kun; k×)) =90 0 H0(kun
/k;H2(kun; k×)) = 0
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Link to Diagram
Then for degree reasons, there are no nontrivial differentials to kill the two nonzero terms.
One can alternatively use the SES

0→ Br(kun
/k)→ Br(k)→ Br(kun).

�

11 Tuesday, September 21

Remark 11.0.1: Last time: for k a p-adic field, we have Br(k) = Q/Z. The plan for today:

• Examples

• A SES for L a number field:

0→ Br(L)→
⊕

v∈Pl(k)
Lv̂ → Q/Z→ 0.

• Possibly the Hasse-Minkowski theorem

• The Brauer-Manin obstruction.

E 11.1 Construction of Brauer classes over K e

Remark 11.1.1: Fix a character to a cyclic group

χ : Gal(ksep
/k)→ Cn = 〈σ〉

and set kχ to be the fixed field.

Definition 11.1.2 (Cyclic Algebra)
For a ∈ k×/(k×)·n, write

(χ, a) = kχ 〈σ〉 / 〈σs = sσσ, σn − a〉 s ∈ kχ.

Remark 11.1.3: We have

[(χ, a)] := [X] ^ [a] ∈ H1(K;Cn) ∪H1(K;µn) = Br(k).

There are cases where it’s not known if these types of algebras are generators of certain Brauer
groups.
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Remark 11.1.4: For k a p-adic field and kn the unique unramified degree n extension, we can
construct a character

χn : Gal(ksep
/k)→ Gal(kn/k)

∼−→
can

Cn,

where the isomorphism is canonical, sending the Galois group to the Frobenius.

Theorem 11.1.5(?).
Let π be a uniformizer of OK . Every CSA is equivalent to one of the form

(χn, πm)→ m

n
∈ Q/Z = Br(k).

Remark 11.1.6: If m,n are coprime one gets a division algebra.

Proof (Sketch).
This is mostly a computation that involves unwinding the isomorphism Br(k) → Q/Z. A
sketch:

• The class [(χn, π)] has order n,
• The class [(χn, π)]m = [(χn, πm)], which is given by a cup product.

�

Remark 11.1.7(An algorithm to compute): Let D/k be a division algebra.

• Find a copy of kn in D, which can be done since this is a division algebra of dimension n2.
• There exists a σ ∈ D such that σ y Kn by conjugation is the canonical generator of

Gal(kn/k)
∼−→

can
Cn (where we take Frob as the canonical generator).

• Then [D] 7→ v(σ)
n
∈ Q/Z = Br(k), where v is the normalized valuation on D we constructed

previously. Note that this is well defined since changing D changes the output by an integer.

Example 11.1.8(The simplest case: n = 2): Using that there is in fact a canonical isomorphism
µ2 ∼= C2 since there’s only one nontrivial element in each group, we have

H1(k;C2) = H1(k;µ2) = k×/(k×)·2.

Hence any character

χ : Gal(ksep
/k)→ C2 = µ2

is represented by some bχ ∈ k×/(k×)·2. So we have an identification

(χ, a) (bχ, a)2 = (a, bχ)2 =





0 v(a) ≡ v(b) mod 2
1
2 else.

For the corresponding extension to be unramified, one needs the valuation to be zero. So for example
taking k(π)/k yields a ramified extension since v(π) = 1.
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Note that here (−,−)n is generally a Hilbert or norm-
residue symbol.

Exercise 11.1.9 (?)
Prove that these cyclic algebras are CSAs.

E 11.2 The SES e

Remark 11.2.1: Our goal for today: for k a number field, show the following sequence is exact

0→ Br(k)→
⊕

v∈Pl(k)
kv̂

∑
−−→ Q/Z→ 0.

Proposition 11.2.2(?).
For α ∈ Br(k), using the pullback of iv,

Br(K)
∏
i∗v−−−→
∏

v

Br(kv̂)

factors through
⊕

v

Br(kv̂), i.e. i
∗
v(α) = 0 for almost all v.

Proof (of prop, proof 1).
First represent α by X ∈ SB, so X(kv̂) 6= ∅ for almost all v. This implies Xk

v̂

∼= Pn/k for almost
all v.

�

Definition 11.2.3 (Ideles)

Ik :=
′∏

v

(kv̂
×,O×k

v̂

) =
{

(xv) ∈
∏

v

kv̂
×
∣∣∣ xv ∈ O×k

v̂

for almost all v
}
.

A basis of open sets is given by (x) ·
∏

v

O×k
v̂

.

4! Warning 11.2.4
There is a map

Ik ↪→ A2
k

x 7→ (x, x−1),

and there is a subspace topology – but this is not equivalent to the topology above, and is in fact a
source of an infamous error!
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Definition 11.2.5 (S-ideles)
If S is a finite set of places of K containing all infinite places, then define

Ik,S =
∏

v∈S
kv̂
× ×

∏

v 6∈S
O×k

v̂

⊆ IK .

Fact 11.2.6

Ik = colim−−−−−→
S

Ik,s.

Remark 11.2.7: The idea will be to study the following SES of Galois modules:

1→ L× → IL → CL → 1,

where CL is the idele class group.

Proposition 11.2.8(?).

H2(L/k; IL) =
⊕

v∈Pl(k)
Br(Lv̂/k

v̂
)

H2(k; Iksep) =
⊕

v∈Pl(k)
Br(kv̂),

Theorem 11.2.9(?).

H1(L/k;CL) = 0

H2(L/k;CL) = [d] ∈ Q/Z, d := 1
[L : k] .

This will imply

H1(k;Cksep) = 0
H2(k;Cksep) = Q/Z.

Proof (sketch).
We can write

H2(L/k; IL) = H2(L/k; lim−−→
T

IL,T )

= lim−−→
T

H2(L/k; IL,T ),

so it’s enough to show that for S a finite set of places of K and T a set of places over S that
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we have

H2(L/k; IL,T ) =
⊕

v∈S
Br(Lv̂/k

v̂

).

�

Exercise 11.2.10 (?)
Try to prove this, it uses Shapiro’s lemma and isn’t too difficult.

12 Thursday, September 23

Remark 12.0.1: Let k ∈ Field, we have a SES 1 → k× → Ik → Ck → 1. An exercise from last
time: for Pl (k) the places of k, prove that

H2(L/k; IL) =
⊕

v∈Pl(k)
Br(Lv̂/kv̂),

where Lv̂ was obtained by choosing any place above v in L and completing.

E 12.1 Proof of Theorem e

Remark 12.1.1: For S ⊆ Pl (k) a finite set of places containing all of the infinite places and T a
set of places of L above S, we have

IL,T =
∏

w∈T
L×w ×

∏

w 6∈T
O×L

v̂

.

We can also write H2(L/k; IL) = lim−−→
T

H2(L/k; IL,T ), so it’s enough to show the following:

H2(L/k; IL,T ) =
⊕

v∈S
Br(Lv̂/kv̂)

H2(L/k; Ik,T ) =
⊕

v∈S
Br(kv̂).

We have

H2(L/k; IL,T ) =
∏

v∈S
H2(L/k;

∏

w/v

L×w)×
∏

v∈S
H2(L/k;

∏

w/v

O×Lw),

noting that we need to take the entire product to actually get a Galois module.
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Claim:

H2(L/k;
∏

w/v

Lv̂
×) = Br(Lv̂/k

v̂
)

H2(L/k;
∏

w/v

Lv̂
×) = 0.

Proof (of 1).

H2(L/k;
∏

w/v

L×w) = H2(L/k; Ind
Gal(L

v̂
/k
v̂
)

Gal(L/k) Lv̂
×)

= H2(Lv̂/k
v̂

;Lv̂
×)

:= Br(Lv̂/k
v̂

).

�

Proof (of 2).
Write

H2(L/k;
∏

w/v

L×w) = H2(L/k; Ind
Gal(L

v̂
/k
v̂
)

Gal(L/k) O×L
v̂

)

= H2(Lv̂/k
v̂

;O×L
v̂

)

= 0.

�

Corollary 12.1.2(?).

Br(k)
⊕

v

Br(kv̂)

H2(k; k×) H2(k; Ik)
Link to Diagram

E 12.2 Injectivity e

Theorem 12.2.1(Injectivity).
Br(k) ↪→

⊕

v

Br(kv̂) is injective, since H1(L/k;CL) = 0.
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Theorem 12.2.2(Actual IRL application of Sylow theorems).
If G is a finite group and M ∈ G-Mod then H i(G;M) = 0 if H i(Gp; M |Gp) = 0 for all p where
Gp is a p-Sylow subgroup of G.

Proof (?).
There’s a map

(
H1(G;M) res−−→ H1(Gp; M |Gp)

coRes−−−→ H1(G;M)
)

= multd, d := [G : Gp].

Since d is prime to p, res is injective on p-power torsion, making H1(G;M) torsionfree. Then
since G is finite, H i(G;M) is torsion, and the only torsion torsionfree group is zero.

�

Remark 12.2.3: There will be multiple steps:

• It’s enough to prove this for Gal(L/k) a p-group, using theorem on applications of Sylow. We
know enough about the structure of p-groups to make induction arguments!

• It’s enough to show that H i(L/k;CL) = 0 for L/k cyclic. Letting L/k be Galois with G :=
H i(L/k) a p-group, then let H ≤ G be a nontrivial normal cyclic subgroup. Then the
inflation-restriction exact sequence yields

0→ H1(G/H;CHL )→ H1(G;CL)→ H1(H;CL),

using idele class groups and writing CHL for the class group of the fixed field by H, and
recalling that this comes from the Hochschild-Serre spectral sequence. By induction on the
size of G, we’ll know the right-hand side is 0, and the left-hand side is 0 by induction on #G.
However, note that we have to show this for all cyclic extensions!

• Prove the following theorem;

Remark 12.2.4: Note that CL will not even be finitely generated!

Theorem 12.2.5(?).
If L/k is cyclic, then H1(L/k;CL) = 0, and #H2(L/k;CL) = [L : k].

4! Warning 12.2.6
Note that #H1 = 1 in this case!

