
Notes: These are notes live-tex’d from a graduate

course in Floer Homology taught by Akram Alishahi

at the University of Georgia in Spring 2021. As such,

any errors or inaccuracies are almost certainly my

own.

Floer Homology
Lectures by Akram Alishahi. University of Georgia, Spring 2021

D. Zack Garza

D. Zack Garza
University of Georgia
dzackgarza@gmail.com
Last updated: 2021-05-02

1

mailto: dzackgarza@gmail.com


Contents

Table of Contents

Contents

Table of Contents 2

1 Lecture 1: Overview (Wednesday, January 13) 4
1.1 Course Logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Expository Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Research Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Basic Morse Theory, Symplectic Geometry and Floer Homology . . . . . . . 5
1.1.5 Low-dimensional Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.6 Suggested Topics for Presentations . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Intro and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Geometric Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Some properties of Knot Floer Homology . . . . . . . . . . . . . . . . . . . . 10

2 Lecture 2 (Tuesday, January 19) 17
2.1 Constructing Heegard Floer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Lagrangian Floer Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Lecture 3: Morse Theory (Thursday, January 19) 23
3.1 Intro to Morse Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Tuesday, January 26 34
4.1 Attaching Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Stable and Unstable Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Morse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Morse Homology and Lagrangian Floer Homology (Thursday, January 28) 45
5.1 Morse Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Lagrangian Floer Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Lecture 6 (Tuesday, February 02) 52

7 Lecture 7 (Thursday February 04) 56
7.1 Lagrangian Floer Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Lecture 8 (Thursday, February 04) 62
8.1 Heegard Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2 Heegard Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9 Lecture 9 (Thursday, February 11) 74
9.1 Heegard Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 Heegard Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table of Contents 2



Contents

10 Tuesday, February 16 80
10.1 Symmetric Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11 Thursday, February 18 84

12 Tuesday, February 23 89
12.1 Whitney Discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

13 Thursday, February 25 100
13.1 Whitney Discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13.2 Holomorphic Discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

14 The Heegard-Floer Chain Complex & Maslov Index (Tuesday, March 02) 107
14.1 Pointed Heegard Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
14.2 Maslov Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

15 Maslov Index Formula (Thursday, March 04) 112
15.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
15.2 Positivity Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

16 Tuesday, March 09 118

17 Thursday, March 11 122

18 Maslov Grading and SpinC Structures (Tuesday, March 16) 131
18.1 SpinC Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

19 Thursday, March 18 135
19.1 SpinC Structures and Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

20 Thursday, March 25 140

21 Tuesday, March 30 143
21.1 L-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
21.2 Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

22 Tuesday, April 06 148
22.1 Surgery Exact Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

23 Surgery Exact Triangle and Knot Diagrams (Thursday, April 15) 153

ToDos 161

Definitions 162

Theorems 164

Exercises 165

Figures 167

Contents 3



1 Lecture 1: Overview (Wednesday, January 13)

1 Lecture 1: Overview (Wednesday, January
13)

E 1.1 Course Logistics e

Note (DZG): Everything in this section comes from
Akram!

1.1.1 Description

“I am teaching a topics course about Heegaard Floer homology next semester. Heegaard Floer
homology was defined by Peter Ozsváth and Zoltan Szabó around 2000. It is a package of powerful
invariants of smooth 3- and 4-manifolds, knots/links and contact structures. Over the last two
decades, it has become a central tool in low-dimensional topology. It has been used extensively to
study and resolve important questions concerning unknotting number, slice genus, knot concordance
and Dehn surgery. It has been employed in critical ways to study taut foliations, contact structures
and smooth 4-manifolds. There are also many rich connections between Heegaard Floer homology
and other manifold and knot invariants coming from gauge theory as well as representation theory.
We will learn the basic construction of Heegaard Floer homology, starting with the definition of
the 3-manifold and knot invariants. In the second half of this course, we will turn to computations
and applications of the theory to low-dimensional topology and knot theory. In particular, several
numerical invariants have been defined using this homological invariants. At the end of the semester,
I would expect each one of you to learn the construction of one of these invariants (of course with
my help) and present it to the class.”

1.1.2 Expository Papers

• [G] J. Greene, Heegaard Floer homology
• [H] J. Hom, Lecture notes on Heegaard Floer homology
• [L] R. Lipshitz, Heegaard Floer homologies
• [M] C. Manolescu, An introduction to knot Floer homology
• [OS-1] P. Ozsváth and Z. Szabó, An introduction to Heegaard Floer homology
• [OS-2] P. Ozsváth and Z. Szabó, Lectures on Heegaard Floer homology
• [OS-3] P. Ozsváth and Z. Szabó, Heegaard diagrams and holomorphic disks

1.1.3 Research Papers

• [OSz04a] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for
closed three-manifolds. Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. arXiv:math/0101206
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https://www.ams.org/journals/notices/202101/rnoti-p19.pdf
https://arxiv.org/pdf/2008.01836.pdf
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• [OSz04b] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and three-manifold invari-
ants: properties and applications. Ann. of Math. (2) 159 (2004), no. 3, 1159–1245.
arXiv:math/0105202

• [OSz04c] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants. Adv.
Math. 186 (2004), no. 1, 58–116. arXiv:math/0209056

• [OSz06] Peter Ozsváth and Zoltán Szabó, Holomorphic triangles and invariants for smooth
four manifolds. Adv. Math. 202 (2006), no. 2, 326–400. arXiv:math/0110169

• [Per08] Timothy Perutz, Hamiltonian handleslides for Heegaard Floer homology. Proceed-
ings of Gökova Geometry-Topology Conference 2007, 15–35, Gökova Geometry/Topology
Conference (GGT), Gökova, 2008. arXiv:0801.0564

1.1.4 Basic Morse Theory, Symplectic Geometry and Floer Homology

• [Mi-1] Milnor, Morse theory
• [Mi-2] Milnor, Lectures on the h-cobordism theorem
• [Ca] A. Cannas da Silva. Lectures on Symplectic Geometry
• [Mc] D. McDuff, Floer theory and low-dimensional topology
• [AD] M. Audin and M. Damian, Morse theory and Floer homology
• [Hu] M. Hutchings, Lecture notes on Morse homology (with an eye towards Floer theory and

pseudoholomorphic curves)

1.1.5 Low-dimensional Topology

• [S] N. Saveliev, Lectures on the topology of 3-manifolds
• [R] D. Rolfsen, Knots and links
• [GS] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus
• [L] R. Lickorish, An introduction to knot theory

1.1.6 Suggested Topics for Presentations

• [SW] S. Sarkar and J. Wang, [An algorithm for computing some Heegaard Floer homologies,
Ann. of Math., 171 (2010), 1213–1236, arXiv:math/0607777.

• Grid homology from:

– C. Manolescu and P. Ozsváth and S. Sarkar, A combinatorial description of knot Floer
homology, Ann. of Math., 169 (2009), 633–660, arXiv:math/0607691.

– P. Ozsváth and A. Stipsicz and Z. Szabó, Grid Homology for Knots and Links,

♦ Also available here with comment: please go and buy a hard copy, too!
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https://arxiv.org/abs/math/0105202
https://arxiv.org/abs/math/0209056
https://arxiv.org/abs/math/0110169
https://arxiv.org/abs/0801.0564
https://press.princeton.edu/books/paperback/9780691080086/morse-theory-am-51-volume-51
https://press.princeton.edu/books/hardcover/9780691651132/lectures-on-the-h-cobordism-theorem
https://www.springer.com/gp/book/9783540421955
http://www.math.stonybrook.edu/~dusa/floer8.pdf
https://link.springer.com/book/10.1007/978-1-4471-5496-9
https://math.berkeley.edu/~hutching/teach/276-2010/mfp.ps
https://math.berkeley.edu/~hutching/teach/276-2010/mfp.ps
https://www.degruyter.com/view/title/121170
https://bookstore.ams.org/chel-346-h/
https://bookstore.ams.org/gsm-20
https://link.springer.com/book/10.1007/978-1-4612-0691-0
https://arxiv.org/abs/math/0607777
https://annals.math.princeton.edu/wp-content/uploads/annals-v169-n2-p07.pdf
https://annals.math.princeton.edu/wp-content/uploads/annals-v169-n2-p07.pdf
https://arxiv.org/abs/math/0607691
https://bookstore.ams.org/surv-208
https://web.math.princeton.edu/~petero/GridHomologyBook.pdf
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• J. Hom, A survey on Heegaard Floer homology and concordance J. of Knot Theo. and Its
Ram.(2) 26 (2017) arXiv:1512.00383

• K. Honda and W. Kazez and G. Matić, On the contact class in Heegaard Floer homology, J.
Differential Geom. (2) 83 (2009), 289-311, arXiv:math/0609734

• Sutured Floer homology from:

– [L] Lipshitz expository paper listed above
– A. Juhász Holomorphic discs and sutured manifolds Algebr. Geom. Topol., (3) 6 (2006),

1429-1457, arXiv:math/0601443
– A. Juhász, Knot Floer homology and Seifert surfaces Algebr. Geom. Topol., (1) 8 (2008),

603-608 arxiv:math/0702514

Convert to bibtex?

E 1.2 Intro and Motivation e

Remark 1.2.1: We’ll assume everything is smooth and oriented.

Proposition 1.2.2(Osvath-Szabo (2000)).
To closed 3-manifoldsM we can assign a graded abelian group ĤF (M), which can be computed
combinatorially a . There are several variants:

• HF− ∈ grMod(Z2[u]), b

• HF+ ∈ Mod(Z2[u, u−1]/uZ2[u]).

• HF∞ ∈ grMod(Z2[u, u−1]),

HF+ and HF∞ can be computed using HF−. In general, we’ll write HF− to denote con-
structions that work with any of the above variants.

aSee Sarkour-Wang
bThis is the strongest variant.

Remark 1.2.3: Note that Z2 can be replaced with Z, but it’s technical and we won’t discuss it
here. For the first half of the course, we’ll just discuss ĤF , and we’ll discuss the latter 3 in the
second half.

E 1.3 Geometric Information e

Remark 1.3.1: These invariants can be used to compute theThurston seminorm of a 3-manifold:

1.2 Intro and Motivation 6

https://www.worldscientific.com/doi/abs/10.1142/S0218216517400156
https://arxiv.org/abs/1512.00383
https://projecteuclid.org/euclid.jdg/1261495333
https://arxiv.org/abs/math/0609734
https://projecteuclid.org/euclid.agt/1513796585
https://arxiv.org/abs/math/0601443
https://projecteuclid.org/euclid.agt/1513796824
https://arxiv.org/abs/math/0702514
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Definition 1.3.2 (Thurston Seminorm)
A homology class α ∈ H2(M) can be represented as α ∈ [S] for S a closed surface whose

fundamental class represents α where S =
n⋃
i=1

Si can be a union of closed embedded surfaces

Si. Then we first compute

max {0,−χ(Si)} =


0 if Si ∼= S2,T2

−χ(Si) = 2g(Si)− 2 else.
.

Note that the max checks if χ is positive. Then define

‖α‖ := min
S

(
n∑
i=1

max {0,−χ(Si)}
)
,

where we sum over the embedded subsurfaces and check which overall surface gives the smallest
norm.

Remark 1.3.3: Note that this can’t be a norm, since if S2,T2 ∈ [S] =⇒ ‖α‖ = 0.

Theorem 1.3.4(Osvath-Szabo).
HF detects a the Thurston seminorm, and there is a splitting as groups/modules

HF−(M) =
⊕

s∈Spinc(M)
HF−(M,S)

where S ∈ Spinc(M) is a spinc structure: an oriented 2-dimensional vector bundle on M (up
to some equivalence).

aWhat does “detect” mean? This is slightly technical.

Remark 1.3.5: The Thurston norm ‖a‖ can be computed from this data by considering a perturbed
version of ĤF , denoted ĤF , in the following way: taking the first Chern class c1(s) ∈ H2(M) (which
can be associated to every 2-dimensional vector bundle), we have

‖α‖ = max
ĤF (M,s)6=0

|〈c1(s), α〉|.

