# Monday, October 18 ## Dimension :::{.question} If $X = \spec A$ is affine and $U \subset \realize{X}$ is open, is the inclusion $U \injects X$, represented say by $\spec A' \injects \spec A$, represented by a ring map $A\to A'$? ::: :::{.definition title="Dimension"} For $X\in \Sch$, write $\dim X \da \dim_\Top \realize{X}$ as the topological dimension of the underlying space, which is the length of the longest chain of irreducible closed subsets \[ \emptyset \subsetneq Z_0 \subseteq Z_1 \subsetneq \cdots \subsetneq Z_n \subseteq \realize{X} ,\] where equality at the end is possible if $\realize{X}$ is irreducible. ::: :::{.example title="?"} \envlist - $\dim \spec k = 0$ - $\dim \spec \ZZpadic$: consider $\emptyset \subsetneq \pt \subseteq \spec \ZZpadic$, where $\pt$ is a generic point, so $\dim \spec \ZZpadic = 1$. - $\dim \PP^n\slice k = \dim \AA^n\slice k = n$. ::: :::{.example title="?"} If $X = \spec A$ is affine for $A$ then $\dim X = \krulldim A$ is the Krull dimension of the ring $A$. This follows because irreducible closed subsets of $\spec A$ biject with prime ideals of $A$. Why is this true? $\impliedby$: Suppose $p\containedin A$ is prime, then note that $V(p) = \ts{q \in \spec A \st q \contains p}$. If $V(p) = V(I) \union V(J) = V(IJ)$, then $p \contains IJ$ so $p$ contains one of $I, J$. But then $V(p) = V(I)$ wlog, so $V(p)$ is an irreducible closed subset. $\implies$: We can reverse almost all of these implications: - $V(p) = V(IJ)$ - $\iff p\contains IJ$ - $\iff p \subseteq I$ or $p \subseteq J$ - $\iff V(p) = V(I)$ or $V(J)$. Note that bijections preserve strict containments, so we have correspondences on chains: \[ \emptyset \subsetneq Z_0 \subsetneq \cdots \subsetneq Z_n \subset X = \spec A \\ \iff \\ \gens{1} \supsetneq p_0 \supsetneq \cdots \supsetneq p_n .\] ::: :::{.remark} So we can use that $\krulldim \kxn = n$ to show $\dim \AA^n\slice k = n$. For $\PP^n\slice k$, use that any maximal chain contains a point $\ts{z_0}$, so choosing such a point and intersecting $z_i$ with the embedded copy of $\AA^n\slice k\injects \PP^n\slice k$. Then use that there is a chain $\gens{0} \subsetneq \gens{x_1} \subsetneq \gens{x_1, x_2} \cdots \subsetneq \gens{x_1,\cdots, x_n}$, so $\dim X \geq n$. For the reverse inequality: this is hard! See Atiyah-MacDonald's discussion of regular systems of parameters. ::: :::{.definition title="Codimension"} The **codimension** $\codim(Z, X)$ for $Z \subseteq X$ a closed irreducible subset is the length of the longest chain starting at $Z$: \[ Z = Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_n \subset X .\] ::: :::{.fact} For $X = \spec A$ and $A\in \kalg^\fg$, there is a formula \[ \dim(Z) + \codim(X, Z) = \dim (X) .\] ::: :::{.remark} This is not true in general, even for Noetherian rings -- see **catenary rings**, where any chain of prime ideals can be extended to a chain of fixed maximal length $n$. Without this, one can extend chains to maximal chains of differing lengths. ::: :::{.example title="?"} $\dim \spec \ZZ = 1$, instead of having dimension zero! This is because there's always a chain $0 \to \gens{p} \to \ZZ$ for any prime. An analogy here is a curve $\spec k[x, y] / \gens{f(x, y)}$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/Schemes/sections/figures}{2021-10-18_12-16.pdf_tex} }; \end{tikzpicture} One can similarly do this for $\OO_K$ the ring of integers in a number field $K$ and get $\dim \spec \OO_K = 1$. This leads to a good theory of divisors (free modules on codimension 1 subvarieties) and the Picard group, so a useful geometrization of number theory. ::: ## Fiber Products :::{.remark} Perhaps the most important construction in schemes! Picks up intersection multiplicities. ::: :::{.definition title="Fiber products"} Let $X, Y \in \Sch\slice{S}$ then $X\fiberprod{S} Y \in \Sch\slice{S}$ is an $S\dash$scheme equipped with morphisms of $S\dash$schemes onto $X, Y$ satisfying a universal property. For any $Z$ with maps to $X$ and $Y$, there is a unique $\theta$ making the following diagram commute: \begin{tikzcd} & Z \\ & {} \\ & {X\fiberprod{S} Y} \\ Y && X \\ & S \arrow[from=4-1, to=5-2] \arrow[from=4-3, to=5-2] \arrow[from=1-2, to=4-1] \arrow[from=1-2, to=4-3] \arrow["{\exists !\theta}"{description}, dashed, from=1-2, to=3-2] \arrow[from=3-2, to=4-1] \arrow[from=3-2, to=4-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMSwwLCJaIl0sWzAsMywiWSJdLFsyLDMsIlgiXSxbMSw0LCJTIl0sWzEsMV0sWzEsMiwiWFxcZnB7U30gWSJdLFsxLDNdLFsyLDNdLFswLDFdLFswLDJdLFswLDUsIlxcZXhpc3RzICFcXHRoZXRhIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzUsMV0sWzUsMl1d) ::: :::{.remark} Note that on the ring side, this yields a tensor product over $S$. :::