Definition 12.2.7 (Herbrand Quotient)
If G is finite cyclic and M ∈ G-Mod, define the Herbrand quotient as

q(M) := #H2(G;M)
#H1(G;M) ,

whenever this ratio is defined.
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Remark 12.2.8: Taking logs makes this look like an Euler characteristic.

Lemma 12.2.9(Herbrand quotients are multiplicative).
Suppose 0→ A→ B → C → 0 is a SES of G-modules for G cyclic. Then

q(A)q(C) = q(B).

Exercise 12.2.10 (A fun one)
Prove this! It’s the same proof that χ(A) + χ(C) = χ(B).

Lemma 12.2.11(?).
If M is finite, then q(M) = 1, so this invariant for infinite modules.

Proof (?).
We first claim that #MG = #MG, recalling that MG = M/ 〈g − 1〉 = M/IM for I the
augmentation ideal. Note that in finite groups, for a SES 0 → A → B → C → 0 yields
#B = (#A) · (#C), or equivalently (#A) · (#B)−1 · (#C) = 1 and this extends to longer exact
sequences.
Now use the exact sequence

0→MG →M
g−1−−→M →MG → 0,

and so

(#MG) · (#M)−1 · (#M) · (#MG)−1 = 1.

Now to show that the sizes are equal, Recall that

H∗(G;M) = H∗
(
M

g−1−−→M

∑
gi−−−→M → · · ·

)
.

Thus we get

0→ H1(G;M)→ coker(M g−1−−→M)
∑

gi−−−→ ker(M g−1−−→M)� H2(G;M)→ 0

=⇒ 0→ H1(G;M)→MG

∑
gi−−−→MG � H2(G;M)→ 0,

so

#H1(G;M) · (#MG)−1 · (#MG) · (#H2(G;M))−1 = 1 = q(M)−1.

�

Lemma 12.2.12(?).
If M,N are finitely generated in G-Mod and M ⊗ R ∼= N ⊗ R ∈ G-Mod, then q(M) = q(N).

Remark 12.2.13: Analogy: Reidemeister torsion! Tensoring up to R somehow doesn’t lose all
torsion information.
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Proof (of lemma).
We’ll first show M ⊗Q ∼−→N ⊗Q implies q(M) = q(N).

Claim: There is a map M/tors→ N/tors with finite kernel and cokernel.

0 0

Mtors Ntors

0 Mtors M N/Ntors torsion! 0

M N

M ⊗Q N ⊗Q∼, n·p

Link to Diagram

Claim:

M ⊗ R ∼= N ⊗ R ⇐⇒ M ⊗Q ∼= N ⊗Q.

Exercise (?)
Prove this!

�
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See fppf cohomology. Note: statements of the form
A ⊗ C ∼= B ⊗ C =⇒ A ∼= B aren’t quite descent!
There’s no descent data or e.g. Galois equivariance,
and the downstairs maps may not be related to the
original map at all.

Theorem 13.0.1(?).
For L/k cyclic of degree n,

q(CL) = n.

Remark 13.0.2: Recall that q is multiplicative in exact sequences, equals 1 for finite G-modules,
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and if M ⊗R ∼= N ⊗R then q(M) = q(N).

Proof (of 3rd property).
It’s enough to show this for M,N torsionfree, since q(M) = q(M/Mtors). The claim is that
for R sufficiently divisible, letting M ⊗ Q ϕ−→ N ⊗ Q, ϕ|M factors through N with torsion
kernel. Use that M ⊗R ∼−→N ⊗R implies M ⊗Q ∼−→N ⊗Q Now we claim that if G ∈ Grp and
V1, V2 ∈ G-Mod over a field k and L/k is any extension, then V1⊗L ∼−→V2⊗L implies V1

∼−→V2.
�

Proof (of claim).
1: Use that Hom commutes with tensor products in the following way:

Hom
G

(V1 ⊗ L, V2 ⊗ L) = Hom
G

(V1, V2)⊗ L.

We can write the LHS as (V1
∨ ⊗ V2 ⊗k L)G, and the right-hand side as (V1

∨ ⊗ V2)G ⊗k L.
It’s enough to show that for any G-representation V , since V G ⊗ L ∼= (V ⊗ L)G where
V G := ker(V ⊕q q−→

⊕

g∈G
V ). But now we’re done since L/k is flat.

2: If both Vi are irreducible over L, this follows from Schur. For Vi irreducible over k an
infinite field, then being an isomorphism is a Zariski open condition, and any Zariski open
subset of An/k has infinitely many rational points.

�

Theorem 13.0.3(?).
If L/k is cyclic and S is a set of primes of K including all infinite primes, all primes that ramify,
and all primues under a set of generators of the class group of L, letting T be the set of primes
of L over S, we have

• q(IL,T ) =
∏

v∈S
[Lv̂ : kv̂]

• [L : k]q(O×L,T ) =
∏

v

[Lv̂ : kv̂]

• q(CL) = [L : k]

Proof (1 and 2 imply 3).
There is a SES

0→ O×L,T → IL,T → CL → 1,

where O×L,T allows denominators in T . Then using (1) and (2),

q(CL) = q(IL,T )/q(O×L,T ) = [L : k].

�

Proof (of 1).
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Write IL,T =
∏

v∈T
Lv̂
× ×

∏

v 6∈T
O×L

v̂

, so

q(IL,T ) =
∏

v∈S
q(

∏

w∈Pl(/L)
L×w)

=
∏

v∈S

#H2(Lv̂/k
v̂

;Lv̂
×)

#H2(Lv̂/k
v̂

;Lv̂
×)

=
∏

v∈S
# Br(Lv̂/k

v̂

)

=
∏

v∈S
[Lv̂ : kv̂].

�

Proof (of 2).
Write L1 := Hom

Set
(T,Z) and

L2 := m(λ : O×L,T → L1 ⊗ R)α 7→ (log |α|w)w∈T .

Dirichlet’s unit theorem implies L2 ↪→ L0
1 ⊗ R :=

{
x
∣∣∣
∑

xi = 0
}
is a lattice. We can write

L1 =
⊕

v∈S

⊕

w/v

Z

=
⊕

v∈S
IndGal(L/k)

Gal(L
v̂/k

v̂

) Z,

Thus

q(L1) =
∏

v∈S
q


IndGal(L/k)

Gal(L
v̂/k

v̂

) Z




=
∏

v∈S
q(Lv̂/k

v̂

,Z)

=
∏

v∈S
[Lv̂ : kv̂].

To compute the other side, use that there is a SES 0→ L0
1 → L1

Σ−→ Z→ 0. So

q(L0
1) = q(L1)/q(L/k;Z) =

∏[Lv̂ : kv̂]
[L : k] .

Now note q(Lk) = q(O×L,T ) and there is a SES

0→ µ(L)→ O×L,T → Lk → 0 =⇒ q(O×L,T ) = q(Lk),

where µ(L) are the roots of unity in L, which form a finite group. Then

q(O×L,T ) = q(L0
1) =

∏[Lv̂ : kv̂]
[L : k] .

�
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Fact 13.0.4 (from class field theory)

#
(

IK
k×NmL/k IL

)
= [L : k].

How to prove: reduce to Kummer extensions, adjoin pth roots of unity, etc.

Remark 13.0.5: This fact implies H1(L/k;CL) = 1. The proof is that #
(
H2/H1

)
= [L : k],

which implies #H1 = 1.

Theorem 13.0.6(?).
Severi-Brauer varieties over k satisfy the Hasse principle, i.e. the following sequence is exact:

0→ Br(k)→
⊕

v∈Pl(k)
Br(kv̂).

E 13.1 Proof e

Theorem 13.1.1(Hasse-Minkowski).
Let q be a quadratic form over a number field k, then the projective quadric X := {q = 0} ⊆ Pn/k
satisfies the Hasse principle: X has rational points over k iff X has rational points over kv̂ for
all v ∈ Pl (k).

Definition 13.1.2 (Quadratic forms representing elements)
Given q a quadratic form over k a field (e.g. a number field or a local field), then for a ∈ k, we
say q represents a if there exist elements x ∈ kn \ {0} such that q(x) = 0.

Theorem 13.1.3(a stronger one).
Given a ∈ k, q represents a iff over k iff q represents a over kv̂ for all v ∈ Pl (k). Moreover,
rational points are Zariski dense on q(x) = a.

Remark 13.1.4: That this implies the first theorem is easy, setting a = 0. Conversely, consider
q′(x, z) := q(x)− az2. Then q represents a iff q′ represents 0 – however, this can go wrong if z = 0!
Exercise: find a good proof.

Proof (?).
Let n be the number of variables.

• For n = 1, we saw that x2 = a satisfies the Hasse principle in the first class. Moreover
rational points are Zariski dense on the projective variety x2 = ay2.

• For n = 2, consider q(x1, x2) = a. We’ll pick this up next time!

�
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Remark 14.0.1: Goal: prove the Hasse-Minkowski theorem. We looked at n ≤ 3, so today we’ll
look at n = 4.

Theorem 14.0.2(?).
Let Q ⊆ P3

/k be a smooth quadric, then

Q(k) 6= ∅ ⇐⇒ Q(kv̂) 6= ∅

for all places v ∈ Pl (k).

Proof (n = 4 case).
Let X ⊆ Gr1(P3) be the variety of lines in Q, and consider I → X the universal family. Then
Xk = P1∪P1 since Qk = P1×P1 O(1,1)

↪−−−−→ P3. Consider the case when X is not connected. Then

• Uc → Q is an isomorphism, which can be checked over k.
• Q(kv̂) 6= ∅ implies Uc(kv̂) 6= ∅ and thus C(kv̂) 6= ∅ for all v.
• By the Hasse principle for Severi-Brauers, if C = P1 implies C(k) 6= ∅.
• Then Uc → C is Zariski trivial, so Uc ∼= Q has rational points.