Slogan 1.3.6
Floer homology groups split over these spinc structures and can be used to compute Thurston
norms.

Theorem 1.3.7(Ni).
Given F ⊆ M with genus g ≥ 2, HF detects if M fibers over S1 with F as a fiber, i.e. there
exists a fiber bundle

1.3 Geometric Information 7
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F M

S1

π

This uses the existence of the splitting over spinc structures and uses HF+ in the following
way: such a bundles exists if and only if⊕

〈c1(s), [F ]〉=2g−2
HF+(M, s) = Z.

Definition 1.3.8 (Contact Structure)
Equivalently,

• A smooth oriented nowhere integrable 2-plane field ξ, or

• A 2-plane field ξ := ker(α) where α is a 1-form such that α ∧ dα > 0. a

aNote that wedging to a nontrivial top form is equivalent to being nowhere integrable here.

Example 1.3.9(?): The standard contact structure on R3 is given by

α := dz − ydz,

which yields the following 2-plane field ξ := kerα:

Figure 1: 2-Plane Field in R3

You can see that z = 0 =⇒ y = 0, so the xy-plane is in the kernel, yielding the flat planes down
the middle:

1.3 Geometric Information 8
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Figure 2: Flat Planes

Proposition 1.3.10(Contact Class (Osvath-Szabo-Honda-Kazez-Matic)).
To each such ξ one can associate a contact class c(ξ) ∈ ĤF (−M), where −M is M with the
reversed orientation.

Remark 1.3.11: This gives obstructions for two of the following important properties of contact
structures:

• Being overtwisted, or
• Being Stein fillable.

Theorem 1.3.12(?).

• If ξ is overtwisted, then c(ξ) = 0.
• If ξ is Stein fillable, then c(ξ) 6= 0.

Remark 1.3.13: We’ll also discuss similar invariants for knots that were created after these invari-
ants for manifolds.

Definition 1.3.14 (Knots)
Recall that a knot is an embedding S1 ↪→M .

1.3 Geometric Information 9
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Figure 3: Example: the trefoil knot

Proposition 1.3.15(Knot Floer Homology (Ozsváth-Szabó)).
Given a knot K ⊆M a 3-manifold (e.g.M = S3), there is extra algebraic structure on ĈF (M):
a filtration. These allow defining a new bigraded abelian group ĤFK(M,K) (which is also a
Z2-vector space) that takes includes the information of K. This yields a decomposition

ĤFK(M,K) =
⊕
m,a

ĤFKm(M,K, a).

This similarly works for other variants: there is a filtration on CF−(M) which yields
HFK−(M,K), a bigraded Z2[u]-module.

1.3.1 Some properties of Knot Floer Homology

Fact 1.3.16
ĤFK(K) categorifies the Alexander polynomial ∆K(t) of K, i.e. taking the graded Euler charac-
teristic yields

∆K(t) =
∑
m,a

(−1)m
(
dim ĤFKm(K, a)

)
ta.

Fact 1.3.17
ĤFK(K) detects the Seifert genus of a knot g(K), defined as the smallest g such that there
exists an embedded surface 1 F of genus g in S3 that bounds K, so ∂F = K.

Example 1.3.18(The Unknot): The unknot bounds a disc, so its genus is zero:

1These are referred to as Seifert surfaces.

1.3 Geometric Information 10
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Figure 4: The genus of the unknot

Exercise 1.3.19 (The Trefoil)
Using the “outside” disc on the trefoil, find 3 bands that show its genus is 1.

Figure 5: The genus of the trefoil

The genus can be computed by setting ĤFK(K, a) :=
⊕
m

ĤFKm(K, a), which yields

g(k) = max
{
a
∣∣∣ ĤFK(K, a) 6= 0

}
.

Note that the a grading here is referred to as the Alexander grading.

Fact 1.3.20
ĤFK detects whether or not a knot is fibered, where K is fibered if and only if it admits an S1

family Ft of Seifert surfaces such that t 6= s ∈ S1 =⇒ Ft ∩ Fs = K. I.e., there is a fibration on the
knot complement where each fiber is a Seifert surface:

Σg S3 \K

K

π

1.3 Geometric Information 11
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Example 1.3.21(The Unknot): The unknot is fibered by D2s:

Figure 6: The unknot fibered by discs.

This is “detected” in the following sense: K is fibered if and only if

ĤFK(k, g(K)) = Z2.

Definition 1.3.22 (Slice Genus)
Let K ⊆ S3. We know S3 = ∂B4, so we consider all of the smoothly properly embedded
surfaces F in B4 such that ∂F = K and take the smallest genus:

Figure 7: Knot in S3 bounding a surface in B4

1.3 Geometric Information 12
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We thus define the slice genus or 4-ball genus as

gS(K) := g4(K) := min
{
g(F )

∣∣∣ F ↪→ B4 smootherly, properly with ∂F = K
}
.

Exercise 1.3.23 (?)
Show that g4(K) ≤ g(K).

Definition 1.3.24 (Unknotting number)
Define u(K) the unknotting number of K as the minimum number of times that K must
cross itself to become unknotted.

Example 1.3.25(The Trefoil): Consider changing the bottom crossing of a trefoil:

Figure 8: Changing one crossing in the trefoil

This in fact produces the unknot:

Figure 9: Unkink to yield the unknot

1.3 Geometric Information 13
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Thus u(K) = 1, assuming that we know K 6= 0 is not the unknot.

Exercise 1.3.26 (?)
Show that gf (K) ≤ u(K).

Hint: each crossing change K → K ′ yields some
surface that is a cobordism from K to K ′ in B4,
and you can use each step to build your surface.

Figure 10: Surface between K and K ′

Theorem 1.3.27(Ozsváth-Szabó).
Define an invariant τ(K) ∈ Z from ĤFK such that |τ(K)| ≤ g4(K) ≤ u(K).

Definition 1.3.28 (Torus Knots Tp,q )
Recall that we can view T2 := R2/Z2 where the action is (x, y) (m,n)−−−→ (x+m, y +m), i.e. we
module out by integer translations. Then for $p, q > 0 $ coprime, Tp,q is the image of the line
y = mx in T2 where m = p/q.

Example 1.3.29(T2,3 ): The torus knot T2,3 wraps 3 times around the torus in one direction and
twice in the other:

1.3 Geometric Information 14
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Figure 11: The torus knot T2,3

Theorem 1.3.30(Milnor).

g4(Tp,q) = u(Tp,q) = (p− 1)(1− q)
2 .

• First proved by Kronheimer-Mrowka
• Another proof by Osvath-Szabó using Heegard Floer homology.

Exercise 1.3.31 (?)
Show that u(Tp.q) ≤

(p− 1)(q − 1)
2 , i.e. torus knots can be unknotted with this many crossing

changes.

Theorem 1.3.32(Osvath-Szabó).

τ(Tp,q) = (p− 1)(q − 1)
2 ,

which implies

(p− 1)(q − 1)
2 ≤ g4(Tp,q) ≤ u(Tp,q) ≤

(p− 1)(q − 1)
2 ,

making all of these equal.

1.3 Geometric Information 15
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Remark 1.3.33: There are better lower bounds for u(K) defined using ĤFK which are not lower
bounds for the slice genus. There are also other lower bounds for the slice genus with different
names (see Jen Hom’s survey), some of which are stronger than τ .

Remark 1.3.34: Another application of having these lower bounds is that we can construct exotic
(or fake) R4s, i.e. 4-manifolds X homeomorphic to R4 but not diffeomorphic to R4.

Remark 1.3.35: All of these invariants work nicely in a (3 + 1)-TQFT: we have invariants of 3-
manifolds Mi and knots in them, so we can talk about cobordisms between them: W 4 a compact
oriented 4-manifold with ∂W 4 = −M1

∐
M2.

Figure 12: A cobordism

Osvath-Szabó define a map

F−W,t : HF−(M1, t|M1
)→ HF−(M2, t|M2

)

using t coming from the splitting of spinc structure which yields an invariant of closed 4-manifolds
referred to as mixed invariants.

Similarly, if we have knots in 3-manifolds we can define a cobordism (M1,K1) → (M2,K2) as
(W 4, F ) where W 4 is a cobordism M1 →M2 and F ↪→W is a smoothly embedded surface that is
a cobordism from K1 → K2 with F ∩Mi = Ki and ∂F = −K1

∐
K2.

1.3 Geometric Information 16



2 Lecture 2 (Tuesday, January 19)

Figure 13: A cobordism including knots

This similarly yields a map

F−W,Ft : HF−(M1,K1, t|M1
)→ HF−(M2,K2, t|M2

)

Remark 1.3.36: This smoothly embedded surface in the middle can be used to study other
smoothly embedded surfaces in 4-manifolds, which has been done recently.

2 Lecture 2 (Tuesday, January 19)

Copy in references recommended by Akram!

E 2.1 Constructing Heegard Floer e

Remark 2.1.1: For Morse Theory, there are some good exercises in Audin’s book – essentially
anything other than the existence questions. The first 8 look good on p. 18.

Today:

1. Overview of the construction of HF, and

2. A discussion of Morse Theory.

Lecture 2 (Tuesday, January 19) 17



2 Lecture 2 (Tuesday, January 19)

First goal: discuss how the name “Heegard” fits in.

Definition 2.1.2 (Genus g handlebody)
A genus g handlebody Hg is a compact oriented 3-manifold with boundary obtained from
B3 by attaching g solid handles (a neighborhood of an arc).

Example 2.1.3(Attaching g = 2 handles to a sphere): For g = 2 attached to a sphere, we
glue D2 × I by its boundary to S2.

Figure 14: image_2021-01-19-00-35-48

In general, ∂Hg = Σg is a genus g surface, and Hg \
∐g

i=1
Di = B3. We can keep track of the data

by specifying (Σ, α1, α2, · · · , αg) where ∂Di = αi.

Figure 15: Attaching a handlebody

Definition 2.1.4 (Heegard Decomposition)
A Heegard diagram is M = H1 ∪∂ H2 where Hi are genus g handlebodies and there is a

2.1 Constructing Heegard Floer 18



2 Lecture 2 (Tuesday, January 19)

diffeomorphism ∂H1 → ∂H2.

Theorem 2.1.5(?).
Every closed 3-manifold has a Heegard decomposition, although it is not unique.

Definition 2.1.6 (Heegard Diagram)
A Heegard diagram is the data (Σg, α = {α1, · · · , αg} , β = {β1, · · · , βg}) where the α
correspond to H1 and β to H2 and Σg = ∂H1 = ∂H2.

E 2.2 Lagrangian Floer Homology e

Remark 2.2.1: This is essentially an infinite-dimensional version of Morse homology.

Definition 2.2.2 (Symplectic Manifold)
A symplectic manifold is a pair (M2n, ω) such that

• ω is closed, i.e. dω = 0, and
• ω is nondegenerate, i.e. ∧nω 6= 0.

Definition 2.2.3 (Lagrangian)
A Lagrangian submanifold is an Ln ⊆M such that ω|L = 0.

Remark 2.2.4: If L1 ∩ L2 is finitely many points, case we can define a chain complex

CF (M2n, L1, L2) := Z2[L1 ∩ L2],

the Z2-vector space generated by the intersection points of the Lagrangian submanifolds. We’ll
define a differential by essentially counting discs between intersection points:

Figure 16: Two intersection points

We’ll want to write ∂x = cyy + · · · where cy is some coefficient. How do we compute it? In this
case, we have half of the boundary on L1 and half is on L2

2.2 Lagrangian Floer Homology 19



2 Lecture 2 (Tuesday, January 19)

Figure 17: i

So we can the number of holomorphic discs from x to y. We’ll get ∂2 = 0 ⇐⇒ im ∂ ⊂ ker ∂, and
HF will be kernels modulo images. In more detail, we’ll have

∂x =
∑
y

∑
µ(ϕ)=1

#M̂(ϕ)y M̂(ϕ) =M(ϕ)/R

where M̂ will (in good cases) be a 1-dimensional manifold with finitely many points. Note that it’s
not necessarily true that CF has a grading!

