# Wednesday, September 22 :::{.remark} Today: how to build more schemes by gluing known ones together. Let $(X_1, \OO_{X_1})$ and $(X_2, \OO_{X_2}) \in \Sch$, i.e. locally ringed spaces locally isomorphic to $(\spec R, \OO_{\spec R})$. Let $U_i \subseteq X_i$, and suppose we're given an isomorphism in $\LRS$: \[ \phi: (U_1, \ro{\OO_{X_1}}{U_1}) \to (U_2, \ro{\OO_{X_2}}{U_2}) .\] \begin{tikzpicture} \fontsize{42pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/Schemes/sections/figures}{2021-09-22_11-41.pdf_tex} }; \end{tikzpicture} Define a locally ringed space as follows: set $X = X_1 \disjoint X_2/ x\sim \phi(x)$, and define \[ \OO_X(U) \da \ts{ s_1 \in \OO_{X_1}(X_1 \intersect U), s_2\in \OO_{X_2}(X_2 \intersect U) \st \ro{s_1}{U_1 \intersect U} = \phi^\#(U_2 \intersect U)\qty{ \ro{s_2}{U_2 \intersect U} } } .\] ::: :::{.example title="?"} Consider $I \da (0, 1) \subseteq \RR$ and take $X_1 = X_2 \da (I, C^\infty(\wait; \RR))$. Using these to cover the circle, we can obtain $(S^1, C^\infty(\wait; \RR))$, using smooth functions that agree on the overlap (here a disjoint union of smaller intervals). ::: :::{.example title="A non-affine scheme"} Let $X_1 = X_2 \da \AA^1\slice k \da \spec k[x]$, and set $U_1 \subseteq X_1 \da D(x)$. Then take the clear isomorphism \[ (U_1, \OO_{X_1}\ro{}{U_1}) \mapsvia{\id} (U_2, \OO_{X_2}\ro{}{U_2}) ,\] since they're the same open subset of the same affine variety. Gluing yields the following: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/Schemes/sections/figures}{2021-09-22_11-56.pdf_tex} }; \end{tikzpicture} ::: :::{.exercise title="?"} Prove this is not an affine scheme. Use that regular functions are determined by their values on a Zariski open. ::: :::{.claim} For $X = \spec R$, recall that $D(f) \da \ts{ p\in \spec R \st p\not\ni f}$. Then $(D(f), \ro{ \OO_X }{D(f)})$ is an affine scheme. ::: :::{.proof title="?"} Consider $R\localize{f} \da \ts{r/f^k \st r\in R, k\geq 0}/\sim$. There's a map $R\to R\localize{f}$ which induces a map $\spec R\localize{f} \to \spec R$, and we claim it's the inclusion of $D(f)$. :::{.claim} $\spec R\localize f = D(f)$ as spaces. ::: This uses that primes in the localization are primes in $R$ not intersecting the inverted set. So $\spec R\localize f = \ts{p\in \spec R \st p \intersect \gens{f} = \emptyset}$, then use that $p \intersect \ts{f^k} = \emptyset \iff f\not\in p$, since prime ideals are radical. We now want to show $\OO_{\spec R\localize f} = \ro{\OO_{\spec R}}{D(f)}$. Check that \[ \OO_{\spec R\localize f} = \ts{s:U\to \Disjoint_{p\in U} (R\localize f)\localize p} \] and \[ \ro{\OO_{\spec R}}{D(f)}(U) = \ts{s: U \to \Disjoint_{p\in U} R\localize{p}} ,\] but $(R_f)_p = R_p$ since $f\not \in p$. This uses that $(R\localize{S_1})\localize{S_2} = R\localize{S_2}$ when $S_1 \subseteq S_2$. The first are functions of the form $(a/f^k)/(b/f^\ell) = f^\ell a/f^k b$, so anything locally a fraction in $R_f$ is locally a fraction in $R$. ::: :::{.example title="?"} Let $X_1 = \AA^1\slice k$ with $U_1 \da D(x) \subseteq X_2$ and $X_2 = \AA^1\slice k$ with $U_2 = D(y)$. Then \[ (U_1, \OO_{X_1}\ro{}{U_1}) \cong (k[x, x\inv], \OO_{\spec k[x, x\inv]}) \mapsvia{(\phi, \phi^\#)} (U_2, \OO_{X_2}\ro{}{U_2}) \cong (k[y, y\inv], \OO_{\spec k[y, y\inv]}) .\] Then $(\phi, \phi^\#)$ is an isomorphism in $\LRS$ is given by a unique isomorphism \[ \iota: k[x, x\inv] &\to k[y, y\inv] \\ y &\mapsto x \\ y\inv &\mapsto x\inv .\] Note that there is another isomorphism: \[ \iota': k[x, x\inv] &\to k[y, y\inv] \\ y &\mapsto x\inv \\ y\inv &\mapsto x .\] So glue instead by the morphism $(\phi, \phi^\#)$ induced by $\iota'$. We'll then define **projective space** as \[ \PP^1\slice k \da \AA^1\slice k \Disjoint_{(\phi, \phi^\#)} \AA^1\slice k .\] Note that this works over any ring! What does this do to closed points? The closed points of $\spec k[x, x\inv]$ are $\ts{(x-c) \st c\neq 0}$ if $k=\bar k$, which corresponded to the closed points $c\in \AA^1\slice k$ as a variety. Under $x\mapsto y\inv$, we have $(x-c)\mapsto (y\inv - c) = (y-c\inv)$, thus the variety point $c$ gets sent to $c\inv$. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/Schemes/sections/figures}{2021-09-22_12-21.pdf_tex} }; \end{tikzpicture} :::