Uc U Q

C X

Link to Diagram
Now consider the case when X is connected. The claim is that there exists a quadratic
extensions k′/k where Xk′ is not connected:

• k′ = Γ (X;OX), which is a rank 2 vector bundle (which can be checked over k). So

Γ
(
Xk′ ;OXk′

)
= Γ (X;OX)k′ = k′ ⊗k k′ ∼= k′ ⊕ k′,

so Xk′ is disconnected.

• We can take [Q] ∈ H1(k; On) det−−→ H1(k;µ2), and it maps to [k′].

• Gal(k/k) acts on Pic(Q) ∼= Z×2 , and this action factors through {±1}. Here On =
Aut(

∑
x2
i ).

– Why: this action preserves the effective cone in Pic(Qk) spanned by π∗1O(1) and
π∗2O(1), which are those bundles with global sections (which is preserved by Galois).

4! Warning 14.0.3
Even if [L] ∈ PicQ is Galois-invariant, this does not imply that L is defined over k! This can
be a common source of errors.
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By case 1, X(k′) 6= ∅, so there exists a rational line L ⊆ Q contained in one connected
component of Xk′ . There is an action Gal(k′/k) y L, so take σ ∈ Gal(k′/k). Then σ(L) is in the
other component Xk′ , since Galois interchanges its components pointwise. Then considering
the two rulings of the quadric yields the following picture, where they intersect at a point:

L

σ(L)
σ(p) = p

Qk

But then σ(p) = p is Galois fixed, and is thus a k-rational point.
�

Theorem 14.0.4(?).
Let n ≥ 5 and Q =

∑

l≤i≤n
aix

2
i be a nondegenerate quadratic form over a number field k. Then
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Q satisfies the Hasse principle.

Proof (General case).
We’ll proceed by induction on n ≥ 5. Write Q = a1x

2
1 + a2x

2
2 +G(x3, · · · , xn).

Claim: G represents kv̂ for almost all v ∈ Pl (k).
It’s enough to show that G′(x3, · · · , xn+1) := G(x3, · · · , xn) +ax2

n+1 represents 0 for all a ∈ kv̂
and almost all v. Without loss of generality, we can assume G is nondegenerate over the
residue field κ(v), by throwing out finitely many things. Then G′ has rank at least n− 2 over
κ(v) for almost all v.

Claim: G′ has a smooth rational point for for all
Using the Lang-Weil estimates (using absolute irreducibility), G′(κ(v)) has about (#κ(v))n−3

rational points, where the error term is uniform in v. The singular locus is a dimension smaller,
so about (#κ(v))n−4, and for n large enough for this to hold, the former is larger.
Now use Hensel’s lemma, any smooth rational point on the special fiber lifts to the generic
fiber (i.e. the infinitesimal smoothness criteria). This proves the first claim that G represents
kv̂ for almost all v.
Fact
For almost all v, G(x3, · · · , xn) represents every element of k.

Let U ⊆ (
∏

kv̂)
×n−2

k[v] be the set {(x3, v), · · · , (xn, v)} such that there exists an (x1, v), (x2, v)
with Q(x1, · · · , xn) = 0. Some claims:

• U is open, which follows from the fact above,
• U is nonempty since Q represents 0 locally by hypothesis,
• The set U ′ ⊆ (

∏
kv̂)

×2 of pairs (x1, v), (x2, v) such that there exist (x3, v), · · · , (xn, v)
with Q(x1, · · · , xn) = 0 is also open.

Then by weak approximation, there exist x1, x2 ∈ k such that (x1, x2) ∈ U . So write c =
a1x

2
1 +a2x

2
2 ∈ k and define Q′(z, x3, · · · , xn) = −cz2 +G(x3, · · · , xn). This is a quadratic form

in n− 1 variables that represents 0 locally. Now by induction, Q′ represents zero globally.
�
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Reference: FGA Explained.

Proposition 15.0.1(?).
For R a complete local ring with residue field κ, there is an isomorphism Br(R) ∼−→ Br(κ).

Remark 15.0.2: We’ll prove a stronger claim that there is a bijection SBSch/R/ ∼→ SBSch/k/ ∼,
which requires some deformation theory. A summary of obstruction theory for schemes:
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Let A ∈ CRing, I E A is square zero ideal, and X/A/I a smooth scheme. Then there exists a
functorial class obs(X) ∈ H2(X; TX ⊗A/I I) such that X admits a flat lift to A iff obs(X) = 0. If
the obstruction vanishes, the set of lifts is a torsor for H1, and the automorphisms of the lift are
given by H0. Here TX is the tangent sheaf, and a flat lift is a flat scheme X̃/A equipped with an
isomorphism X̃ ⊗ (A/I) ∼−→X.

A word on this deformation-theoretic result is proved:

• Show affine schemes lift, e.g. using Cohen structure theorem. Alternatively, something about
being étale?

• Try to glue, which may not satisfy the cocycle condition – failure to glue will show up in this
cohomology. Why the tangent sheaf: the difference between two gluing data is a derivation.

Note that for vector bundles E → X, the cohomology would be in End(E).

See also tangent/cotangent complex.

Proof (?).
We’ll try to lift a Severi-Brauer over k to one over R. Claim: letting Rn := R/mn, given a lift
to Rn, there exists a unique lift to Sn := Rn+1. We have

obs(Sn) ∈ H2(Sn; TSn ⊗mn/mn+1) = H2(Sn; TSn)⊗k mn/mn+1,

which follows from base change in cohomology using TSn⊗Rn k⊗kmn/mn+1. Here obs(Sn) = 0,
since

H2(S; TS)⊗k k = H2(Sk; TS,k) = H2(Pn
/k

; TPn
/k

) = 0.

See Hartshorne, this uses the Euler exact sequence.
So a lift exists for each Rn.
This lift is unique since lifts are torsors for H1(Sn; TSn ⊗mn/mn+1).
Why this lifts to R: formal GAGA, which gives a way of going from formal schemes to actual
schemes. See “FGA Explained”, Ch. 8. This is because giving a scheme over Rn for all n
amounts to giving a formal scheme, since the underlying topological spaces are the same. The
input is an ample line bundle: here for Pn we can take the dual of the dualizing sheaf OSn∨.

�

Remark 15.0.3: Formal GAGA: one of the most useful techniques!

Proposition 15.0.4(?).
Suppose X ∈ Var/k and let A ∈ Br(X) (e.g. represented by an Azumaya algebra), then

• If k is a p-adic field, then there is a map

X(k)→ Br(X)
x 7→ x∗(A).

Tuesday, October 12 58



15 Tuesday, October 12

• For k = R, the mapX(R)→ Br(k) = 1
2Z/Z is locally constant, i.e. constant on connected

components.

Proof (?).
For x ∈ X(k), ÔX,x is a complete local k-algebra with residue field k. Then for A ∈ Br(X), we
have a map ψ : A|ÔX,x

∼−→ (Ax)⊗k ÔX,x. We want to spread ψ out to a p-adic neighborhood
of x. In the analytic setting, this can be done using Artin approximation, which will imply
there exists an étale neighborhood U of x and a map

U → X

y 7→ x,

which extends (?) and induces an isomorphism on complete local rings. Now applying the
implicit function theorem, there exists a p-adic neighborhood of x in any U(k).

�

Corollary 15.0.5(?).
Let X/k for k a number field and A ∈ Br(X). Then

a. The following map on adeles is locally constant:

A∗ : X(Ak)→ Q/Z

x 7→
∑

v∈Pl(k)
mvx(x∗A).

b. X(A)A := (A∗)−1(0) is closed and open.

c. X(A)Br =
⋂

A∈Br(X)
X(A)A is closed.

d. X(k) ⊆ X(A)Br.

e. If X is proper, then X(A)Br 6= X(A) and weak approximation does not hold.

Proof (?).

a. Use the same Lang-Weil argument used previously, and that this is a sum of locally
constant maps.

b. 0 is closed and open in Q/Z and A∗ is continuous.
c. This is an intersection of closed sets.
d. We already know X(k) is contained in the RHS, and by (c) we know it’s closed, so the

RHS contains its closure.
e. Immediate from (d).

�
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4! Warning 15.0.6
The adelic topology is not the product topology.

Definition 15.0.7 (Symbol Algebra)
For k ∈ Field and let χ : Gal(k/k) → Cn and a ∈ k×/(k×)n, then recall that (χ, a) :=
Lχ 〈x〉σ / 〈xn − a〉 where Lχ is the fixed field of χ and Lχ 〈x〉σ is the twisted polynomial ring
where `x = xσ(`).

Example 15.0.8(?): Take a smooth proper model of U =
{
y2 + z2 = (3− x2)(x2 − 2)

}
and the

symbol algebra A = (3− x2,−1).

Exercise 15.0.9(Homework)
Check that this has points locally!

Our goal is to show that X(A)A = ∅. By Kummer theory, choosing an isomorphism µn(k) → Cn
induces a bijection

k×/(k×)n ∼−→
{
χ : Gal(k/k)→ Cn

}

a 7→ k[x]/ 〈xn − a〉 .

For n = 2 and ch k 6= 2, there is a canonical isomorphism {±1} ∼−→µ2(k) ∼−→C2. View (χ, a) ∈
H2(k, µn), and there is a cup product

H1(k;Cn)×H1(k;µn)→ H2(l;µn)
χ 7→ [χ] ^ [a].

Another point of view: if L/k is Galois with Galois group Cn, it comes with a choice of generator σ
and thus a canonical element in [σ] ∈ H2(L/k;Z) ∼−→Cn. Then there is another cup product

k× = H0(L/k;L×) (−)^[σ]−−−−−→ H2(L/k;L×) = Br(L/k) = k×/NmL/k k
×,

in which case (χ, a) = a ^ [σ].

Corollary 15.0.10(?).
(χ, a) = 0 ⇐⇒ a ∈ NmL/k L

×.

Remark 15.0.11: For n = 2, one has (a, b) = k
[√
b
]
〈x〉σ / 〈xn − a〉, and this splits iff a is a norm

from k(
√
b) when this is a field.

Exercise 15.0.12 (?)
What are the equations for the Severi-Brauer arising from (a, b).
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Missing some stuff! Find notes.

