# Wednesday, November 03 :::{.remark} Let $R\in \DVR, k = \ff(R)$, then a $k\dash$point of $X$ is a morphism $\spec k \to X$ and is given by the data of an inclusion $p_1\in \realize{X}$ and an inclusion $\kappa(p_1) \injects k$. ::: :::{.example title="?"} Why these are called $k\dash$points? Given $\spec \QQ\to \spec S\da \spec \ZZ[x,y,z]/ \gens{x^5 +y^5-z^5}$, then there is a ring map $S\to \QQ$ where $x,y,z \mapsto x_0,y_0, z_0$ satisfying $x_0^2 +y_0^2=z_0^2$. So these are rational solutions to the defining equations. ::: :::{.remark} Lifting a $k\dash$point to an $R\dash$point $\spec R \to X$ requires $p_0 \in \cl(\ts{p_1})$ and a domination $\OO_{\cl(\ts{p_1}), p_0} \to R$ inducing the $k\dash$point in the sense that the generic point of $\spec R$ maps to the generic point of $\spec \OO_{\cl\ts{p_1}, p_0}$ corresponding to an inclusion of fields. So we get a morphism of local rings. ::: :::{.remark} We saw that $f:X\to Y$ is separated iff $\Delta(X) \injects X\fiberpower{Y}{2}$ is closed iff any $k\dash$point of $X$ has at most one specialization over a given $R\dash$point of $Y$. Idea: rules out two lifts. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/Schemes/sections/figures}{2021-11-03_11-40.pdf_tex} }; \end{tikzpicture} Note that this needs $X$ to be Noetherian. > Is separatedness local? Perhaps $X$ only locally Noetherian would suffice. ::: :::{.remark} Review the difference between "of finite type" and "*locally* of finite type". ::: :::{.definition title="Closed and universally closed"} A morphism $f:X\to Y$ is **closed** if the underlying map $\realize{f}: \realize{X} \to\realize{Y} \in \Top$ is a closed continuous map (so images of closed sets are closed), and $f$ is **universally closed** if for all $Y' \to Y$ the change $f': X\fiberprod{Y} Y'\to Y'$ is closed. ::: :::{.example title="?"} Identity maps $\id_X:X\to X$ are closed, using that $Y\fiberprod{X} X \cong Y$ and pulling back $\id_X$ yields $\id_Y$. ::: :::{.example title="A non-example"} Consider $\AA^1\slice k\to \spec k$, which is closed since $\spec k = \pt$ and has the discrete topology. This is not universally closed, since we have \begin{tikzcd} {\AA^2\slice k} && {\AA^1\slice k} \\ \\ {\AA^1 \slice k} && {\spec k} \arrow["f", from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \arrow["{f'}"', from=1-1, to=3-1] \arrow[from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXEFBXjJcXHNsaWNlIGsiXSxbMCwyLCJcXEFBXjEgXFxzbGljZSBrIl0sWzIsMiwiXFxzcGVjIGsiXSxbMiwwLCJcXEFBXjFcXHNsaWNlIGsiXSxbMywyLCJmIl0sWzEsMl0sWzAsMSwiZiciLDJdLFswLDNdXQ==) Consider $Z\da V(xy-1) \subseteq \AA^2\slice k$, then $f'(Z) = \AA^2\slice k\smz$ is projection onto the $x\dash$axis and is not closed in $\AA^2\slice k$. What this is a projection onto the $x\dash$axis: this comes from the map $f: k[x] \injects k[x, y] \cong k[x] \tensor_k k[y]$ where $f\inv(\gens{x-x_0, y-y_0}) = \gens{x-x_0}$, so geometrically this yields the $(x_0, y_0) \to x_0$. ::: :::{.example title="?"} Consider $\PP^1\slice k \da \proj k[x,y]$ and consider $\PP^1\slice k \to \spec k$. Here $\PP^1\slice k$ is supposed to be "compact" in the sense that graphs of all functions are closed. ::: :::{.exercise title="?"