# Tuesday, December 07 :::{.proposition title="?"} For $f\in K(C)\units$ for $C$ a smooth complete curve, $\deg(\div f) = 0$. ::: :::{.proof title="?"} If $f$ is constant this is trivial, so assume not. Define \[ U_1 &\da \ts{p\in C \st v_p(F) \geq 0 } \\ U_2 &\da \ts{p\in C \st v_p(F) \leq 0 } .\] Then $U_1 \intersect U_2$ is precisely the set of closed points of $C$. Suppose $f$ is regular on $U_1$, so $1/f$ is regular on $U_2$. Define a map $\hat{f}: C\to \PP^1$ by writing $\PP^1 = \AA_1 \union \AA_1$ and defining $\ro{f}{U_i}: U_i\to \AA^1$ to map into the $i$th factor. Note that $\ro{\hat f}{U_2} = 1/f$. Then \[ \div(f) = \sum_{p\in C} v_p(f) [p] = f^*\qty{ [0] - [\infty]} \da f^*(D) .\] Then $\deg(\div(f)) = \deg f \cdot \deg (D) = 0$ since $\deg(D) = 0$, noting that $\deg f$ is the degree of the corresponding field extension. ::: :::{.corollary title="?"} For a smooth complete curve, the degree map descends to a well-defined map: \[ \deg: \Cl(C) &\to \ZZ \\ \sum n_p p &\mapsto \sum n_p .\] ::: :::{.definition title="$\Cl_0$"} Define \[ \Cl_0(C) \da \ker\qty{\Cl(C) \mapsvia{\deg} \ZZ} .\] ::: :::{.definition title="Elliptic curve"} An **elliptic curve** $E$ is a smooth complete genus 1 curve over $k$ with a distinguished closed point $0\in E$ called the origin. Complex analytically, $E = \CC/ \Lambda$ where $\Lambda \subset \CC$ is an integral lattice with $\Lambda \tensor_\ZZ \RR \cong \CC$, so the basis vectors are independent. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/Schemes/sections/figures}{2021-12-07_11-49.pdf_tex} }; \end{tikzpicture} ::: :::{.example title="?"} The cubic in $\PP^3\slice k$ defined by \[ C \da V(zy^2 = x^3 + axz^2 + bz^3), \quad 0 \da [0: 1 : 0] .\] ::: :::{.definition title="Weierstrass $\wp$ function"} Define a complex analytic function \[ \wp: \CC &\to \PP^1 \\ z &\mapsto {1\over z^2} + \sum_{\lambda\in \Lambda\smz} {1\over (z-\lambda)^2} - {1\over \lambda^2} = z^{-2} + \bigo(z^2) .\] ::: :::{.remark} Note that - $\wp(z + \lambda) = \wp(z)$ for all $\lambda \in \Lambda$ - $\wp: E\to \PP^1$, so $\wp\in \CC(E)\units$ - $\wp'(z) = \sum_{\lambda\in \Lambda} {-2 \over (z - \lambda)^3}\in \CC(E)\units = -{2\over z^3} + \bigo(z)$. - $\wp'(z)^2 = {4\over z^6} + {c_1\over z^2} + \bigo(1)$ - $\wp(z)^3 = z^{-6} + c_2z^{-2} + \bigo(1)$ So there is a relation \[ F: \quad \wp'(z)^2 = 4\wp(z)^3 + G_2(\Lambda)\wp(z) + G_3( \Lambda) + \bigo(z) .\] Note that this cancels the poles at the lattice points, making it a bounded holomorphic function and thus constant. Since it's $\bigo(z)$, this forces it to be zero. So define a map \[ E &\to \PP^2\slice \CC \\ z &\mapsto [\wp(z): \wp'(z): 1] ,\] and note that $0\mapsto [0:1:0]$ so this factors through $V(zy^2 = 4x^3 + G_2( \Lambda)xz^2 + G_3(\Lambda) z^3 )$ biholomorphically, using that $\deg \wp, \wp' = 2,3$ to get injectivity. This makes $E$ an algebraic variety. ::: :::{.remark} An aside: suppose $f: C_1\to C_2$ is a degree 1 holomorphic map of compact complex curves. Then $f'=0$ at only finitely many points, so $f$ is invertible on an open set and $f\inv$ extends continuously to $C_2$. Now use the Riemann removable singularity theorem: extending a holomorphic function continuously over a puncture implies that the new function is holomorphic. ::: :::{.remark} Why is this algebraic structure unique? Use an overpowered theorem: Serre's GAGA, i.e. there is a unique variety structure on a compact complex manifold over $\CC$. In our case, it suffices to show $\wp(z-c), \wp'(z-c)\in \CC(\wp, \wp')$. In fact, the rational functions are given by $K(X) = \ff\qty{\CC[\wp, \wp']/\gens{\text{a cubic}}}$. ::: :::{.remark} Write $E$ for the vanishing locus of the cubic $F$ above, and consider a map \[ \CC/ \Lambda \iso E \subseteq \PP^2\slice \CC .\] Consider a line $L \subseteq \PP^2\slice \CC$, then $L \intersect C = p+q+r = \div(L)$ generically. We claim $p+q+r \equiv 0 \mod \Lambda$. \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2021/Fall/Schemes/sections/figures}{2021-12-07_12-11.pdf_tex} }; \end{tikzpicture} To prove this: write $L_0 \da V(z)$, so $\div(L_0) = 3[0]$, and consider $L_0 \intersect V(F)$. We have $\div(L/L_0) = [p] + [q] +[r] - 3[0]$. :::{.claim} If $f\in K(E)\units$ and $\div f = \sum n_p [p]$ then $\sum n_p p \equiv 0 \mod \Lambda$ after taking these as honest points in $\CC$. ::: To prove this, do some kind of contour integral over the fundamental domain and use lattice periodicity of $f$. This yields $p+q+r-3\cdot 0 \in \Lambda$, so given any two points we can solve for the third. ::: :::{.remark} This can be used as a reduction algorithm: \[ [p_1] + [p_2] + 2[p_3] - 4[p_4] &= [p_1 + p_2] + [0] + 2[p_3] - 4[p_4] \in \Div^0(E) \\ &= 2[p_3 - p_4] - 2[p_4] - 2[0] \\ \cdots &= [p] - [0] \implies ,\] so there is an isomorphism \[ E &\to \Cl^0(E) \\ p &\mapsto [p] - [0] .\] :::