Remark 16.0.1: Let k be a number field, X ∈ Var/k a variety, and A/k the adeles over k. Let
F : Schop → Set be a functor, we can then consider an F -obstruction to rational points. A
rational point is the data of a morphism Spec k → X, denoted X(k) = Sch(Spec k,X), and adelic
points X(A/k) = Sch(A/k, X). Since there is a morphism k → A/k ∈ Ring, this yields a morphism
X(k)→ X(A/k) (noting contravariance). Note that an adelic point is a lift:

SpecA/k

X Spec k

Link to Diagram

Moreover, F induces a diagram. Let i : Spec k → X denote the inclusion, and x ∈ X(k) be a
k-point. Then writing F (k) := F (Spec k), we have the following:

X(k) X(A/k)

F (k) F (A/k)

x∗A:=Fi(a) x∗vA

Link to Diagram

Definition 16.0.2 (?)
Let A ∈ F (X), then

X(A/k)A :=
{

(xv) ∈ X(A/k)
∣∣∣ x∗vA ∈ im

(
F (k)→ F (A/k)

)}

X(A/k)F :=
⋂

A∈F (X)
X(A/k)A.

Example 16.0.3(?): For F (−) := Br(−), the resulting X(A/k)F is the Brauer-Manin obstruc-
tion. Consider A ∈ Br(X) for X = V (y2 + z2 = (x2 − 2)(3 − x2)), then any k-rational point
would yield x∗A ∈ Br(k) and thus x∗vA ∈ Br(A/k). The claim is that Br(A/k)A = ∅. So consider{

(xv) ∈ Br(A/k)
∣∣∣ x∗vA ∈ im

(
Br(k)→ Br(A/k)

)}
.
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Exercise 16.0.4 (?)
Show this set is empty!

E 16.1 Descent Obstruction e

Definition 16.1.1 (fppf morphisms)
A morphism U → X ∈ Sch is fppf if

• f is flata,

• f is locally of finite presentation.b

aFlatness is a local condition: fq : OX,p → O(U, q) for q ∈ f−1(p) should be a flat morphism of algebras, where
A→ B is flat if −⊗A B is flat as a functor on A-Mod.

bThere exist affine open covers V ⇒ X and Ui ⇒ f−1(Vi) such that f |Uij
: Uij → Vi is induced by Bi → Aij ∈

Ring of finite presentation. So B → A ∈ Ring yields A = B[x0, · · · , xn]/I with I finitely generated.

Remark 16.1.2: Recall that GrpSch ≤ Sch is the subcategory of group objects.

Definition 16.1.3 (?)
For G ∈ AlgGrp or GrpSch/X , and let

F (−) = H1(−;G) = {G-torsors over X locally fppf trivial} .

The fppf site is much more flexible than the etale site!
Examples are any morphisms X → Hilb(Pn).

Definition 16.1.4 (G-torsors)
A G-torsor over X is an object T ∈ Sch/X with a G-action G fpXT σ−→ T such that there is
an isomorphism

G fpXT ∼−→
(σ,π2)

T fpXT.

Remark 16.1.5: How to think about torsors: a family whose fibers are abstractly isomorphic to
G, but not canonically.
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Xp
∼= G

X

p

So the fibers are not canonically identified with G, but G acts naturally in a freely transitive way
on them. This is essentially the same data as a principal G-bundle.

Remark 16.1.6: Let L→ X be a line bundle, so there exists a cover U ⇒ X with L|Ui ∼= A1 × Ui
and transition functions

A1 × (Ui × Uj)
(tij ,id)−−−−→ A1 × (Ui × Uj)

where tij : Ui×Uj → Gm. Then one can obtain a Gm-torsor L \ {0} 0 by removing the zero section,

and in fact all such Gm-torsors arise this way. One can check here that Gm(X) fpXT ∼−→T
×
X

2

.

Example 16.1.7(of GrpSch/X):
• Take G := Ga,Gm and consider G×X, then one can define a multiplication by multiplying

the first factors. This generalizes to work for any G ∈ AlgGrp.

• An elliptic curve over SpecZ \ P for P a finite set of primes.

• Z/n and µn.

Remark 16.1.8: Another formulation: GrpSch/X are representable functors

F : Schop
/X → Grp

Y 7→ Sch/X(Y,G),

which composes with Grp Forget−−−−→ Set in a certain way (?).

Remark 16.1.9: Next time: descent obstructions.
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Missed first few boards, find notes / see phone pics.

Remark 17.0.1: If G ∈ smAffGrpSch/X and T/X is a locally fppf trivial G-torsor, then T is etale
locally trivial by a slicing argument.

Setup: let X ∈ Var/k and G ∈ GrpSch/k with T/X ∈ G-Torsors. Partition X(k) as

X(k) =
∐

τ∈H1(k;G)

{
x ∈ X(k)

∣∣∣ Tx ∼= τ
}
.

Note that H1(k;G) ∈ G-Torsors/k. Let τ ∈ H1 be such a torsor and Gτ be the corresponding inner
form: note that G acts on itself by conjugation, so inner forms are in the image of the induced
map on H1:

im conj∗ {forms of G}

H1(k;G) H1(k; AutG)conj∗

conj∗ ∼=

Link to Diagram

Exercise 17.0.2 (important: on what descent means and how to compute with it)
Prove the following claim: τ ∈ H1(k;G) is a left G-torsor, and thus τ is naturally a right
G-torsor.

Remark 17.0.3: Let G be a discrete group and T ∈ G-Torsors, or equivalently a group scheme
over an algebraically closed field (in characteristic zero). Write T r :=

{
T, T ×G→ T : tg := g−1t

}

to exchange left and right actions, and apply this construction at the level of points. Hint: you’ll
need to use descent to check this.

Remark 17.0.4: On twisted torsors : define Tτ := G�T×X τ , and observe that Tτ is a right Gτ
torsor via an action on τ .

Proposition 17.0.5(?).
There is an equality

{
x ∈ X(k)

∣∣∣ Tx ∼= τ
}

= im (Tτ (k)→ X(k)) .
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Proof (?).
Note that x ∈ im (Tτ (k)→ X(k)) ⇐⇒ Tτ |x is a trivial Gτ -torsor, since having a rational
point implies being a trivial torsor since that point can be used to translate. This happens iff
G�Tx ×

X
τ iff Tx ∼= τ .

Conversely, left a rational point and check that you get the graph of an isomorphisms (after
base change).

�

Corollary 17.0.6(?).
One can partition

X(k) =
∐

τ∈H1(k;G)
im (Tτ (k)→ X(k)) .

Remark 17.0.7: Everything up until now works in AlgSpaces ≥ Sch, so it’s a mostly formal
construction thus far.

Remark 17.0.8: We showed the following proposition in the case of PGLn: assignments of points
to Brauer classes were locally constant.

Proposition 17.0.9(Local constancy of evaluation).
Let k ∈ LocalField and X ∈ Sch/k proper. a

For G ∈ GrpSchét/k and T ∈ G-Torsors/X , then the following map is locally constant:

X(k)→ H1(k;G)
x→ Tx.

aPossibly not needed here, but included in Poonen’s statement.

Remark 17.0.10: How did this proof go before? We showed something didn’t deform, i.e. an
argument in cohomology of the tangent bundle, and used Artin approximation.

Proof (?).
The point: étale sheaves don’t deform, i.e. H1(TT/X ) = 0 for T the relative cotangent bundle
(i.e. H1 with coefficients in the tangent sheaf). See Poonen for a proof use Krasner’s lemma. A
word on this proof: for a constant group scheme, this is a constant Galois cover and the field
extensions don’t change under small perturbations (i.e. of the coefficients of the polynomial).

�

Corollary 17.0.11(?).
The image im

(
X(k)→ H1(k;G)

)
is finite.

Proof (?).
Use that the map is proper and X(k) is compact.
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�
Remark 17.0.12:

E 17.1 Selmer Sets e

Definition 17.1.1 (Selmer Sets)
Let k ∈ NumberField, X ∈ Var/k, G ∈ smAffAlgGrp/k, T ∈ G-Torsors/X . Define

SelT (k;G) :=
{
τ ∈ H1(k;G)

∣∣∣ τk
v̂
∈ im

(
X(kv̂)→ H1(kv̂;G)

)
for all v ∈ Pl (k)

}
.

Example 17.1.2(?): If A/k ∈ AbVar and G := A[n] with T : A [n]−→ A, then SelT (k;G) is the
Selmer group of A.

Remark 17.1.3: Unpacking this definition, we can write this as

SelT (k;G) =
{
τ ∈ H1

∣∣∣ Tτ (kv̂) 6= ∅
}
⊇
{
τ
∣∣∣ Tτ (k) 6= ∅

}
.

Then

X(k) =
∐

τ∈SelT (k;G)
im (Tτ (k)→ X(k)) .

18 Thursday, October 28

Remark 18.0.1: Let k ∈ GlobalField, G ∈ GrpSch/k, T ∈ G-Torsors/X . We defined the Selmer group
as

SelT/X (k;G) :=
{
τ ∈ H1(k;G)

∣∣∣ τk
v̂
∈ im

(
X(kv̂)

x→Tx−−−−→ H1(kv̂;G)
)}

.

Theorem 18.0.2(?).
For G smooth affine and X proper, SelT/X (k;G) is finite.

Corollary 18.0.3(?).
The following disjoint union is finite if X is proper:

X(k) =
∐

SelT/X (k;G)

{
x ∈ X(kv̂)

∣∣∣ τx ∼= τ
}
.
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Corollary 18.0.4(Weak Mordell-Weil theorem).
For A ∈ AbVar/k, which is a smooth proper group scheme, then A(k)/mA(k) is finite for any
m ∈ Z≥0.

Remark 18.0.5: Note that Mordell-Weil is about finite generation of A(k), which implies that the
quotient is finite – for counterexamples, take Q and Q/mQ = 0. Existence of variations of Hodge
structure: follows from nonabelian Hodge theory.