Given a 3-manifold M3, we’ll associate a Heegard diagram Σ, α, β. Note the g-element symmetric

group acts on
g∏
i=1

Σ by permuting the g coordinates, so we can define Symg(Σ) :=
g∏
i=1

Σ/Sg.

Theorem 2.2.5(?).
The space Symg(Σ) is a smooth complex manifold of R-dimension 2g.

Remark 2.2.6: Write Tα :=
g∏
i=1

αi ⊆
g∏
i=1

Σ for a g-dimensional torus; this admits a quotient map

to Symg(Σ). We can repeat this to obtain Tβ. Then HF−(M) will be a variation of Lagrangian
Floer Homology for (Symg(Σ),Tα,Tβ).

Example 2.2.7(?): Consider constructing a genus g = 1 Heegard diagram. Recall that S3 can be
constructed by gluing two solid torii.

2.2 Lagrangian Floer Homology 20
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Figure 18: image_2021-01-19-12-20-16

Here (T, α, β) will be a Heegard diagram for S3.

Exercise 2.2.8 (?)
Show that the following diagram with β defined as some perturbation of α is a Heegard diagram
for S1 × S2.

Figure 19: image_2021-01-19-12-21-56

Definition 2.2.9 (Dehn Surgery)
Consider M a 3-manifold containing a knot K, we can construct a new 3-manifold by first
removing a neighborhood of K to yield M \N(K):

2.2 Lagrangian Floer Homology 21
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Figure 20: image_2021-01-19-12-23-16

Taking a new solid torus S := D2 × S1 and a diffeomorphism i : ∂S → ∂(M \ N(K)), this
yields a new manifold Mϕ(K), a surgery along K.

Figure 21: image_2021-01-19-12-25-25

Remark 2.2.10: Note that the diffeomorphism is entirely determined by the image of the curve

2.2 Lagrangian Floer Homology 22



3 Lecture 3: Morse Theory (Thursday, January 19)

α . The Knot Floer chain complex of K will allow us to compute any flavor HF−Mϕ(K) of Floer
homology. Why is this important: any closed 3-manifold is surgery on a link in S3. However there
are many more computational tools available here and not in the other theories: combinatorial
approaches to compute, exact sequences, bordered Floer homology.

Next time: we’ll talk about “integer surgeries”.

3 Lecture 3: Morse Theory (Thursday,
January 19)

E 3.1 Intro to Morse Theory e

Remark 3.1.1: Let Mn be a smooth closed manifold, then the goal is to study the topology of M
by studying smooth functions f ∈ C∞(M,R). We’ll need f to be generic in a sense we’ll discuss
later.

Figure 22: image_2021-01-19-00-41-55

Definition 3.1.2 (Critical Point)
A point p ∈M is called a critical point if and only if (df)p = 0.

Definition 3.1.3 (Hessian / Second Derivative)
Fixing a critical point p for f , the second derivative or Hessian of f at p is a bilinear form
on TpM which is defined in the following way: for v, w ∈ TpM , extend w to a vector field w̃ in

Lecture 3: Morse Theory (Thursday, January 19) 23



3 Lecture 3: Morse Theory (Thursday, January 19)

a neighborhood of p and set

d2fp(v, w) = v · (w̃ · f)(p) := v · (df)(w̃)(p).

where we take the derivative of f with respect to w̃, then take the derivative with respect to v,
then evaluate at the point to get a number.

Remark 3.1.4: This is only well-defined at critical points (check!). Note that we need w̃ so that
w̃ · f is again a function (and not a number) which can be differentiated again. You can also take
e.g. ṽ · (w̃ · f), differentiating with respect to the vector field instead of just the vector v, but we’re
plugging in p in either case.

Claim: The second derivative is

1. Well-defined, and

2. Symmetric

Remark 3.1.5: If you fix a coordinate chart in a neighborhood of p, then the bilinear form is
represented by a matrix given by

(d2f)p = Hp =
(

∂2

∂xj∂xi
(p)
)
ij

.

Proof (of 2).
We can compute

(d2f)p(v, w)− (d2f)p(w, v) = v · (w̃ · f)(p)− w · (ṽ · f)(p)
:= dfp ([ṽ, w̃])
= 0 since p is a critical point and dfp = 0.

�

Proof (of 1).
This is now easier to prove: we are picking an extension of w to a vector field, so we need to
show that the definition doesn’t depend on that choice.

(d2f)(p(v, w) = v · (w̃ · f)(p) which doesn’t depend on ṽ
= (d2f)p(w, v)
= w · (ṽ · f)(p) which doesn’t depend on w̃,

and thus this is independent of both ṽ and w̃.
�

Exercise 3.1.6 (?)
Show that the second derivative in local coordinates is given by the matrix Hp above.
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3 Lecture 3: Morse Theory (Thursday, January 19)

Remark 3.1.7: In local coordinates, we can write v =
n∑
i=1

ai
∂

∂xi
and w =

n∑
i=1

bi
∂

∂xi
, and thus

(d2f)p(v, w) = btHpa =
∑

1≤i,j≤n
aibj

∂2f

∂xi∂xj
(p).

Definition 3.1.8 (Nondegenerate Critical Points)
A critical point p ∈M is called nondegenerate if the bilinear form (d2f)p is nondegenerate
at p, i.e. for all v ∈ TpM there exists a w ∈ TpM \ {0} such that (d2f)p(v, w) 6= 0. This occurs
if and only if Hp is invertible.

Definition 3.1.9 (Index of a critical point)
Given a nondegenerate critical point p ∈M , define the index ind(p) of f at p in the following
way: since Hp is symmetric and nondegenerate, its eigenvalues are real and nonzero, so define
the index as the number of negative eigenvalues of Hp.

Definition 3.1.10 (Morse Function)
A function f ∈ C∞(M,R) is called a Morse function if and only if all of its critical points
are nondegenerate.

Remark 3.1.11: We’ll see that almost every smooth function is Morse, and these are preferable
since they have a simple and predictable structure near critical points and don’t do anything
interesting elsewhere.

Theorem 3.1.12(Morse Lemma).
Let p ∈ M be a nondegenerate critical point of f with ind(p) = λ. Then there exists charts
ϕ : (U, p)→ (Rn, 0) such that writing f in local coordinates yields

(f ◦ ϕ−1)(x) = f(p)−
λ∑
i=1

x2
i +

n∑
j=λ+1

x2
j .

Remark 3.1.13(Observation 1): We have

Hp =



−2
. . .

−2
2

. . .

2
2


= −2Iλ ⊕ 2In−λ.

Remark 3.1.14(Observation 2): If λ = n??

Remark 3.1.15(Observation 3): ??
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Example 3.1.16(Sphere): Consider S2 with a height function:

Figure 23: Sphere with a height function

Then we have a local minimum at the South pole p and a local max at the North pole q, where
ind(p) = 0 and ind(q) = 2. Note that the critical points essentially occur where the tangent space
is horizontal

Example 3.1.17(Torus): Consider T2 with the height function:

3.1 Intro to Morse Theory 26
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Figure 24: Torus with a height function

This has a similar max/min as the sphere, but also has two critical points in the middle that
resemble saddles:

Figure 25: Saddle points

Remark 3.1.18: Define Ma := f−1((−∞, a]); we then want to consider how Ma changes as a
changes:

3.1 Intro to Morse Theory 27
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Figure 26: Ma on the sphere

Figure 27: Ma on the torus

Lemma 3.1.19(?).
If f−1([a, b]) contains no critical points, then

f−1(a) ∼= f−1(b)
Ma
∼= Mb.

Definition 3.1.20 (Gradients)
Choose a metric g on M , then the gradient vector of f is given by

g(∇f, v) = df(v).

Remark 3.1.21: We have

df(∇f) = g(∇f,∇f) = ‖∇f‖2.

Proof (?).
We have the following situation:

3.1 Intro to Morse Theory 28
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Figure 28: image_2021-01-21-12-11-16

The gradient vector is always tangent to the level sets, so we can consider the curve γ which
satisfies γ̇(t) = −∇f(γ(t)):

Figure 29: image_2021-01-21-12-12-42

For technical reasons, we want to end up with cohomology instead of homology and will take
−∇f instead of ∇f everywhere:

Figure 30: image_2021-01-21-12-13-35

So γ will be a trajectory of −∇f , and f−1[a, b] ∼= f−1(a)× [0, 1]. A problem is that following
these trajectories may involve arriving at f−1(a) at different times:
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Figure 31: image_2021-01-21-12-15-10

We can fix this by normalizing:

V := −∇f/‖∇f‖2 =⇒ (df)(v) =
〈
∇f, −∇f/‖∇f‖2

〉
= −1.

For every p ∈ f−1(b), if γ(t) is the trajectory starting from p, i.e. γ(0) = p, then γ(b − a) ∈
f−1(a). So define

Φ : f−1(b)× [0, b− a]→ f−1([a, b])
(p, t) 7→ γp(t),

which will be a diffeomorphism.
�

Theorem 3.1.22(?).
Suppose f−1([a, b]) contains exactly one critical point p with ind(p) = λ and f(p) = c. Then

Mb = Ma ∪∂
(
Dλ ×Dn−λ

)
where n := dimM .

Example 3.1.23(?): For λ = 1, n− λ = 2:
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Figure 32: image_2021-01-21-12-32-38

Figure 33: image_2021-01-19-00-53-07

Example 3.1.24(?):

Definition 3.1.25 (Unstable Submanifold)

W u
f (p) := {p} ∪

{
˙γ(t) = −∇f(γ(t)), lim

t→−∞
γ(t) = p, t ∈ R

}
.

Lemma 3.1.26(?).
If ind(p) = λ then W u

f (p) ∼= Rλ.

3.1 Intro to Morse Theory 31



3 Lecture 3: Morse Theory (Thursday, January 19)

Figure 34: image_2021-01-19-00-55-24

Example 3.1.27(?):
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Figure 35: image_2021-01-19-00-55-41

Example 3.1.28(?):

Definition 3.1.29 (Stable Manifold)

W s
f (p) := {p} ∪

{
˙γ(t) = −∇f(γ(t)), lim

t→+∞
γ(t) = p, t ∈ R

}
.

Lemma 3.1.30(?).
If ind(p) = λ then W s

f (p) ∼= Rn−λ.

Definition 3.1.31 (C∞ )
C∞(M ;R) is defined as smooth function M → |RR, topologized as:

• ?
• ?

And a basis for open neighborhoods around p is given by

Ng(f) =
{
g : M → R

∣∣∣ ∣∣∣∣∣ ∂kg

∂∂xi1 · · · ∂xik
(p)− ∂kf

∂∂xi1 · · · ∂xik
(p)
∣∣∣∣∣ <∞∀α, ∀p ∈ hα(Cα)

}
.
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4 Tuesday, January 26

Theorem 3.1.32(?).
The set of Morse functions on M is open and dense in C∞(M ;R).

4 Tuesday, January 26

E 4.1 Attaching Handles e

Remark 4.1.1: Goal: we want to use Morse functions (smooth, nondegenerate critical points) to
study the topology of M . Recall that the torus had 4 critical points,

Figure 36: image_2021-01-26-11-14-32

We defined the index as the number of negative eigenvalues of the Hessian matrix. Here the highest
index will be the dimension of the manifold, and by the Morse lemma the two intermediate critical
points will be index 1.