} Are compact spaces universally closed in $\Top$? ::: :::{.definition title="Proper"} A morphism $f:X\to Y$ is **proper** if 1. $f$ is of finite type, 2. $f$ is separated, 3. $f$ is *universally closed* ::: :::{.remark} This ranges over all possible base changes, so it's quite hard to actually check! The following result gives an easier way: ::: :::{.theorem title="Valuative criterion of properness"} Let $f:X\to Y$ be a finite type morphism with $X$ Noetherian. Then $f$ is proper $\iff$ there exists unique lifts $\Theta$ of the following form: \begin{tikzcd} {\spec k} && X \\ \\ {\spec R} && Y \arrow["f", from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \arrow[from=1-1, to=1-3] \arrow[from=1-1, to=3-1] \arrow["{!\Theta}"{description}, dashed, from=3-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXHNwZWMgayJdLFswLDIsIlxcc3BlYyBSIl0sWzIsMiwiWSJdLFsyLDAsIlgiXSxbMywyLCJmIl0sWzEsMl0sWzAsM10sWzAsMV0sWzEsMywiIVxcVGhldGEiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) ::: :::{.remark} Most spaces in practice are separated and of finite type, unless you're working with moduli of K3 surfaces! ::: :::{.proof title="$\implies$"} Suppose $f$ is proper, then $f$ is separated and we have uniqueness for any lifts by the valuative criterion for separatedness. This uses that $X$ is Noetherian. It then suffices to show existence of $\Theta$, using that $f$ is universally closed. Consider the base change $X_R \da X\fiberprod{Y} \spec R$, then using commutativity we get a morphism $s: \spec k \to X_R$. Let $p_1 = s(\gens{0}) \subseteq X_R$, we'll then try to specialize $p_1$. Let $Z \da \cl\ts{p_1} \subseteq X_R$, then since $f$ is proper and $Z$ is closed in $X_R$, $f_R(Z)$ is closed: \begin{tikzcd} {X_R} && X \\ \\ {\spec R} && Y \arrow["f", from=1-3, to=3-3] \arrow[from=3-1, to=3-3] \arrow[from=1-1, to=1-3] \arrow["{f_R}"', from=1-1, to=3-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJYX1IiXSxbMCwyLCJcXHNwZWMgUiJdLFsyLDAsIlgiXSxbMiwyLCJZIl0sWzIsMywiZiJdLFsxLDNdLFswLDJdLFswLDEsImZfUiIsMl1d) We can compose $\spec k \to Z \mapsvia{f_R} \spec R$ to get $\tilde f$, which is an inclusion of the generic point: \begin{tikzcd} {\spec k} \\ & {X_R} && X \\ \\ & {\spec R} && Y \arrow["f", from=2-4, to=4-4] \arrow[from=4-2, to=4-4] \arrow[from=1-1, to=2-4] \arrow["{\tilde f}"', from=1-1, to=4-2] \arrow["{!\Theta}"{description}, dashed, from=4-2, to=2-4] \arrow[from=1-1, to=2-2] \arrow[from=2-2, to=2-4] \arrow["{f_R}"{description}, from=2-2, to=4-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCJcXHNwZWMgayJdLFsxLDMsIlxcc3BlYyBSIl0sWzMsMywiWSJdLFszLDEsIlgiXSxbMSwxLCJYX1IiXSxbMywyLCJmIl0sWzEsMl0sWzAsM10sWzAsMSwiXFx0aWxkZSBmIiwyXSxbMSwzLCIhXFxUaGV0YSIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDRdLFs0LDNdLFs0LDEsImZfUiIsMV1d) Then $f_R(Z) = \spec R$ and so there exists $p_0 \in Z$ with $f_R(p_0) = \mfm$, the closed point in $\spec R$. So we get \[ g: Z &\to \spec R \\ \cl\ts{p_1}\ni p_0 &\mapsto \mfm \\ p_1 &\mapsto \gens{0} .\] Taking stalks yields a local ring morphism $g^\sharp_{p_0}: R\to \OO_{Z, p_0}$, and this completes to a diagram: \begin{tikzcd} R && {\OO_{Z, p_0}} \\ \\ k && {\ff \OO_{Z, p_0} = \kappa(p_1)} \arrow[from=1-1, to=3-1] \arrow[from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJSIl0sWzIsMCwiXFxPT197WiwgcF8wfSJdLFswLDIsImsiXSxbMiwyLCJcXGZmIFxcT09fe1osIHBfMH0gPSBcXGthcHBhKHBfMSkiXSxbMCwyXSxbMiwzXSxbMSwzXSxbMCwxXV0=) But $R$ is final with respect to domination for local rings $R'$ in $k$ with $\ff R' = k$, and if final objects admit morphisms to other objects, those objects must also be final, so $R = \OO_{Z, p_0}$. This yields a domination $\OO_{Z, p_0} \to R$, which corresponds to a lift $\spec R \to X$. :::