E 18.1 Proof of finiteness of Selmer Sets e

Remark 18.1.1: Let T be defined as multiplication by n to get a SES

0→ A[n]→ A
x 7→nx−−−−→ A→ 0.

Then we get a diagram

A(k) H1(k;A[n])

A(k)/nA(k) SelT/X (k;A[n])

x 7→Tx

Link to Diagram

Remark 18.1.2: We’ll separately handle the ramified and unramified cases. We’ll need to set up
some notation: let k ∈ GlobalField, S ⊆ Pl (() k) a finite subset of places, G ∈ GrpSch/Ok,S . There is
a SES

0→ G0 → G → G/F → 0,

where G0 is the component of the identity. Assume F is finite étale, which can always be achieved
by enlarging S if necessary. We’ll use Roman letters to denote fibers, whence we get a SES over k:

0→ G0 → G→ F → 0.

Definition 18.1.3 (?)
Define the set of torsors unramified away from S:

H1
S(k;G) :=

{
τ ∈ H1(k;G)

∣∣∣ τk
v̂
∈ im

(
H1(Ok

v̂
;G)→ H1(k;G)

)
∀v ∈ S

}
.

Note that this set depends on the model chosen for G.
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Theorem 18.1.4(?).
The unramified case of Selmer finiteness

• H1
S(k;G)→ H1

S(k;G)→
∏

v∈S
H1(kv̂, F ) has finite fibers.

• If k ∈ NumberField then H1
S(k;G) is finite.

Remark 18.1.5: This theorem is due to Lang, who was an AIDS denialist? Yikes.

Remark 18.1.6: ThisH1
S(k;G) is an approximation to something slightly more natural,H1

ét(Ok,S ;G),
the G-torsors over Ok,S .

Slogan 18.1.7
Torsors for connected group schemes are not interesting?

Theorem 18.1.8(?).
Let G ∈ smAlgGrp/Fq be connected, then H1(Fq;G) = {pt}.

Exercise 18.1.9 (?)
Write down a variety over Fq with no rational points!

Proof (?).
Let T ∈ H1(Fq;G), we want to show T (Fq) 6= ∅. Given a rational point, we want to show
G ∼= T . Take G× T → T and for any x ∈ T (Fq) take the map

G→ T

x 7→ gx.

Exercise (?)
Prove this is an isomorphism. Hint: use the following diagram:

G T G× T T × T

X T

Link to Diagram

Let t ∈ T (Fq), then any t′ ∈ T (Fq) satisfies t′ = gt for a unique g ∈ G(Fq), since this is a
principal homogeneous space (so the action is free and simply transitive). Consider Frobenius-
fixed elements: take σ ∈ Gal(Fq/Fq), then if t′ = (t′)σ then gt = gσtσ and (gσ)−1τ = tσ. Now
tσ = bt for a unique b ∈ G(Fq), so to solve this equation it suffices to show that every b ∈ G(Fq)
can be written in the form b = (gσ)−1g.
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Claim: Consider the following funny action Gy G by g ·t := (gσ)−1tg, a twisted conjugation.
This acts transitively on G(Fq) and thus has one orbit.
Why this implies the theorem: take t = id, then any b ∈ G(Fq) is in the orbit of t and
b = (gσ)−1g.

�

Example 18.1.11(?): For G = Ga, this yields g · t = tg− gp. For G = Gm it yields g · t = t− g1−p.

Observation 18.1.12
For fixed t ∈ G(Fq), the following map is generically étale:

GFq → GFq

g 7→ (gσ)−1tg,

and thus the image contains an open subset of GFq . So any two orbits are open, and hence intersect
since G is connected. Since orbits are equal or disjoint, there is just one orbit.

Proof: continued next time!

Remark 18.1.13: Some asides on philosophy: hyperbolicity should be related to having rational
points, and having “big” fundamental group and being general type. A recent theorem by Ellenberg-
Lawrence-Venketesh: for X ∈ Var/k for k ∈ NumberField and π1X is big, then ]X(Ok,S) has height
bounded above by H which grows like Hε for any ε.

See paper: https: // arxiv. org/ abs/ 2109. 01043

Here “big π1” means that for XC, there is a variation of Hodge structure on X such that the map
X → D/Γ into the period domain is quasi-finite.

19 Tuesday, November 02

Remark 19.0.1: Setup: let k ∈ GlobalField, S ⊆ Pl (k) a finite set of places, G ∈ smGrpSch/Ok,S
yielding a SES

0→ G0 → G → F → 0,

where F ∈ GrpSch is finite étale. After base-changing to k, this yields a SES of groups

0→ G0 → G→ F → 0.

We defined H1
S(k;G) :=

{
τ ∈ H1(k;G)

∣∣∣ τk
v̂
∈ imϕ∀v 6∈ S

}
where ϕ : H1(Ok

v̂
;G)→ H1(k;G).
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Slogan 19.0.2
General principal we’ll use: there should only be finitely many things over OkS , see Shafarevich’s
conjecture.

Theorem 19.0.3(?).

a. H1
S(k;G)→ H !

S(k;F )→
∏

v∈S
H1(kv̂;F ) has finite fibers, and

b. If k is a number field, then H1
S(k;G) is finite.

E 19.1 Proof e

19.1.1 Proof of a

Claim Step 1: For v 6∈ S, H1(Ov;F)→ H1(kv̂;F ) is injective.

Proof (Sketch).
First consider a fiber that is a trivial torsor over {pt}. F/Ok

v̂

∈ F-Torsors. Why? Finite
things are proper (finite iff proper and affine), so by the valuative criterion of properness F(kv̂)
nonempty implies F(Ok

v̂
) nonempty.

Now one can use a twisting argument to show that every fiber is finite.
�

Claim Step 2: H1(Ok
v̂
;G0).

Proof (of step 2).
Let κ(v) be the residue field.

1. We know H1(κ(v); G0
∣∣∣
κ(v)

) = 1 by Lang’s theorem.

2. Let τ ∈ H1(Ok
v̂
;G0) be a torsor. Now by the infinitesimal lifting criterion for smoothness,

i.e. Hensel’s lemma, if τ(κ(v)) is nonempty then τOk
v̂

is nonempty.

3. H1
S(k;G)→ H1

S(k;F ) has finite fibers. This uses input from a hard theorem which we’ll
black box here.

The proof is that H1(Ok
v̂
;G) → H1(Ok;F) ↪→ H1(k;F ), where the first map is injective by

(2) above, and the second by (1). Let X denote the Tate-Shafarevich group, then kerh ⊆

X1
S(k;G) := ker

(
H1(k;C)→

∏

v∈S
H1(k;Gk

v̂
)
)

By Borel-Serre, for G affinea the latter is finite.

Now a twisting argument shows this for every fiber.
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Claim: H1
S(k;F)→

∏

v∈S
H1(kv̂;Fkv̂) has finite fibers.

Proof (?).
Now use the source of all finiteness in arithmetic geometry: Hermite-Minkowski’s theorem,
using that the previous information determines the degree and discriminant.

• Choose (τv) ∈
∏

v

H1(kv̂;Fkv̂), and suppose τ → (τv)v∈S . As a scheme, τ = SpecR

for R ∈ Alg/k finite étale, so R =
∏

i

Li with Li unramified away from S. This

bounds the discriminant, so there are finitely many possibilities for Li.

• For each R there are finitely many F actions making SpecR into a torsor. Using
representability, then F → Autk(R) is a finite étale group scheme. Since both are
now finite, there are only finitely many such maps.

�

�
a(conjecturally for G arbitrary, thought to be true but equivalent to BSD!),

19.1.2 Proof of b

Remark 19.1.1: For the proof of (b), it’s enough to show that
∏

v

H1(kv̂; F |k
v̂

) is finite. Krasner’s

lemma shows that are only finitely many degree d extensions over a p-adic field (false for fp((t))!
), so kv̂ has finitely many extensions. Then there are only finitely many extensions of k of a given
degree, so there are only finitely many possibility for F -torsors.

Exercise 19.1.2 (?)
Produce infinitely many extensions of fp((t)).

Remark 19.1.3: Note: étale is stronger than smooth? In the following proof, we could take
everything to be étale to simplify things.

Remark 19.1.4: Reminder of setup: let X ∈ Var/k be proper, G ∈ smGrpSch/k finite , T ∈
G-Torsors/X . We’re trying to show that SelT/X (k;G) is finite.

Step 1: spread out. There are finitely many denominators and thus finitely many places and G
finite smooth and Ok,S′ a group scheme with X proper over Ok,S′ . Then T/X is a G-torsor with
Gk = G, Tk = T,Xk = X. Let τ ∈ SelT/X (k;G), then τ ∈ H1

S′(k;G) since τk
v̂
is in the image of

X(kv̂) → H1(kv̂;Gkv̂), but X(kv̂) = X (Ok
v̂
) by the valuative criterion of properness. So for a

number field, the set we want is contained in a finite set and we’re done in this case.
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For function fields, consider τ ∈ SelT/X (k;G) ⊆ im


H1

S′(k;G)→
∏

v∈S′
H1(kv̂;F )


, and let π be the

inclusion. The claim is that π has finite image. The proof is by the local constancy lemma applied
to X(kv̂)→ H1(kv̂;G/G

0), which is essentially Krasner’s lemma plus compactness – here we used
that X(kv̂) is compact. Finite image plus finite fibers implies finite, so we’re done.

E 19.2 Misc e

Theorem 19.2.1(Minchev).
Let k ∈ NumberField, X,Y ∈ Var/k geometrically integral, F : Y → X finite étale and not an
isomorphism, and let S ⊆ Pl (k) be a finite set of places and suppose X(AS) 6= ∅. Then X
does not satisfy strong approximation, i.e. X(k) ↪→ X(AS) is not dense.

Corollary 19.2.2(?).
If X is geometrically integral and πét1 (Xk) 6= 1, then X(AS) nonempty implies X does not
satisfy strong approximation (since X admits no interesting étale covers)

Remark 19.2.3: Goal: find v 6∈ S and U ∈ X(kv̂) open where U does not contain any k-points.