Remark 4.1.2: We want to use the Morse function to decompose the manifold, so we consider

Tuesday, January 26 34
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Ma := f−1((−∞, a]). If f−1[a, b] does not contain a critical point, then Ma
∼= Mb and f−1(a) ∼=

f−1(b). So taking M1/2 and M3/4 here both yield discs:

Figure 37: image_2021-01-26-11-17-46

Passing through critical points does change the manifold, though:

Figure 38: image_2021-01-26-11-19-01

Theorem 4.1.3(?).
Suppose f−1[a, b] contains exactly one critical point of index λ then

Mb
∼= Ma ∪ϕ (Dλ ×Dn−λ),

where ϕ : (∂Dλ ×Dn−λ) ↪→ ∂Ma.

Example 4.1.4(?): For the case λ = 1, n = 3, we have the following situation:
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Figure 39: image_2021-01-26-11-24-46

Example 4.1.5(?): Taking λ = 1, n = 2, we attach D1 ×D1 and get the following situation:

Figure 40: image_2021-01-26-11-27-16

Adding on another piece, the new boundary is given by the highlighted region:
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Figure 41: image_2021-01-26-11-32-27

And continuing to attach the last pieces yields the following:
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Figure 42: image_2021-01-26-11-33-31

Remark 4.1.6: There is a deformation retract Mb → Ma ∪ Cλ, where Cλ is a λ-cell given by
Dλ × {0}. For example:

Figure 43: image_2021-01-26-11-36-35

E 4.2 Stable and Unstable Manifolds e
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Definition 4.2.1 (Unstable Manifold)
Given −∇f for a fixed metric, the unstable manifold for a critical point p is defined as

W u
f (p) := {p} ∪

{
γ(t)

∣∣∣ γ̇(t) = −∇f(γ(t)), γ(t) t→−∞→ p
}
.

Here γ(t) is the trajectory of −∇(f).

Example 4.2.2(?): The unstable manifold is highlighted in blue here:

Figure 44: image_2021-01-26-11-42-01

The gradient trajectories for other points are given by the yellow lines in the following:
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Figure 45: image_2021-01-26-11-44-13

Lemma 4.2.3(?).
If ind(p) = λ, then the unstable manifold W u

f at p is isomorphic to Rλ.

Figure 46: image_2021-01-26-11-46-46
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Example 4.2.4(?): Here the unstable manifold for p2 will be 2-dimensional, with one flow line
ending at p1 and the rest ending at p0.

Figure 47: image_2021-01-26-11-47-24

Definition 4.2.5 (Stable Manifold)
The stable manifold for a critical point p is defined as

W s
f (p) := {p} ∪

{
γ(t)

∣∣∣ γ̇(t) = −∇f(γ(t)), γ(t) t→+∞→ p
}
.

Example 4.2.6(?): The stable manifold for p0 above is every trajectory ending at p0. W s(p) =
S2 \W s(p1) ∪Ws(p3)? See video?

Which point p is this for?

E 4.3 Morse Functions e
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Theorem 4.3.1(Existence of Morse Functions).
The set of Morse functions is open and dense in C∞(M ;R) in a certain topology.a

aSee Akram’s notes for details.

Remark 4.3.2: We’ll use this to define a chain complex C∗(f, g) where g is a chosen metric, define
a differential, and use this to define a homology theory. For notation, we’ll write crit(f) as the set
of critical points of f , and given p, q ∈ crit(f) with γ a trajectory running from p to q, we have

W u(p) ∩W s(q) =
{
γ(t)

∣∣∣ γ(t) t→−∞→ p, γ(t) t→+∞→ q
}
.

Definition 4.3.3 (Transverse Intersections)
Two submanifolds X,Y ⊆M intersect transversely if and only if

TpX + TpY :=
{
v + w

∣∣∣ v ∈ TpX,w ∈ TpY } = TpM ∀p ∈ X ∩ Y.

In this case, we write X t Y .

Example 4.3.4(?): An example of a transverse intersection:

Figure 48: image_2021-01-26-12-02-29

Example 4.3.5(?): An example of an intersection that is not transverse:
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Figure 49: image_2021-01-26-12-03-13

Definition 4.3.6 (Morse-Smale)
A pair (f, g) with f a Morse function and g a metric is Morse-Smale if and only if

• f is a Morse function,
• W u(p) is transverse to W s(q) for all p, q ∈ crit(f).

Theorem 4.3.7(?).
For a generic metric g, the pair (f, g) is Morse-Smale.

Remark 4.3.8: This means that metrics can be perturbed to become Morse-Smale.

Example 4.3.9(?): The following is not Morse-Smale:
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Figure 50: image_2021-01-26-12-06-06

Note that if Xa t Y b, then X ∩Y ⊆Mn is a smooth submanifold of dimension a+b−n. In general,
we have M s(p) ∼= Rn−λ where λ = ind(p).

Observation 4.3.10
If (f, g) is Morse-Smale, then Mu(p) tM s(q). In this case,

dim(Mu(p) ∩M s(q)) = ind(p) + n− ind(q)− n = ind(p)− ind(q).

Thus if ind(p) = ind(q) then dimM s(p) ∩M s(q) = 0.

Remark 4.3.11: There is an R-action of M s(p) ∩M s(q):

(M s(p)×Mu(q))× R→M s(p) ∩Mu(q)
(γ(t), c) 7→ γ(t+ c).

If p 6= q, this action is free and we can thus quotient by it to obtain

M(p, q) := (M s(p) ∩Mu(q)) /R.

This identifies all points on the same trajectory, yielding one point for every trajectory, and so this
is called the moduli space of trajectories from p to q.
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5 Morse Homology and Lagrangian Floer Homology (Thursday, January 28)

If ind(p) = ind(q), we have dimMu(p)∩M s(q) = 0, making dimM(p, q) = −1 and thusM(p, q) = ∅
and no gradient trajectories connect p to q. Referring back to the example, since ind(p3) = ind(p2),
if (f, g) were Morse-Smale then there would be no trajectory p3 → p2, whereas in this case there is
at least one.

Remark 4.3.12: If ind(p) − ind(q) = 1, then dimM(p, q) = ind(p) − ind(q) − 1 = 0, making
M(p, q) a compact 0-dimensional manifold, which is thus finitely many points, meaning there are
only finitely many trajectories connecting p→ q and it becomes possible to define a Morse complex.

Definition 4.3.13 (Morse Complex)
Fix (f, g) a Morse-Smale pair, then define

Ci(f, g) := Z/2Z
[{
p
∣∣∣ ind p = i

}]
=

⊕
ind(p)=i

Z/2Z 〈p〉 ,

with a differential

∂ : Ci(f, g)→ Ci−1(f, g)
p, ind(p) = i 7→

∑
ind(q)=i−1

#M(p, q)q,

where we take the count mod 2.

Theorem 4.3.14(?).
∂2 = 0, and thus (C(f, g), ∂) is a chain complex.

Remark 4.3.15: Next time we will work on proving this.

5 Morse Homology and Lagrangian Floer
Homology (Thursday, January 28)

E 5.1 Morse Homology e

Remark 5.1.1: Last time: defined the Morse complex. Assumed (f, g) was a Morse-Smale pair,
where f is a Morse function and g is a Riemannian metric, and this guarantees that if p, q ∈ crit(f)
with ind(p) − ind(q) = 1, then (among other things) there are finitely many gradient trajectories
p q. We denoted thisM(p, q). The chain complex was defined by Ci(f, g) :=

⊕
ind(p)=i

Z2 〈p〉 with

differential ∂i : Ci → Ci−1 was defined by sending an index i critical point p to
∑

ind(q)=i−1
#M(p, q)q

(mod 2).
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Theorem 5.1.2(The Morse Complex is a Chain Complex).
∂i ◦ ∂i+1 = 0.

Proof (?).
Idea of the proof: we can directly compute

∂(∂p) = ∂

 ∑
ind(q)=i−1

#M(p, q)q


=

∑
ind(q)=i−1

#M(p, q)∂q

=
∑

ind(q)=i−1
#M(p, q)

 ∑
ind(r)=i−2#M(q,r)r


=

∑
ind(r)=i−2

 ∑
ind(q)=i−1

#M(p, q)#M(q, r)

 r
=

∑
ind(r)=i−2

cp,q,rr

= 0 (claim).

This happens if and only if cp,q,r = 0 (mod 2) for all r with ind(r) = i−2. This is multiplication
of the number of trajectories:

Figure 51: image_2021-01-28-11-23-19

In other words, this is the total number of trajectories p  r that pass through q. These
trajectories “break” at q, and so we refer to these as broken trajectories.

�

Definition 5.1.3 (Broken Trajectories)
Suppose ind(r) = ind(p)− 2, then a broken trajectory from p to r is a trajectory from p to
q followed by a trajectory q to r where ind(q) = ind(p)− 1 = ind(r) + 1.
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Figure 52: image_2021-01-28-11-26-25

Question 5.1.4
Why is the number of broken trajectories even?

Answer 5.1.5
We can check that dimM(p, r) = dim (W u(p) tW s(r)) /R = (ind(p)− ind(r))− 1 = 2− 1 = 1. We
can compactifyM(p, r) by adding in all of the broken trajectories to define

M(p, r) ∪

 ⋃
ind(q)=i−1

M(p, q)×M(q, r)

 .
This is useful here because we can appeal to the classification of smooth compact 1-dimensional
manifolds, which are unions of copies of S1 and D1 = I. In particular, the number of boundary
points

∂M(p, r) =
⋃

ind(q)=i−1
M(p, q)×M(q, r)

is even:

Figure 53: image_2021-01-28-11-32-34
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Example 5.1.6(Morse Homology of the Torus): Suppose you have two critical points of the
same index. The Morse-Smale condition implies that there’s no trajectory between them. A
counterexample would be p3  p2 on the torus with the height function:

Figure 54: image_2021-01-28-11-45-16

However, if you perturb this slightly, the trajectories can be made to miss p2 and end at p1 instead.
All of the trajectories are disjoint, so we end up with a situation like the following after perturbing
the metric:

Figure 55: image_2021-01-28-11-48-06
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We can cut along a curve on the bottom to better analyze these trajectories:

Now cut this cylinder along the trajectories p1  p3  p1, i.e. the green trajectories here:

Figure 56: image_2021-01-28-11-51-31
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Figure 57: image_2021-01-28-11-53-32

Here we can see that as the trajectories approach the corners, they limit to broken trjacetories:

Figure 58: image_2021-01-28-11-54-44

We can compute

• C0 = Z/2Z 〈p1〉
• C1 = Z/2Z 〈p2, 3〉
• C2 = Z/2Z 〈p4〉

Since there are exactly two trajectories p4 to p2 or p3, we get ∂2 = 0. Similarly ∂1 = 0, and we get
HMi(T ) = [Z/2Z,Z/2Z2,Z/2Z, 0, · · · ], which is the same as its singular homology.
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Theorem 5.1.7(?).

HMi(f, g) ∼= HSing
i (M ;Z/2Z).

In particular, it doesn’t depend on the choice of Morse-Smale pair (f, g). See proof in references,
e.g. Audin.

Proof (?).
By definition, # criti(f) = rankCi(f, g) = rankHMi(f, g), and in any chain complex the rank
of the chain groups are always at least the rank of the homology.

�

E 5.2 Lagrangian Floer Homology e

Remark 5.2.1: Suppose Ln0 , Ln1 ⊂ M2n are compact with L0 t L1, so the intersection is finitely
many points.

Figure 59: image_2021-01-28-12-16-27

We can do Morse theory on the space of paths between them:

P(L0, L1) :=
{
γ : I →M

∣∣∣ γ(0) ∈ L0, γ(1) ∈ L1
}
.

We’ll find analogs of Morse functions on P (L0, L1) such that the critical points are constant paths,
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i.e. L0∩L1. The Morse inequalities then gives bounds on the number of intersection points between
L0 and L1.

Definition 5.2.2 (Symplectic Manifolds)
A symplectic manifold is a pair (M2n, ω) with ω a 2-form which is

• Closed, i.e. dω = 0, and

• Nondegenerate, i.e.
n∧
ω 6= 0.