20 Tuesday, November 09

Remark 20.0.1: The descent obstruction does not suffice!

Theorem 20.0.2(?).
There exists a nice X ∈ Var/Q with X(A)ét,Br 6= ∅ but X(Q) = ∅.

Remark 20.0.3: X will be a quadric 3-fold bundle over a curve C with ]C(Q) = 1 with 2 singular
fibers. By the Lefschetz hyperplane theorem, we’ll be able to understand its π1, even though this
won’t be a Serre fibration and thus we won’t get a LES in homotopy.

E 20.1 Proof e

Remark 20.1.1: First make Y , a quadric 3-fold bundle over P1
/Q with 2 singular fibers. Since we’re

fibering over P1, we’ll define this in two affine patches and then glue. Define

Yt :=
{
t(t− 1)x2

0 + x2
1 + · · ·+ x2

4 = 0
}
⊆ A1

/t × P1
/[x0,··· ,x4]

YT :=
{

(1− T )X2
0 + x2

1 + · · ·+ x2
4 = 0

}
⊆ A1

/T × P1
/[x0,··· ,x4].
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Then define a gluing by

t 7→ 1
T

xi 7→ xi, i = 1, · · · , 4

x0 7→
T

X0
.

Now check that Y0, Y1 are singular, and Y∞ =
{∑

x2
i = 0

}
:

Something about (C××Q)/ {±1} → C×? This makes
the geometry in this situation easy.

Since Y∞(R) = ∅ implies Y∞(Q) = ∅. Note that if t = 0, 1 this is a point, for 0 < t < 1 this is an
ellipsoid, and for t > 1 or t < 0 there are no real points.

Remark 20.1.2: Issue: P1 has lots of rational points, so we’ll make a curve C with a map C → P1

and pull back. Let C/Q be a smooth proper curve such that

• ]C(Q) = 1, so write c := C(Q) as this single rational point. Write U ⊆ C(R) as the connected
component of the identity. The real points are compact 1-manifolds, so a disjoint union of
circles whose number depends on g(C). Fun question: what is π0Mg(R)?

• C
f−→ P1 such that

– f(c) =∞ such that
– f is étale at c and also over 0, 1 ∈ P1(Q).
– f(U) 3 1.

Example 20.1.3(?): y2 = x3 − 3 is such a curve, see LMFDB.

• Probably the point is ∞!
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• Pick a uniformizer at ∞, then compose with an affine map z 7→ az + b to obtain the 2nd
condition.

• f(U) contains an open subset of P1(R), using that f is étale and thus a local homeomorphism,
so apply the implicit/inverse function theorems. So compose with a generic z 7→ z + 1 such
that f(U) 3 1. This doesn’t mess up the previous affine map, since it’s generic.

Now define X := Y×
P1
C as the pullback.

Claim: X(Q) = {∞}.

Proof (?).
Note

X(Q) π−→ C(Q),

and π−1(c) ∼= Y∞ which has no rational points.
�

E 20.2 Showing X(A)ét,Br e

Remark 20.2.1: Next goal: show the étale-Brauer set is empty.

Example 20.2.2(?): We can show X(A)Br 6= ∅.

1. An exercise using the Leray spectral sequence shows there is a surjection Br(C)→ Br(X).

2. Observe that x ∈ X(A) is also in X(A)Br if

• π(x∞) ∈ C(Qv) is equal to C for all finite v.
• π(x∞) ∈ U .

3. Find such a (xv) ∈ X(A).

• For v finite, choose xv ∈ Y∞(Qv). Then
{

[x0 : · · · : xn]
∣∣∣
∑

xi = 0
}
6= ∅.

• For v infinite, choose any c′ lying over 1 ∈ P1, so c′ ∈ U ∩ f−1(1). Then Xc′
∼= Y1 but

Y1(R) 6= ∅ since it contains p = [1 : 0 : · · · : 0].

Why (2) is true: for v finite, invv(x∗vα) = invv(π(xv)∗α′) = invv(c∗α′) where α ∈ Br(X), α =
π∗α′, α′ ∈ Br(C), and the same holds for v replaced by ∞. Use that this function is constant on U
since it’s connected. Now

∑

v

invv(x∗vα) =
∑

v

invv(c∗α′) = 0, which shows it’s in the Brauer set.
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Remark 20.2.3: So the Brauer-Manin obstruction it not sufficient to obstruct rational points.

E 20.3 Étale-Brauer-Manin Set e

Remark 20.3.1: Recall the definition:

X(A)ét,Br :=
⋂

T∈H1(X;G)=G-Torsors
G finite étale

⋃

τ∈H1(k;G)
im
(
T τ (A)Br → X(A)

)
.

Let (xv) ∈ X(A) as above.

Claim: For each finite étale G and each T ∈ H1(X;G) there exists a τ ∈ H1(k;G) such that (xv)
lifts to T τ (A)Br.

Proof (?).
In steps:

1. (SGA1) T is a pullback of T̃ ∈ G-Torsors/C , using that π1X = π1C.
2. There exists a τ ∈ H1(k;C) such that c ∈ C(Q) lifts to c̃ ∈ T̃ τ (Q).
3. For v finite, use the diagram:

T τ (Qv) X(Qv) 3 xv

c̃ ∈ T̃ τ (Qv) C(Qv)

Link to Diagram
Then T τc̃ ∼= Xc implies xv lifts.

4. For v infinite, we have x∞ ∈ Y1(R) = Xc′(R).

• Check that c′ lifts to c′′ ∈ T̃ τ (R) in the same connected component of c̃. This is because
T̃ τ (R) → C(R) is étale, and thus locally a covering map and thus surjective on any
nonempty component. Thus T τc′′ ∼= Xc′ and thus x∞ lifts.

�
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21 Chabauty-Coleman (Thursday, November
11)

Theorem 21.0.1(Coleman-Chabauty).
For X ∈ Sch/Q a proper curve with g(X) ≥ 2 and rankZ Jac(X)(Q) < g where X has good
reduction at p > 2g, ]X(Q) ≤ ]X(Fp) + 2g − 2

Remark 21.0.2: Idea: choose x ∈ X(Q), define a map

AJx : X Abel-Jacobi−−−−−−−→ Jac(X)
y 7→ [O(y − x)].

Then Xn → Jac(X) by y 7→
∑

AJx(yi) is surjective for n ≥ g. Note that

Hom(T, Jac(X)) =
{
L ∈ Pic(X × T )

∣∣∣ L has degree 0 on each fiber of X × T → T
}
/Pic(T )

This equals
{
L ∈ PicX ×X

∣∣∣ L has fiberwise degree 0
}
/Pic(X). Note that the LHS is O({x} ×

X → ∆).

Claim: For Xn

∑
AJx−−−−→ Jac(X) is surjective for n ≥ g.

Proof (?).
ETS that the following map is surjective:

Xn → Picn(X)

y 7→ O
(∑

yi
)
.

Given [L] ∈ Picn(X), for L = O(D) for D effective iff H0(L) = 0, so ETS H0(L 6= 0) for
degL ≥ g. By Riemann-Roch:

dimH0(L)− dimH1(L) = degL+ 1− g.

The RHS is 1, so dimH0(L) ≥ 1.
�

Slogan 21.0.3
X generates Jac(X), and Jac(X) is the Albanese of X.

Remark 21.0.4: Let Γ = JacX(Q) ⊆ JacX(Qp). We have a factorization:
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X(Q) Γ

X(Qp) Γ JacX(Qp)

∃

Link to Diagram

Here Γ has dimn < g and JacX(Qp) has dimension ??. A fact from p-adic Lie groups: they’re all
direct sums of balls!

Now construction functions on JacX(Qp) vanishing on Γ. Then fi|X(Qp) vanish on X(Qp) ∩ Γ ⊇
X(Q).

This will show X(Q) is finite. We’ll show that not all of the fi are identically zero: ETS that
X(Qp) 6⊆ Γ, which will be true since X generates its Jacobian. Take whichever fi 6≡ 0, which is an
p-adic analytic function, then fi will have finitely many zeros.

Remark 21.0.5: There is a hypothesis that rankZ JacX(Q) < g can be replaced by dim Γ < g.

E 21.1 Proofs e

Lemma 21.1.1(?).
Let Γ ≤ A(Qp) be a finitely-generated abelian subgroup for A ∈ AbVar. Then dimQp Γ ≤
rankZ Γ.

Fact 21.1.2
Any p-adic manifold X is locally isomorphic to Zp×

dimX .

Proof (?).
For Γ′ ⊆ Zp×

n a finitely-generated abelian group, dim Γ′ ≤ rankZ Γ′. Pick generators g1, · · · , gn
generators, then write a linear map

γ : Zpr → Zpn

ei 7→ gi.

The image is closed of dimension n = rank γ. We’ll now reduce the original lemma to
proving this statement. This is because any abelian p-adic Lie group is of the form Zp×

n ×
something finite for some n. If A has good reduction at p, then A(Qp) ∼= Zp ×A(Fp). Recall
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that there are maps:

exp : T0A(Zp)→ A(Qp)
log : sp−1(0)→ A(Zp),

where sp is the specialization map, and this induces an isomorphism of abelian groups.
The goal is to now construct a p-adic analytic function on A(Qp) vanishing on Γ. This
construction: due to Coleman. Fix ω ∈ H0(AQp ,Ω1

A/Qp), then there exists a p-adic analytic
function

A(Qp)→ Qp

Q 7→
∫ Q

0
ω.

This map is determined by

• Q→
∫ Q

0
ω is a morphism of topological groups,

• FTC: locally near 0, if f is a p-adic analytic function with ω = df , then
∫ Q

0
ω =

f(Q)− f(0).

�

Remark 21.1.3: Take Γ ⊆ Qp, then for U := Γ ∈ B0 a ball around the origin, consider log(U) ⊆
TQ(A) = Qp×

n . Let v1, · · · , vs ⊆ T0
∨A be dual vectors vanishing on log Γ. Then

• T0
∨A ∼= H0(A,Ω1

A)

• fi(Q) =
∫ Q

0
vi, viewing vi as a 1-form.

22 The Mordell Conjecture (Tuesday,
November 23)

Theorem 22.0.1(Faltings).
For K ∈ NumberField and X/k a smooth curve of genus g ≥ 2. Then

]X(k) <∞.

Example 22.0.2(?): Consider

xn + yn = 1.

Note that finiteness of rational points here is a weak form of Fermat: scaling out the denominators
yields a rational solution to FLT. This has finitely many rational solutions for n ≥ 4, which ensures
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g ≥ 2.

Another example is C ⊆ P2 a smooth curve, then we have finiteness when degC ≥ 4.

Remark 22.0.3: Strategy of proof: finite map with finite fibers, a standard way to prove a set is
finite. Note that Faltings proved a number of other famous conjectures along the way to proving
this:

Theorem 22.0.4(Shafarevich for curves).
Let K ∈ NumberField and S ⊆ Pl (k) a finite set of places. The set of proper curves over k of
genus g with good reduction outside of S is finite after modding out by isomorphism.

Remark 22.0.5: Rephrasing: Mg Deligne-Mumford stack, i.e. the functor sending a ring R to the
groupoid of smooth proper curves over R, has finitely many Ok,S points:

]Mg(Ok,S) <∞.

Note the stark contrast for Q, whereM2(Q) has infinitely many points: take

E :=
{
y2 = x(x− 1)f(x)

}
deg f = 3 separable

where 0, 1 are not roots of f . This produces an infinite family of genus 2 curves.

Remark 22.0.6: The Shafarevich conjecture for curves implies Mordell: fix S such that X has a
smooth proper model X/Ok,S with X(k) = X (Ok,S). Then we win if we can find a finite morphism
X ↪→Mg′/Ok,S for some g′. Note that if these were affine, this would be impossible. The existence
of such maps is the Kodaira-Parshin trick:

• Over C, existence was given by Kodaira,
• Over k, existence due to Parshin.

Faltings’ (and others’) proof pass though this trick.

Remark 22.0.7: Note that a special case of Shafarevich was proved by Faltings, Shafarevich proved
it for all curves. Recent results along these lines: proving Ok,S points are not Zariski-dense, or are
finite, for other interesting moduli spaces.

Theorem 22.0.8(Shafarevich for abelian varieties).
For k ∈ NumberField, S ⊆ Pl (k) finite, and g, d > 0, the set of isomorphism classes of abelian
varieties of dimension g with a polarization of degree d over k with good reduction outside of
S, is finite. Then

]Ag,d(Ok,S) <∞.

Remark 22.0.9: Line bundles are maps to Picard, d is the degree. For d = 1, these are principally
polarized.
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Remark 22.0.10: It’s enough to consider the case d = 1, which is not obvious – this is referred to
as Zahrin’s trick, and shows A, A8 always has a polarization of degree 1. Then Shafarevich for AVs
implies Shafarevich for curves, using the Torelli map:

Mg → Ag
[C] 7→ [Jac(C),Θ].

This is a finite map!

Definition 22.0.11 (Tate Modules)
A ∈ AbVar/k and ` some prime, the `-adic Tate module of A is defined as

T`(A) := lim←−−
n
A[`n](k) ∼= Z`×

2g
,

and V`(A) = T`(A)⊗Z` Q`.

Remark 22.0.12: Recall that finite generation of a field is being finitely generated over a prime
field.

Theorem 22.0.13(Tate Conjecture).
For A1, A2 ∈ AbVar/k with k finitely generated,

1. V`(Ai) are semisimple Galois representations.
2. After tensoring homs with Z`, we get an isomorphism of Z`-modules:

Hom
k

(A1, A2)⊗Z Z` ∼−→ Hom(T`(A1), T`(A2))⊗ Z`.

Remark 22.0.14: Part 1 is already very deep, it’s a special case of a conjecture we know almost
nothing about. In fact, it’s false over Qp: take

E : y2 = x(x− 1)(x− p) /Qp .

This has multiplicative reduction. Similarly, take

E : y2 = x(x− 1)(x− t) /C(t),

since the monodromy matrix
[
1 2
0 1

]
is not diagonalizable. Note that C(t) are the Puiseux series P .

Any topological generator of Gal(P/C(t)) ∼= Ẑ(1) acts on T`(A) by a matrix conjugate to this.

Remark 22.0.15: The general conjecture that we know almost nothing about:

Conjecture 22.0.16.
For X/k smooth proper,

1. Gk y H i(Xk;Q`) semisimply.
2. CHi(X)⊗Z Q→ H2i(Xk;Q`(i))

Gk is surjective.
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Remark 22.0.17: Extremely hard problems! Probably Fields material.

Theorem 22.0.18(Main difficult ingredient).
For A ∈ AbVar/k, there exist only finitely many isomorphism classes of abelian varieties over k
isogenous to A.

Proof (Sketch/idea).
Take X/k smooth proper with g(X) ≥ 2 and good reduction outside of S. For ` a prime, there
is a map
Define

• Mg′(Ok,S) =
{
Curves of genus g′ over k with good reduction outside S

}
/ ∼ and

KP : X(k)→Mg′ ,

corresponding to the Kodaira-Parshin trick.

• Ag′(Ok,S) for the PPAVs of dimension g′ with good reduction outside of S (mod isomor-
phism).

• Rep2g′(Gk,S∪{`}) for the set of semisimple Q` Galois representations of rank 2g′ and
weight −1 unramified outside of S ∪ {l} such that the characteristic polynomials of Frob
(a conjugacy class) outside of S ∪ {`} have integer coefficients.

Here ` is the ambient prime. Weight −1 means the eigenvalues of Frob are algebraic numbers
α where any embedding Q(αj) ↪→ C and |α| = |k(v)| 12 . Frob having integer coefficients comes
from the Weil conjectures.
Assembling these, we get a chain of maps

X(k) KP−−→ Ag′(Ok,S) Jac−−→ Ag′(Ok,S) V`−→ Rep2g′(Gk,S∪{`};Q`),

which we claim all have finite fibers, and the last set is finite:

• KP has finite fibers by construction
• Jac has finite fibers by the Torelli theorem
• V` has finite fibers, which is more difficult. By the Tate conjecture, the fiber over a

representation in V are isogenous AVs over k, but such sets are finite.

�

Theorem 22.0.19(?).

]RepN (Gk,S ;Q`) <∞.

Remark 22.0.20: We’ll discuss this in detail next time, but the idea is that representations
are determined by traces of group elements. For Γ ρ−→ GL(V ) a representation over ch k = 0, the
semisimplification ρss is determined by Tr ◦ρ. We can use that Frobenii are dense, and it’s enough to
determine this representation on a dense set, so we consider Tr(ρ(Frob)). This is still an infinite set,
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so we have to argue that finitely many determine it, but this comes from the bound on eigenvalues.

23 Tuesday, November 30

E 23.1 Faltings Theorem e

Definition 23.1.1 (?)
Write Rep∗N (Gk,S ;Q`) for semisimple continuous representation Gk,S∪{`} → GLn(O`) of weight
-1 such that for all v ∈ S ∪ {`}, the characteristic polynomial of Frob

v
has integer coefficients.

Note that the roots are αi ∈ Q such that Q(αi) ↪→ C and |αi| = q
i
2 .

Theorem 23.1.2(Faltings).
]X(k) <∞.

Theorem 23.1.3(?).
Rep∗N (Gk,S ,O`) is finite.

23.1.1 Proof

Lemma 23.1.4(A very important fact).
If Γ is a group and Γ ρ−→ GLn(L) is a semisimple representation over L a field of characteristic
zero. Then ρ is determined by Tr ◦ρ : Γ → L, i.e. any two representations for which these
composites agree differ by conjugacy.

Fact 23.1.5
ρ ∈ Rep∗N (Gk,S ,O`) is determined by

{
Tr ◦ρ ◦ Frob

v

∣∣∣ v ∈ S ∪ {`}
}
since the Frobenii are dense in

Gk,S∪{`} by Chebotarev density.

Fact 23.1.6
Fix v 6∈ S ∪ {`}, then there are only finitely many possibilities for

∣∣∣Tr ◦ρFrob
v

∣∣∣ < N · |κ(v)| 12 , since
traces of Frobenii are sums of eigenvalues.

Remark 23.1.7: This provides a finite set of Frobenii whose traces determine ρ. Given ρ1, ρ2, take
the group ring of the Galois group and consider the map

Q`
[
Gk,S∪{`}

]
ρ1×ρ2−−−−→ Mat(n× n;Zp)×

2
,
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where we used that GLn(Zp) ≤ GLn(Qp) is a maximal compact subgroup. The goal is to find a set
of places T such that

{
(ρ1, ρ2)(Frob

v
)
∣∣∣ v ∈ T

}
spans the image, which we can do since the RHS is

a finite-dimensional Zp module.

Remark 23.1.8: Let k̃ be the compositum of all extensions of k unramified outside of the set of
bad places S ∪ {`} of bounded degree ` < 2n2, the dimension of the RHS above. This is a finite
extension by Hermite-Minkowski. Let k̃cl be the Galois closure, and by Chebotarev choose T such
that

{
Frob
v

}
v∈T

cover all conjugacy classes of Gal(k̃cl/k).

Claim: For ρ1, ρ2 ∈ Rep∗N (Gk,S ;O`), if Tr(Frob
v

∣∣∣
ρ1

) = Tr(Frob
v

∣∣∣
ρ2

) for all v ∈ T , then ρ1 ∼= ρ2.

Proof (?).
Consider Z`[Gk,S ] (ρ1,ρ2)−−−−→ MatN×N (Z`)×

2 , writeM := im(ρ1, ρ2). ETS that the images of Frob
v

generate this as a Z` module. By Nakayama, it’s enough to check that they generate M/`M .
Note that #(M/`M)× < `2N

2 , so write τ : Gk,S∪{`} → (M/`M)×, then τ factors through
Gal

(
k̃cl/k

)
. Then im

({
Frob
v

∣∣∣ v ∈ T
})

= im τ .
�

E 23.2 The Kodaira-Parshin Trick e

Theorem 23.2.1(Parshin).
Let X be a curve over Ok,S , g(X) ≥ 2. After potentially increasing k and S, there exists a
finite map of algebraic varieties

X ′ →Mg′/Ok,S

for some g′ where X ′ is a finite étale cover of X.