Definition 5.2.3 (Lagrangian Submanifolds)
A half-dimensional submanifold Ln ⊂M2n is called Lagrangian if ω|Ln = 0.

Example 5.2.4(?): The pair (R2n,
n∑
i=1

dxi ∧ dyi is a symplectic manifold (and also a symplectic

vector space). Note that this 2-form is also a bilinear form of the following shape:

[
0 idn
− idn 0

]
.

This has a Lagrangian submanifold Rn := {y1 = · · · = yn = 0}.

Note: See Darboux theorem.

Remark 5.2.5: The general setup for next time: we’ll have (M2n, ω) a symplectic manifold, a pair
L0, L1 ⊂M such that L0 t L1, and we want to do Morse Homology on P(L0, L1).

6 Lecture 6 (Tuesday, February 02)

Remark 6.0.1(Setup): We’re working with a symplectic manifold, i.e. a pair (M2n, ω) where

ω ∈ Ω2 is closed, i.e. dω = 0, and nondegenerate, i.e.
n∨
ω 6= 0. We were also consider Ln0 , Ln1 ⊂M

Lagrangian submanifolds, i.e. ω|Li = 0. The goal is to do something like Morse homology on
P(L0, L1) where the critical points corresponds to intersection points L0 ∩ L1, where we’ll assume
L0 t L1.

Question 6.0.2
What is the analog of a Morse function?

Remark 6.0.3: The functional f is defined on the universal cover P(L0, L1) → R. We can get
around knowing much about f because we only ever need derivatives df and a metric g on the
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path space to talk about the gradient ∇gf . We’ll define a 1-form α : TP(L0, L1) → R, where we
can define this tangent space as TγP(L0, L1) where γ(s) : I → M . Set u(s, t) to be a path from
γ to γ′ where u(s, 0) = γ and u(s, 1) = γ′ and ∂u

∂t

∣∣∣
t=0

, which is a tangent vector to γ and thus
∂u

∂t
(s, 0) ∈ Tγ(s)M .

Figure 60: image_2021-02-02-11-29-54

Upshot: tangent vectors in TγP(L0, L1) are given by ξ(s) ∈ Tγ(s)M for every s ∈ I, i.e. a way to
push the path off of itself to obtain a new path.

We can thus define

α : TP(L0, L1)→ R

(γ, ξ ∈ TγP) 7→ αγξ :=
∫ 1

0
ω(γ̇(s), ξ(s))ds.

Does this have the property we want? I.e. is it zero when γ is the constant path?

Lemma 6.0.4(?).

αγ ≡ 0 ⇐⇒ γ(s) is constant ⇐⇒ ˙γ(s) = 0 for all γ ⇐⇒ γ(s) ∈ L0 ∩ L1.
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Proof (?).

αγ ≡ 0 ⇐⇒
∫ 1

0
ω(γ̇(s), ξ(s))ds = 0 for all ξ 6≡ 0.

Claim: If γ̇(s) 6= 0 for some s then this is also true in an open neighborhood by smoothness,
so one can find a ξ such that

• ω( ˙γ(s), ξ(s)) ≥ 0, and
• There is some open subinterval (a, b) ⊆ [0, 1] on which ξ is nonzero, and thus the integral

is strictly positive.

We’ll need a few tools:

Definition (Almost Complex Structure)
An almost complex structure is a bundle automorphism J : TM → TM such that
J ◦ J = −1TM . It is said to be compatible with ω if and only if

• Positivity: For every v 6= 0, ω(v, Jv) > 0.
• “Symplectic Isometry”: For all v, w ∈ TM , ω(Jv, Jw) = ω(v, w).

In this case, there is a Riemannian metric defined by g(v, w) = ω(v, Jw). Conversely,
given an almost complex structure J and a metric J , there is a symplectic form defined
by ω(v, w) = ω(Jv, Jw) := g(Jv,w).
This may not be a closed form? Need to check later!

Exercise (?)
Check that ω is a symplectic form compatible with J and g is the corresponding metric.

Exercise (?)
Given a symplectic form ω and a Riemannian metric g there exists a canonical almost
complex structure J compatible with ω such that the previous process sends (ω, J) to g.

Corollary 6.0.8(?).
Any symplectic manifold (M,ω) has a compatible almost complex structures J .

Theorem 6.0.9(?).
The space of all almost complex structures on M compatible with ω is contractible.

Here we can use that ξ(s) = Jγ̇(s) which implies ω(γ̇(s), J ˙γ(s)) = ω( ˙γ(s), ξ(s)) > 0, which
happens if and only if γ̇(s) 6= 0.
So pick an almost complex structure compatible with ω and produce a metric g. We’ll define a
metric on P(L0, L1) by the following: for ξ, η ∈ TγP, recalling that ξ = ξ(s), η = η(s) ∈ Tγ(s)M ,
set

gPγ (ξ, η) :=
∫ 1

0
g(ξ(s), η(s))ds =

∫ 1

0
ω(ξ, Jη)ds.
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Exercise (?)
Check that gP is a metric on P(L0, L1).

We’ll now define a gradient vector field:

gPγ (−∇,−) = α(−).

So here α will play the role of −df . We can write∫ 1

0
ω(−∇, Jξ)ds =

∫ 1

0
ω(·γ, ξ)ds.

Using compatibility, the LHS is equal to

· · · =
∫ 1

0
ω(−J∇, J2ξ)ds =

∫ 1

0
ω(J∇, ξ)ds.

So the RHS is equal to this for every ξ, which means that J∇ = γ̇. Multiplying both sides by
J yields ∇ = −Jγ̇ What are the trajectories of J · γ(s) ∈ TγP? We can compute

∂u

∂t
(s, t) = J

∂u

∂s
(s, t).

Here t is the parameter that moves between paths, and s moves along a given path:

Figure 61: image_2021-02-02-12-34-41

�
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E 7.1 Lagrangian Floer Homology e

Remark 7.1.1: Recall that we had a symplectic manifold (M2n, ω) with L0, L1 ⊂ M two La-
grangians. We wanted to do something like Morse theory on P(L0, L1).

Figure 62: image_2021-02-16-22-21-44

What ingredients do we need?

• Something to replace −df : α

• Something to replace the vector field −∇: we defined a metric gP using α

To define α we needed to look at

TγP =
{
ξ : I → TM

∣∣∣ ξ(s) ∈ Tγ(s)M
}
,

which is like a collection of tangent vectors along γ giving a way to deform the path. Since α ∈ Ω1(P),
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for any γ it induces a map

TγM
α−→ R

ξ 7→ αγ(ξ) :=
∫ 1

0
ω(γ̇, ξ) ds.

Observation 7.1.2
αγ = 0 ⇐⇒ γ is constant, which happens if and only if γ ∈ L0 ∩ L1. This corresponds to critical
points of the functional yielding intersection points of the Lagrangians.

Remark 7.1.3: We wanted to define the gradient, for which we needed a metric on P. We did
this by lifting a metric from M . Pick an almost complex structure J compatible with ω, then this
yields a Riemannian metric defined by g(v, w) = ω(v, Jw). Then we can define

gPγ (ξ, η) :=
∫ 1

0
g(ξ(s), η(s)) ds.

We used this to compute the vector field − gradγ J · γ(s). What are its trajectories? These are

paths of paths u(s, t) := ut(s) such that ∂

∂t
ut(s) = J

∂

∂s
ut. We thus get an equation

∂u

∂t
(s, t) = J

∂u

∂s
(s, t).

Remark 7.1.4: For x, y ∈ L0 ∩ L1 trajectories connecting x to y, we’ll write this as

M(x, y) :=

u(s, t) : [0, 1]× R→M

u(0,t)∈L0
u(1,t)∈L1

u(s,t)t→−∞→ x

u(s,t)t→∞→ y
∂u
∂t

=J ∂u
∂s

 .

We can modify this PDE to make things look familiar: multiply both sides with J to obtain

J
∂u

∂t
= J2∂u

∂s
=⇒ J

∂u

∂t
= −∂u

∂s
=⇒ ∂u

∂s
+ J

∂u

∂t
= 0,

which is the Cauchy-Riemann equation.

Exercise 7.1.5 (?)
Check that this equation can be written as J du = du ◦ i where i is the standard complex
structure on C ⊇ [0, 1]× R, so du commutes with i and J .

Definition 7.1.6 (J-holomorphic or Pseudoholomorphic Discs)
If J du = du ◦ i, then u is called a J-holomorphic disc or a pseudoholomorphic disc.
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Remark 7.1.7: Schematically, the situation is the following:

Figure 63: image_2021-02-16-23-22-40

Using the Riemann mapping theorem, the strip on the left-hand side is biholomorphic to D ⊆ C
with ±i removed:
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Figure 64: image_2021-02-16-23-23-43

Due to the limit conditions at infinity in the strip, we can extend u to a J-holomorphic map from
the entire disc by sending i 7→ y and −i 7→ x.

Remark 7.1.8: In Morse homology, we have an R action on the moduli space of trajectories,
and that also shows up here. Here R y M(x, y) by u(s, t) c−→ uc(s, t) := u(s, t + c), noting that
translating the strip from above still yields a solution.

Definition 7.1.9 (?)
We define

M̂(x, y) :=M(x, y)/R.

Definition 7.1.10 (?)
We’ll define

CF (L1, L2) :=
⊕

x∈L0∩L1

Z/2Z 〈x〉

∂x :=
∑

y∈L0∩L1

#M̂(x, y)y.

Remark 7.1.11: When is the intersection count #M̂(x, y) well-defined? In Morse homology, we
have two conditions:

1. (f, g) is Morse-Smale, to ensure that the moduli spaces are smooth manifolds (using Sard’s
theorem)

2. ind(x)− ind(y) = 1, ensuringM(x, y) is 1-dimensional
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3. Compactness of M̂(x, y) when 1 and 2 hold.

These were enough to guarantee that M̂(x, y) was a smooth compact 0-dimensional manifold, which
allowed for point counts. In Lagrangian Floer homology, we have the following replacements:

For 2 (indices): Recall that the index in Morse homology was the dimension of the negative
eigenspace of the Hessian, but we’re in infinite dimensions here. So we won’t have a well-defined
index, but we’ll have something that can replace the difference of indices: the Maslov index
µ(x, y), the expected dimension of M(x, y). To actually have this be the dimension will require
some conditions, so it’s not always true. This will be the index of some elliptic operator defined
using the Cauchy-Riemann equations.

For 1 (transversality): We’ll need some version of transversality, which will imply that for a
generic J thatM(x, y) is smooth.

For 3 (compactness): We’ll useGromov compactness and some extra topological assumptions,
which will imply that M̂(x, y),M(x, y) are both compact.

Taken together, these will make the point-count well-defined.

Remark 7.1.12: In order for this to be a chain complex, we’ll need ∂2 = 0. We’ll look at when
µ(x, y) = 2, and we’ll compactify M̂(x, y) in order to show this holds. Gromov’s compactness will
give us

∂M(x, y) =
⋃

µ(x,z)=µ(z,y)=1
M(x, z)×M(z, y),

much like the broken trajectories fromMorse homology. Here we’ll need to add in broken J-holomorphic
discs:

Figure 65: image_2021-02-16-23-45-04
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Using the same argument as in Morse homology, we can obtain ∂2 = 0.

Theorem 7.1.13(Floer).
Suppose (M2n, ω) is a compact symplectic manifold with Lagrangians L0, L1 such that

1. L0 t L1

2. π2(M) = π2(M,L0) = π2(M,L1) = 0, which are topological conditions on embedded
spheres with boundaries mapped to the Li.

Under these assumptions, ∂2 = 0 and the homology

HF (L0, L1) := H∗(CF (L0, L1), ∂) := ker ∂/ im ∂

is an invariant of (M,L0, L1) up to Hamiltonian isotopies of L0, L1.

Definition 7.1.14 (Symplectomorphism)
A symplectomorphism is a diffeomorphism ψ : M1 →M2 such ψ∗ω1 = ω2.