Remark 23.2.2: Note thatM2 is affine and can’t contain a smooth proper curve. In general it
isn’t even proper, so it’s difficult to map a proper thing into a non-proper thing. Note that the RHS
is a stack over Ok,S . Why compactify in general: argue something is an open condition, degenerate
to the boundary where the objects are easier to work with and show it holds there and thus on an
open containing it.

Remark 23.2.3: Note that Hom(X,Mg′) is the of smooth proper morphisms Y → X over Ok,S
such that the geometric fibers are curves of genus g′. Take Y π−→ X and x ∈ X such that π−1(x) is
a cover of X ramified only at x.

Slogan 23.2.4
X is a moduli space of branched covers of X branched only at a single point.
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Idea: create a moduli space of such covers. Take η : X×2 \∆→ X where the fiber over X is X \{x}.

X

X

∆

X×2

π−1(X) = X \ {pt}

Remark 23.2.5: Over C, note that X is covered by H so π2X = 1 and η is a fibration, so taking
the LES in homotopy yields a SES

1→ π1(X \ {)} → π1(X×2 \∆)→ π1(X)→ 1.

Here π1(X) =
〈
a1, b1, · · · , ag, bg

∣∣∣
∏

[aibi] = 1
〉
. Pick any γ : π1(X \ {)} → S3 which doesn’t send

the loop around the puncture to the identity, i.e. γ
(∏

[aibi]
)
6= id. This now has ramification at a

point.

Define Γ :=
{
g
∣∣∣ π1(X×2 \∆)

∣∣∣ γg is conjugate to g
}
, i.e. there exists hg ∈ S3 such that for all

x ∈ π1(X \ {)} we have γ(gxg−1) = hgγ(x)h−1
g for all x ∈ π1(X \ {)}.

Claim: [Γ : π1(X×2 \∆)] <∞ has finite index and contains π1(X \ {)}.

Claim: This yields a group morphism

Γ→ Sg

g 7→ hg.

Remark 23.2.6: Some words on why these are true: stabilizers of groups acting on finite sets have
finite index, and the subgroup claim comes from sending hg → γ(g).

Remark 23.2.7: The construction:
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Y

XΓ X×
2 \∆

X ′ Xfinite fibers

Link to Diagram

The fibers of Y → X are disjoint unions of covers of X ramified at x. Since we now have a family
of curves, Y → X ′ yields a map X ′ →Mg′/C.

Claim: This map is not constant.

Remark 23.2.8: Suppose all of the fibers are isomorphic to some fixed Y of a fixed genus, then
Hom(Y,X) would be infinite. By Hurwitz, there’s a bound on the degree of such a map since g(Y )
is fixed, so there are only finitely many. E

Remark 23.2.9: To do everything over Ok,S , we use πét1 instead of π1 and include 2, 3 ∈ S. Since
the map is unramified over C, it’s ramified at only finitely many primes, so just add those to S.

24 Thursday, December 02

E 24.1 Setup e

Conjecture 24.1.1(Tate conjecture, general).
Let X ∈ sm Proj Var/k for k a finitely generated field. Conjecturally the cycle class map is
surjective:

CHi(X)Q` � H2i(Xk;Q`(i))
Gk .

Replacing rational equivalence by homological equivalence is conjectured to yield a bijection,
although this is closer to tautological – one quotients by the kernel of this map. A conjecture
with more content: replacing rational equivalence with numerical equivalence yields a bijection,
where one essentially quotients by the intersection pairing.
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Remark 24.1.2: Recall that we’re proving #X(k) <∞. Note

X(k) kP−−→Mg′(Ok,S) Jac−−→ Ag′(Ok,S) Vρ−→ Rep∗2g′(Gk,S ;Q`).

Last time we constructed KP and showed that Rep2g′ above is finite. The strategy: proving some
finiteness statement, prove a special case of the Tate conjecture (generally widely open), then get a
stronger finiteness result.

Theorem 24.1.3(Faltings, Tate conjecture for AVs over a number field).
For A,B ∈ AbVar/k, k ∈ NumberField,

1. The Tate modules V`(A), V`(B) are semisimple Gk-modules.

2. There is a bijection

Hom(A,B)⊗ Z` ∼−→ Hom
Gk

(T`(A), T`(B)),

where the LHS are isogenies.

Remark 24.1.4: This won’t be true for p-adic fields, but there is a version that works for finitely-
generated fields, e.g. function fields of varieties defined over number fields.

Theorem 24.1.5(Faltings, a finiteness result).
Isogeny classes over k are finite.

Theorem 24.1.6(Tate?).
Faltings’ finiteness result implies the Tate conjecture

Remark 24.1.7: The proof idea: use a height defined by Faltings:

Ag(k)→ R

satisfying

• For all N , ]
{

[A] ∈ Ag(k)
∣∣∣ h([A]) < n

}
is finite.

• If A ∼ B are isogenous, then |h(A)− h(B)| < C = C(A) a constant.

Note that these imply the finiteness result since
{
h(B)

∣∣∣ B ∼ A
}
<∞. There is a general height

machine theory here, which extends this theory to (nice, e.g. DM) stacks. Recent work is going into
extending height theories to more complicated stacks, e.g. algebraic spaces.

E
24.2 Proof: Finiteness implies the Tate

conjecture e

Claim: Hom(A,B) is torsionfree.
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Proof (?).
This is because Hom(A,B) ↪→ Hom(T`(A), T`(B)) since the `∞-torsion points are dense, and
the RHS is torsionfree.

�

Claim: There is a functor

T` : AbVar/k ⊗ Z` → RepGk

which is

• Faithful (and we’ll want to show it’s full)
• Hom(A,B) is finitely generated.

Proof (?).
The proof is essentially checking over C.

�

Claim: The following cokernel is torsionfree:

coker (Hom(A,B)⊗ Z` −→ Hom(T`(A), T`(B))) .

Proof (?).
Again, check over C!

�

Claim: The truth of the Tate conjecture is preserved under base change: given K/k a finite
extension, the Tate conjecture for K implies the Tate conjecture for k.

Proof (?).
Without loss of generality, let K ′/k be finite Galois.

Claim: For semisimplicity, the claim is that if Γ′ ≤ Γ is a subgroup of finite index and
ρ : Γ→ GLn(Q`), then if ρ|Γ′ semisimple implies ρ is semisimple.

Proof (?).
Proof: get a splitting ρ s−→ ρ′ and use an averaging argument on Γ/Γ′ (a la Maschke’s
theorem). This works since Q` is positive characteristic.

�

Claim: For the homs, the claim is that Hom(AK′ , BK′)⊗Z` → Hom(T`(A), T`(B)) is bijective.
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Proof (?).
Noting that we already have injectivity over any field. Let σ ∈ Hom

Gk
(T`A, T`B), then

there exists f : A → B over k such that T`(f) = σ. Since f is Gk-equivariant, we get
density by Galois descent.

�

Reduce to A = B by using A×B. Reduce to proving the following:

Claim: If W ⊆ V`(A) is a Galois stable subspace, there exists a u ∈ End(A) ⊗ Q` with
u(Vl(A)) = W .

Proof (?).
For semisimplicity, use that subrepresentations are continuous? Then use a double coset
trick.

�

Reduce to showing this for W a maximal isotropic subspace for the Weil pairing (a symplectic
form). This is Zahrin’s trick: replace A with A×4 , gives a way to “complete” any subspace
W ⊆ T`(A) to a maximal isotropic. The proof uses the Lagrange 4-squares theorem, how neat!
Write

Gn := W ∩ T`(A) + `nT`(A)
`nT`(A) ⊆ A[`n], Bn := A/Gn.

Then if W is maximal isotropic, Bn is a PPAV and thus so is A. The actual theorem Tate
proves:

Theorem 24.2.1(?).
It suffices to show that {Bn}n≥1 is finite.

Proof (Idea).
Write A ψn−−→ A/Gn = Bn and ψn

∨ : Bn → A, and from the construction of Gn and
unwinding definitions yields

ψn(T`(Bn)) = W ∩ T`(A) · `nT`(A).

So im(ψn) is “converging” to W ∩T`(A). Use that eventually the Bn stabilize to compose
γn : A ψn−−→ Bn

ψn∨−−→ A and replace this with γn : A→ B → A. Use that End(A)⊗ Z` is
a compact space to get a convergent subsequence.

�

�

Remark 24.2.2: The upshot: there exist finitely many PPAVs isogenous to A.

E 24.3 Faltings Heights e
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Remark 24.3.1: Write Ã → A :=:= Auniv,g → Ag for the universal family, and define a line bundle
L :=

∧top
s∗Ω1

Ã/A. A fact is that L is amply, since there exists a compactification of Ag to which
L is ample. This is a hard theorem and involves Siegel modular forms.

Remark 24.3.2: Define a height function associated to L:

h̃ : Ag(Q) L−→ PN (Q)→ R
[
x0
xi

: · · · : xn
xi

]
7→ max(|xi|,

∣∣x′i
∣∣).

This is the height machine, but it’s fairly incomputable.

Remark 24.3.3: A definition by Faltings: for A semisimple, write

H(A) =
∏

k↪→C

∫

A(C)
η ∧ ∧ η ∈ H0(A/OK ; Ωq

A),

taking a Néron model A for A. Then define

h(A) = 1
[k : Q] log(H(A)).

Theorem 24.3.4(Faltings).
There exist constant c1, c2 such that

|h(A)− c̃1h(A)| < c2

where the ci do not depend on A.

Proposition 24.3.5(?).
For f : A→ B an isogeny induces A→ B on Néron models, and

h(B)− h(A) = 1
2 log deg(f) · 1

[K : Q] log length s∗Ω1
/?.
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