Definition 7.1.15 (Hamiltonian Vector Fields)
A Hamiltonian vector field is a vector field V such that

ιV ω := ω(V,−) ∈ Ω1

is exact, and thus equal to df for some functional f ∈ C∞(M,R). Note that if one has a
functional f , one can find a symplectic form ω such that this holds, so V is sometimes denoted
Vf to show this dependence.

Example 7.1.16(?): R2n with the standard symplectic form
n∑
i=1

dxi∧dyi, we have Vf = ∂f

∂y1
, · · · , ∂f

∂yn
,− ∂f

∂x1
, · · · ,− ∂f

∂xn

for any f : R2n → R. Note that we can have time-dependent vector fields (i.e. one parameter families)
as well.

Definition 7.1.17 (Hamiltonian Isotopies)
A Hamiltonian isotopy is a family ψt of diffeomorphisms of M such that ψt is the flow of
a 1-parameter family of Hamiltonian vector fields Vt, so taking the derivative of V yields this
function.

Exercise 7.1.18 (?)
Show that if ψt is a Hamiltonian isotopy, then ψ∗t ω = ω and is thus a symplectomorphism as
well.

Remark 7.1.19: Goal: use this as an invariant of closed 3-manifolds in the form of Lagrangian
Floer homology, defined by Osvath-Szabo. Note that Floer’s theorem requires topological as-
sumptions which make the homology well-defined, but we don’t have these available in the HF
setup. In particular, the assumptions on π2 won’t hold.
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E 8.1 Heegard Splittings e

Remark 8.1.1: Goal: we want to use Lagrangian Floer homology to defined invariants of
closed 3-manifolds, where here closed means that ∂M3 = ∅. One example of Lagrangian Floer
homology isHeegard Floer homology. We’ll want some symplectic manifold with two Lagrangian
submanifolds. Oszvath-Szabo used a 2-dimensional description of closed 3-manifolds calledHeegard
diagrams. We’ll need Heegard splittings to define these, and handlebodies to define the splittings.

Definition 8.1.2 (Handlebody of genus g)
A handlebody of genus g will mean a compact 3-manifold obtained from B3 by attaching g
solid 1-handles, i.e. D1 × D2. These are glued in via two copies of ∂D1 × D2:

Figure 66: image_2021-02-16-19-36-51

Alternatively, these can be defined as a regular neighborhood of
g∨
i=1

S1 ⊂ R3. We’ll write Hg

for a genus g handlebody, and ∂Hg will be a genus g surface.

Definition 8.1.3 (Heegard Splitting)
A Heegard splitting of genus g is a decomposition M = H1

∐
ϕ
H2 where ϕ : ∂H1 → ∂H2 is

a diffeomorphism.
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Figure 67: image_2021-02-16-19-41-17

Explicitly, we have

H1
∐

ϕ
H2 := H1

∐
H2〈

x ∼ ϕ(x)
∣∣∣ ∀x ∈ ∂H1

〉 .

Example 8.1.4(?): We can write S3 = B3
∐

1
B3, where both are just genus 0 handlebodies. Note

that if you attach a solid 1-handle to B3, this yields S1 × D2, i.e. a solid torus:

Figure 68: image_2021-02-16-19-42-43

Think of S3 as the one-point compactification of R3, we can write (and visualize) a decomposition
S3 = (S1 × D2)

∐
ϕ
(S1 × D2). The first copy will be a neighborhood of a circle in the plane:
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Figure 69: image_2021-02-16-19-44-16

Labeling this circle as H1 :=
{
x2 + y2 = 1, z = 0

}
, the complement H2 := S3 \H1 will be a regular

neighborhood of the z-axis union {∞}:
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Figure 70: image_2021-02-16-19-45-36

Example 8.1.5(?): We can write a Heegard splitting of S1 × S2. Note that S2 = D2∐
1
D2, so

splitting the product over the union yields (S1 × D2)
∐

1
(S1 × D2), where the new map is still the

identity since it’s just the identity on each factor. This yields two solid torii glued along their
boundaries.

Theorem 8.1.6(?).
Any closed 3-manifold M3 admits a Heegard splitting.

Proof (?).
A fact from Morse theory: there exists a Morse function f : M3 → R such that

1. f(p) = i := ind(p) for every p ∈ Crit(f) (i.e. f is self-indexing), and

2. f has exactly one index 0 (minimum) and one index 3 (maximum) critical point.

We thus have the following situation:
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Figure 71: image_2021-02-16-19-51-11

The remaining critical points must occur at 2 and 3:
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Figure 72: image_2021-02-16-19-52-00

How can we break this into smaller manifolds? Any time we pass a critical point, we attach
a one-handle. Note that we can define a new Morse function h := 3 − f Suppose we have g
critical points of index 1 for f and g′ critical points of index 1 for h.

• We can check that f−1[0, 1/2] = B3 and f−1(1/2) = S2.

• f−1[0, 3/2]Λg, a genus g handlebody, and thus f−1(3/2) = Σg will be a genus g surface.
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Figure 73: image_2021-02-16-19-54-58

• Repeating the above arguments for h, we get f−1[0, 3/2] = g−1[3/2, 3] = Λg′ .

Exercise (?)
Show that crit(f) = crit(h) and if p ∈ crit(f) with indf (p) = i then indh(p) = 3− i.

Thus g′ is the number of index 2 critical points for f . This means that ∂h−1[0, 3/2] =
h−1(3/2) = f−1(3/2) has genus g = g′, and thus the # crit(f)ind=1 = # crit(h)ind=2 = g. Even
without this, we still have our two handlebodies: H1 := f−1[0, 3/2] and H2 := f−1[3/2, 3]
glued over Σg := f−1(3/2), which is a genus g splitting surface.

�

Definition 8.1.8 (Equivalence of Heegard Splittings)
We’ll say that two Heegard splittings M = H1

∐
ϕ
H2 and M = H ′1

∐
ϕ
H ′2 are isotopic if and

only if there exists an ambient isotopy ψ : M × [0, 1] → M such that ψ|M×{1}(Hi) = H ′i for
each i. Recall that ambient isotopy means

• ψ|M×{0} = 1,
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• ψ|M×{t} is a homeomorphism.

Question 8.1.9
Are any two Heegard splittings isotopic?

Answer 8.1.10
No! We can distinguish them by the genus of the splitting surface Σ, and we just saw two splittings
of S3, one with genus 0 and one with genus 1.

Remark 8.1.11: There are some moves to relate different Heegard splittings.

Definition 8.1.12 (Stabilization)
Given a genus g Heegard splitting M = H1

∐
ϕ
H2, we can produce a genus g + 1 splitting

M = H ′1 ∪ϕ H ′2 where
H ′1 = H1 ∪ η(γ), where the new piece is a closed regular neighborhood of an unknotted arc γ
in H2. Here unknotted means that γ is a properly embedded arc in H2 ∪Σ whose boundary is
in Σ which bounds a contractible disc:

Figure 74: image_2021-02-16-21-00-33

Note that adding a regular neighborhood around γ has the effect of adding a 1-handle to H1.
We can then define H ′2 := H2 \ ηγ. Why is this still a handlebody? We have this situation:
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Figure 75: image_2021-02-16-21-04-24

We have the disc below the 1-handle, and if we thicken it to D2× I, we have B := η(γ)∪ (D2×
[0, 1] ∼= B3:

Figure 76: image_2021-02-16-21-07-07

We then have H ′2 := (H2 \B) ∪ (D2 ∪ [0, 1]), and in fact there is something in the intersection
of these two terms. The parts that are attached to H2 are the front and back discs D2×{0, 1}:

Figure 77: image_2021-02-16-21-07-50

So we can identify this as H ′2 := (H2 \ B)
∐

D2×{0,1}
(D2 ∪ [0, 1]). Note that H2 \ B ∼=C∞ H2

are diffeomorphic, and the right-hand side is a 1-handle. To see why this is, consider attaching
the middle red part, and then pushing the center part away in order to see the handle:
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Figure 78: image_2021-02-16-21-21-12

Exercise 8.1.13 (?)
Show that the isotopy type of H ′1 ∪H ′2 is independent of the choice of γ.

Theorem 8.1.14(?).
Any two Heegard splittings can be made isotopic after sufficiently many stabilizations.

E 8.2 Heegard Diagrams e

2-dimensional pictures of closed 3-manifolds! We have two handlebodies glued along their boundary,
so if we can write the handlebodies in terms of 2-dimensional pictures, we can combine them to get
a picture of the entire splitting.

Definition 8.2.1 (Attaching Curves)
Let H be a genus g handlebody. A set of attaching curves for H is a set {γ1, · · · , γg} of
pairwise disjoint simple closed curves on Σ := ∂H such that

1. Σ \ ∪ {γ1, · · · , γg} is connected,

2. All the γi bound a disc in H.

Example 8.2.2(S1 × D2): For the solid 2-torus, the attaching curves are copies of S1 that bound
discs
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Figure 79: image_2021-02-16-21-27-56

Example 8.2.3(A genus 2 handlebody): Consider B3 with two 1-handles attached, or a solid
genus 2 surface:

Figure 80: image_2021-02-16-21-29-36

Note that curves running around each of the two handles also work:

Figure 81: image_2021-02-16-21-30-26
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Exercise 8.2.4 (?)
Show that Σ\∪ {γ1, · · · , γg} is connected ⇐⇒ the classes [γ1], · · · , [γg] are linearly independent
in H1(Σ;Z).

Proposition 8.2.5(Handlebody from a Heegard Diagram).
Given a surface and a set of attaching curves, so the data of (Σ, {γ1, · · · , γg}) , we can build a
handlebody H. Note that we can go the other way: given a genus g handlebody H, we can
take Σ = ∂H and find g attaching circles.
The recipe:

1. Thicken Σ to Σ× [0, 1] to get a 3-manifold with 2 boundary components, Σ× {1} and
Σ× {2}.

2. Attach thickened discs γi × {0} for each i, yielding some S2 boundary components.

3. Fill the S2 boundary component with a B3.

This yields a genus g handlebody H such that ∂H = Σg × {1}, where the curves
{γ1 × {1} , · · · , γg × {1}}.

Example 8.2.6(?): Note that after attaching the disc on one end of this new cylinder, we have
the following:

Figure 82: image_2021-02-16-21-37-08

What’s left on the boundary is the following:
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Figure 83: image_2021-02-16-21-37-43

This is a copy of S2.

Exercise 8.2.7 (?)
Show that for any g we get a 3-manifold with boundary Σ× {1}

∐
S2 after step (2) above.

9 Lecture 9 (Thursday, February 11)

E 9.1 Heegard Diagrams e

Remark 9.1.1: Last time we saw that M3 = H1
∐

ϕ
H2 as two handlebodies glued along their

boundary by a diffeomorphism ϕ : ∂H1 → ∂H2. This is referred to as a Heegard splitting for M .
We can specify a genus g handlebody as (Σ, {γ1, · · · γg} where Σ \ {γ1, · · · , γg} is connected and
each γi bounds a disc in H.
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Figure 84: image_2021-02-11-11-15-56

Moreover, we can go backwards: given such data, we can build a handlebody H by

1. Thickening Σ to obtain Σ× [0, 1] This yields ∂(Σ× [0, 1]) = (Σ× {0})
∐

(Σ× {1}).

2. Attach thickened discs to γi × {0}. This makes the boundary (Σ× {1})
∐
S2

3. Fill in the S2 boundary with a B3.

Figure 85: image_2021-02-11-11-22-43

Definition 9.1.2 (Heegard Diagrams)
A Heegard diagram for M3 compatible with a splitting M = H1

∐
ϕ
H2 is a triple (Σ, α, β

where α and β are attaching circles for H1 and H2 respectively.

Example 9.1.3(Heegard diagram for S3): The following two curves on a torus determine a
Heegard splitting for S3:
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Figure 86: image_2021-02-11-11-28-43

Example 9.1.4(Heegard diagram for S1×S2): Writing S1×S2 = D2
∐

1∂D2
D2, or also (S1×

D2)
∐

1
(S1 ×D2).

Figure 87: image_2021-02-11-11-30-50

Exercise 9.1.5 (?)
Show that the following diagram is a Heegard diagram for RP3:

Figure 88: image_2021-02-11-11-31-45

Hint: use that RP3 ∼= L(2, 1) and find a Heegard diagram for L(p, q).

Example 9.1.6(?): Given a self-indexing Morse function f : M → R with exactly one index 0 and
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one index 3 critical point, pick a generic metric g so that (f, g) is a Morse-Smale pair (so the stable
and unstable submanifolds intersect transversally). Taking −∇f , we can obtain a Heegard diagram
The stable submanifolds are codimension of their indices, so e.g. for each index critical point there
is a 2-dimensional stable submanifold that intersects the next submanifold in a curve:

Figure 89: Stable submanifold

This occurs for (say) the g critical points of index 1 here, and since they are distinct critical points
the stable submanifolds are disjoint. So we can obtain a set of attaching circles for the bottom
handlebody f−1([0, 3/2]): {

M s(p) ∩ f−1(3/2)
∣∣∣ p ∈ crit(f), ind(p) = 1

}
.

So setting these to be the α curves, repeating with index 2 to get β curves, and setting Σ := f−1(3, 2)
we get a Heegard diagram for M .

Remark 9.1.7: Note that given (Σ, α, β we can construct M in the following way:

• (Σ, α builds Hα with ∂Hα = Σ.
• (Σ, β builds Hβ with ∂Hβ = Σ.

Exercise 9.1.8 (?)
Show that Heegard splittings can be used to compute homology, and

H1(M ;Z) ∼= H1(Σ;Z)/ 〈[α1], · · · , [αg], [β1], · · · , [βg]〉 .
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E 9.2 Heegard Moves e

Proposition 9.2.1(?).
Given M = H1 ∪H2 = H ′1 ∪H ′2, we can stabilize to obtain M = H̃1 ∪ H̃2. Is there a way to
relate the two corresponding Heegard diagrams?

1. Isotopy. Exchange α = {α1, · · · , αg} with an ambient isotopy of Σ, and similarly β,
keeping curves of the same type disjoint during the isotopy (where e.g. it’s fine if an α
curve intersects a β curve).

Figure 90: image_2021-02-11-11-49-46

2. Handleslides (of α or β curves).

Figure 91: image_2021-02-11-11-51-54

Equivalently, handle sliding α1 over α2 replaces α1 with α′1 such that the triple α1, α
′
1, α2

bound a pair of pants.

9.2 Heegard Moves 78



10 Lecture 9 (Thursday, February 11)

Figure 92: image_2021-02-11-11-53-22

3. Stabilization. This changes (Σ, α, β) 7→ (Σ #T 2, α ∪ {αg+1, β} ∪ {βg+1}, where
αg+1, βg+1 ⊆ T 2 and intersect in exactly on point.

Figure 93: image_2021-02-11-12-10-06

3’. Destabilization. Reversing the stabilization operation.

Exercise 9.2.2 (?)
Show that any two sets of attaching curves for a handlebody H can be related by a finite
sequence of (1) and (2).

Exercise 9.2.3 (?)
Show that stabilization yields a Heegard diagram for the same manifold.
Hint: the new summand is a Heegard diagram for S3, and connect sums in the diagrams
correspond to connect sums of the corresponding manifolds. Moreover, M ∼= M #S3.

Theorem 9.2.4(?).
Any two Heegard diagrams for M can be connected by a finite sequence of the above moves.

9.2 Heegard Moves 79



10 Tuesday, February 16
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Remark 10.0.1: Note that critical points can be used to compute the Euler characteristic, using
the fact the χ(C) = χ(H∗(C)), i.e. it can be computed on dimensions of chains or ranks of homology,
along with the fact that Morse homology is isomorphic to singular homology. So e.g. for a 3-manifold
M3, we can show

χ(M3) =
3∑
i=0

rankHi

=
3∑
i=0

rankCMi

= 1−# crit1(f) + # crit2(f)− 1
= 0,

since the number of index 2 and index 3 critical points will be the same.

E 10.1 Symmetric Product Spaces e

Remark 10.1.1: Let M3 be a closed 3-manifold, then there is a Heegard splitting

(Σg, α = {α1, · · · , αg} , β = {β1, · · · , βg} = (Σg, Hα, Hβ) ∂(Hα) = ∂(Hβ) = Σ,

where M3 = Hα

∐
Σ
Hβ and g is the genus of HD. We refer to Σ as a Heegard surface, and this

set of data as a Heegard diagram.

We’ll define Symg(Σ) by letting Sg y Σ×g where if ϕ ∈ Sg we set ϕ(x1, · · · , xg) = xϕ(1), · · · , xϕ(g).
Then set Σ×g := Σ×g/Sg. Why does this yield a smooth manifold? Is this action free? The diagonal
D ⊆ Σ×g consists of the points with at least 2 equal coordinates, and it’s easy to see that Sg y D
can not be free. However, this still yields a smooth submanifold!

Lemma 10.1.2(?).
Symg(Σ) is smooth, and any complex structure j on Σ will induce a complex structure on the
quotient, denoted Symg(j), which is unique in the sense that the quotient map Σ×g π−→ Symg(Σ)
is holomorphic.

Proof (?).
We’ll check this locally, and then leave it as an exercise to check that it extends globally – this
is easy by just considering what happens under transition functions and checking that π is
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holomorphic. Locally we want to produce a map

Symg(C) f−→ Cg

{z1, · · · , zg} 7→
( g∏
i=1

(z − zi) = zg + a1z
g−1 + · · ·+ ag 7→ [a1, · · · , ag]

)
.

This is a bijection, and by the fundamental theorem of algebra, there is an inverse. Equip
Symg(C) with a complex structure that makes f biholomorphic, then Symg(j) is the complex
structure locally equal to this one. This structure is obtained by just pulling back the standard
complex structure i× i× · · · i on Cg.

�

Remark 10.1.3: Symg(Σ) is a complex manifold of complex dimension g (or real dimension 2g).
We want to find half-dimensional submanifolds to do Lagrangian-Floer homology. Using the Heegard

splitting, write Tα :=
g∏
i=1

αi ⊂ Σ×g, which is a g-dimensional torus such that Tα ∩D = ∅ since the

αi are pairwise disjoint. Composing the inclusion above with π, we can note that the action of Sg
is free away from the diagonal D, so this composition is an embedding Tα ↪→ Symg(Σ). Similarly,

Tβ :=
g∏
i=1

βi ↪→ Symg(Σ).

Note that we’re only working with complex structures now, and haven’t upgraded it to a symplectic
structure yet. But we don’t really need this to count holomorphic discs. Lagrangians L were defined
as submanifolds where ω|L = 0, how do we do this without a symplectic form?

Definition 10.1.4 (?)
Given a complex manifold (X, J), a submanifold L ⊆ X is totally real if none of its tangent
spaces contains a complex line, i.e. TpL ∩ J(TpL) = {p,0} for all p ∈ L.

Example 10.1.5(?): Take a genus g surface Σ:

Figure 94: image_2021-02-16-11-49-52

Here any tangent vector has to get rotated out of the tangent space: if it were an eigenvector for
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J , then the rank of J would be too low, contradicting its definition. Note that any 1-dimensional
submanifold of (Σ, j) is totally real, and so Tα,Tβ are also totally real submanifolds of Σ×g. If you
restrict π to Σ×g \D π−→ Symg(Σ) \ π(D), this yields a biholomorphic map.

Remark 10.1.6: We’ll write ∆ := π(D) ⊆ Symg(Σ). Note that if α t β, then Tα t Tβ. Any
intersection point x ∈ Tα ∩ Tβ is of the form x = {x1, · · · , xg} ⊆ Σ such that each αi, βj contain
exactly one of the coordinates of x.

Example 10.1.7(?): The following is a diagram for RP3:

Figure 95: Heegard diagram for RP3

Here g = 1 and so Sym1(T 2) = T 2. We also have Tα = α,Tβ = β, and their intersection is
Tα ∩ Tβ = α ∩ β = {A,B}

Example 10.1.8(Heegard diagram for the Poincaré homology sphere): Here we have a
Poincaré homology sphere P 3, i.e. a 3-manifold with the same homology as S3, i.e. H∗(P 3) =
[Z, 0, 0,Z] (??)
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Figure 96: image_2021-02-16-12-01-57

Exercise 10.1.9(?)
Compute H∗(P 3) using this diagram, particularly H1. Using Poincaré duality here is fine!

The circles with the same color are the “feet” of a handle attachment, or equivalently removing the
two circles and identifying their boundary with reversed orientation. The two different colors for
circles indicate that this will be genus 2 The arcs between same-colored circles indicate loops that
continue through the handle which aren’t shown. Tracing through the lines on the diagram, there are
two α curves and two β curves. Since g = 2, we can identify Sym2(Σ) ⊇ α1×α2 = Tα, β1×β2 = Tβ .
The two black circles indicate intersection points in Tα ∩ Tβ. However, there are more than just
those two!

Exercise 10.1.10(?)
Show that |Tα ∩ Tβ| = 18.

Computing the intersections:

β1 β2

α1 3 2

α2 3 4
12

6
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How to read this from the diagram?

We’re really working in Symg(Σ), but for computations, we’ll work directly with the Heegard
diagram.

Remark 10.1.11: For Lagrangian Floer homology, we’ll have a triple (Symg(Σ),Tα,Tβ). We’ll
define

CF (Σ, α, β) :=
⊕

x∈Tα∩Tβ

Z/2Z 〈x〉

∂(x) :=
∑

y∈Tα∩Tβ ,µ=1
#M̂y.

We’ll first figure out how to count continuous discs up to homotopy classes, since holomorphic discs
are much more restrictive. We’ll see that π2 plays a role, and define the topology of Symg.

11 Thursday, February 18

Remark 11.0.1: Today: topology of symmetric product spaces Symg. We had an assignment

(Σg, α, β) 7→ (Symg(Σ),Tα,Tβ),

where if α, β are all transverse then so far Tα,Tβ, since e.g. Tα =
g∏
i=1

αi. We wanted to define a

chain complex

CF (σ, α, β) :=
⊕

x∈Tα∩Tβ

Z/2Z 〈x〉

∂x :=
∑

y∈Tα∩Tβ
µ(x,y)=1

#M(x, y)y,

where µ is the Maslov index and we want to count holomorphic discs. We’ll first talk about
continuous (topological) discs.

Lemma 11.0.2(?).

π1(Symg(Σ)) ∼= H1(Symg(Σ)) ∼= H1(Σ),

so the fundamental group is abelian.
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Remark 11.0.3: For a proof of the first isomorphism, see Lemma 2.6 in [OSZ04a]. Idea of proof
for the second isomorphism: we’ll define a map

ι : H1(Σ)→ H1(Symg(Σ))
x 7→ {x, z, · · · , z} ,

for some fixed z ∈ Σ, along with its inverse. Note that we’re identifying an embedding ι(Σ) =
Σ× {z}×g−1 ⊆ Symg(Σ). Now define j := ι∗ the induced map on homology.

j : H1(Symg(Σ))→ H1(Σ)
.

Picking a loop γ : S1 → Symg(Σ), note that ∆ ⊂ Symg(Σ) has codimension 2, and so we can
perturb γ to be disjoint from ∆. We can arrange so that γ is the union of g paths γ1, · · · , γg
such that each γi connects xi ∈ γ(0) to xσ(i) ∈ γ(0) where γ0 = {x1, · · · , xg} and σ ∈ Sg is a
permutation.

Example 11.0.4(?): For example, for g = 3:

Figure 97: image_2021-02-18-11-30-51

Then {γ1(t), γ2(t), γ3(t)} is a loop from γ(0)→ γ(0) ∈ Sym3(Σ).

This means that
g⋃
i=1

γi is a 1-cycle in Σ, and thus [∪gi] ∈ H1(Σ). So we’ll define this as j([γ]) = [∪γi].

Let M :=
{

(x, y)
∣∣∣ x ∈ Symg(Σ), y ∈ x

}
, then we’ll define a g : 1 branched cover away from π−1∆

that yields a fiber bundle:

S1 M

S1 Symg(Σ) Σ

∃γ̃

π, g:1∃g:1

γ

π2

Link to Diagram

This can be restricted to M \ π−1(∆) g:1−−→ Symg(Σ) \∆. Here j([γ]) = [π2 ◦ γ] and j ◦ ι∗ = 1.
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Example 11.0.5(?): We can use a Heegard diagram and Mayer Vietoris to compute the homology:

H1(M ;Z) = H1(Σ;Z)
〈[α1], · · · , [αg], [β1], · · · , [βg]〉

∼=
H1(Symg(Σ))
〈H1(Tα), H1(Tβ)〉 .

Proposition 11.0.6(?).

π2(Symg(Σ)) ∼= Z.

Remark 11.0.7: The generator comes from hyperelliptic involution:

Figure 98: image_2021-02-18-11-58-40

Then consider the quotient Σ/τ . To identify this quotient, since the top half is identified with the
bottom half, we can first forget about the bottom half, and then forget about half of the arcs along
the axis of rotation:
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Figure 99: image_2021-02-18-12-01-41

Note that this results in a copy of S2. We can define a map

Σ→ Σ×g

x 7→ (x, τ(x), z, · · · , z).

This extends to a map to Symg(Σ), since τ(x) 7→ (τ(x), x, z, · · · , z) and these will be equal in Symg.
So we can factor this through the quotient from above:

Σ Σ×g

S2 Symg(Σ)

f

q

Definition 11.0.8 (Whitney Disc)
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Given x, y ∈ Tα ∩ Tβ, a Whitney disc from x to y is a map

ϕ : D2 → Symg(Σ)

such that

ϕ(−i) = x

ϕ(i) = y

ϕ(e1) ⊆ Tα
ϕ(e2) ⊆ Tβ.

Figure 100: image_2021-02-18-12-22-03

We say ϕ1 ∼ ϕ2 if and only if they are homotopic relative to Tα,Tβ. We’ll write π2(x, y) for
the homotopy class of Whitney discs from x to y. There is a concatenation operation:

∗ : π2(x, y)× π2(y, z)→ π2(x, z).

Figure 101: image_2021-02-18-12-24-03

Note that this is precisely concatenation of paths in the path space P.
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Exercise 11.0.9 (?)
If x = y = z, then this yields an operation on (π2(x, x), ∗) which defines a group.

Remark 11.0.10: We can find obstructions to holomorphic discs by just looking at the topology.
For x, y ∈ Tα ∩ Tβ, choose two paths connecting them:

a : I → Tα
b : I → Tβ.

Figure 102: image_2021-02-18-12-27-15

We can consider the homology class [a− b] to investigate π1. This is well-defined as a loop

ε(x, y) := [a− b] ∈ H1(Symg(Σ))
〈H1(Tα)⊕H1(Tβ)〉

∼= H1(M).

This turns out to be independent of the choice of a, b, and thus

ε(x, y) 6= 0 =⇒ π2(x, y) = ∅,

and there are no continuous discs.

12 Tuesday, February 23

E 12.1 Whitney Discs e

Remark 12.1.1: For x, y ∈ Tα ∩ Tβ, recall that we had the following situation:
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Figure 103: Whiteney Disc

Then π2(x, y) was defined to be the homotopy classes of discs connecting x to y. The obstruction
to the existence of such discs was denoted ε(x, y) ∈ H1(M) for M ∈ Mfd3. We’re checking if there
exist two paths connecting x to y,

a : I → Tα
b : I → Tβ

such that a− b is nullhomotopic. In this case, π2(x, y) 6= ∅.
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Figure 104: image_2021-02-23-11-17-30

We had a theorem that π1(Symg Σ) ∼= H1(Symg Σ), so we can replace nullhomotopic with nullhomol-
ogous above. We can also use the fact that H1(Symg Σ) ∼= H1Σ. Note that [a− b] isn’t well-defined,
since we can append any loop to a for example, but the following is well-defined:

ε(x, y) := [a− b] ∈ H1 Symg Σ
H1Tα ⊕H1Tβ

∼=
H1Σ

〈[α1], · · · , [β1], · · ·〉
∼= H1M.

How can we compute ε using the Heegard diagrams? Recall that a path in Symg Σ was a union of
g paths in Σ. So choose arcs a1 ∪ · · · ∪ ag on Σ such that ai ⊆ αi is sub-arc and ∂(a1 ∪ · · · ∪ ag) =
y1 + · · · + yg − x1 − · · · − xg, and similarly choose b1 ∪ · · · ∪ bg. Note that if ε(x, y) 6= 0 then
π2(x, y) = ∅.

Example 12.1.2(L(2, 3)): The following is a Heegard diagram for L(2, 3) of minimal genus, where
we take α to be the horizontal line and β will be a line of slope 2/3:
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Figure 105: image_2021-02-23-11-28-10

Then Tα ∩ Tβ = {A,B}. Now draw arcs connecting A and B, e.g. the ones in orange and green
here:

Figure 106: image_2021-02-23-11-29-54

Note that we have two generators of homology for the torus, say x, y, and we can write
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Figure 107: image_2021-02-23-11-30-37

Then the union of the two arcs is exactly x+ y, so we can write

H1(L(2, 3)) = Z 〈x, y〉
〈y, 2x+ 3y〉 .

Moreover, ε(A,B) = x + y 6= 0 in this quotient, so there is not Whitney disc connecting A to B
and π2(A,B) = ∅.

Remark 12.1.3: We’ll define x ∼ y ⇐⇒ ε(x, y) = 0, and this turns out to be an equivalence
relation which partitions the set of paths.

• ε(x, y) = 0 =⇒ ε(y, x) = 0, which follows from ε(x, y) = [a− b] = [b− a] = ε(y, x)

• ε(x, x) = 0 by picking a, b constant.

Exercise 12.1.4 (?)
Show that ε(x, y) + ε(y, z) = ε(x, z).

Corollary 12.1.5(?).
If x ∼ y and y ∼ z, so ε(x, y) = ε(y, z) = 0, we have ε(x, z) = 0 =⇒ x ∼ z.

Exercise 12.1.6 (?)
Find the equivalence classes under ∼ for the Poincaré homology sphere using the genus 2
Heegard diagram.

Remark 12.1.7: For ϕ ∈ π2(x, y), the shadow is the 2-chain D(ϕ) on Σ defined in the following
way: remove the α, β arcs to obtain

Σ \ (α ∪ σ) =
m∐
i=1

Di,

where o denotes that the set is open. Then D(ϕ) =
m∑
i=1

aiDi.
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Definition 12.1.8 (?)
Given z ∈ Σ \ (α ∪ β), define a hyperplane

Lz =
{

w ∈ Symg(Σ)
∣∣∣ z ∈ w

}
.

Note that this will be codimension 2. Then for a disc ϕ ∈ π2(x, y), define

nz(ϕ) = # (im(ϕ) ∩ Lz) .

which is an algebraic (signed) count of how many entries in a tuple contain the point z. We
can then define ai := nzi(ϕ) and define

D(ϕ) =
m∑
i=1

aiDi, zi ∈ oDi.

Remark 12.1.9: The following comes from “Introduction to Heegard Floer Homology” (Osvath-
Szabo), which we’ve been following relatively closely so far.

Exercise 12.1.10 (?)
Let D be a domain of a disc connecting {x1, x2} to {y1, y2} in the following way:

Figure 108: image_2021-02-23-11-54-09

Attach 1-handles in the following way to obtain β curves:
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Figure 109: image_2021-02-23-11-55-13

Use these handles to add curves running through the handles:

Figure 110: image_2021-02-23-11-56-26

Exercise 12.1.11 (?)
What is a Heegard diagram for?

Pick a point in the center of the rectangle and connect it to the 4 vertices, noting that it
includes in Σ :
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Figure 111: image_2021-02-23-11-58-15

Applying a rotation by π and taking the quotient, we get a 2-fold branched cover of S1:

Figure 112: image_2021-02-23-11-59-29

Here x1, x2 7→ −i and y1, y2 7→ +i. We can now get a map ϕ to Sym2(Σ):
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Figure 113: image_2021-02-23-12-01-02

In the image we get 2 points with multiplicity on Σ, and thus an element of Sym2 Σ. We know
ϕ(−i) = {x1, x2} and ϕ(+i) = {y1, y2}.

Example 12.1.12(?): Show that D′ is the domain of a disc from {x1, x2} → {y1, y2}:

Figure 114: image_2021-02-23-12-18-15
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We want to make a similar 2-fold cover like in the previous example, so we’ll take the two rectangles
bounding the arcs, then taking the rotation by π yields the cover:

Figure 115: image_2021-02-23-12-20-27

As before, we get a map to Sym2 Σ:
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Figure 116: image_2021-02-23-12-22-36

As a result, we again get ϕ(−i) = {x1, x2} and ϕ(+i) = {y1, y2}.

Exercise 12.1.13 (?)
. Suppose x = {x1, · · · , xg} and y = {y1, · · · , yg} such that xi ∈ αi ∩ βi and yi ∈ αi ∩ βσ−1(i)
for some permutation σ ∈ Sg. Then for any ϕ ∈ π2(x, y), show that

∂ (∂D(ϕ) ∩ αi) = yi − xi,

where the inner term is a 1-chain in αi, and

∂ (∂D(ϕ) ∩ βi) = xi − yσ(i).
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Remark 12.1.14: This will characterize the coefficients ai for which discs exist. Next time we’ll
talk about holomorphic discs.

13 Thursday, February 25

E 13.1 Whitney Discs e

Remark 13.1.1: Recall that we discussed the domains of discs: for ϕ ∈ ϕ2(x, y) we defined the

2-chain D(ϕ) =
n∑
i=1

aiDi where we’ve written

Φ \ α ∪ β =
∐m

i=1

◦
Di

and ai is the number of points in im(ϕ) ∩ Lzi for zi ∈ Di.

Exercise 13.1.2 (?)
For ϕ ∈ π2(x, y), ∂D(ϕ) is a 1-chain in α ∪ β. Then

∂D(ϕ)|α =
g∑
i=1

yi −
g∑
i=1

xi∂D(ϕ)|β =
g∑
i=1

xi −
g∑
i=1

yi

where xi, yi ∈ αi.

Corollary 13.1.3(?).
For ϕ ∈ π2(x, y), consider an intersection point w which labels 4 nearby regions with coefficients
a, b, c, d:
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Figure 117: image_2021-02-25-11-28-01

Consider several cases:

1. w 6∈ x and w 6∈ y: Then ∂ (∂D(ϕ)|α) 63 w. We can expand this out as

D(ϕ) = aD1 + bD2 + cD3 + dD4

∂2D(ϕ) = ∂ (a∂D1) + · · ·.

Now restrict this to αi to yield

∂2D(ϕ) = ae1 + be2 − ce2 − de1.

Checking coefficients of w contributes −aw+ bw− cw− d(−w), and these should sum to
zero. This yields a+ c = b+ d, and similarly if w ∩ x ∩ y, this also yields a+ c = b+ d.

2. w ∈ x and w 6∈ y implies that a+ c = b+ d+ 1.

3. w 6∈ x and w ∈ y implies a+ c+ 1 = b+ d.

Remark 13.1.4: So if you want to check to see if some 2-chain could be the domain of a Whitney
disc, this local condition can be checked, i.e. this is an obstruction to existence. It turns out that
this is an if and only if condition.

Definition 13.1.5 (?)

A 2-chain A :=
m∑
i=1

aiDi connects x to y if and only if the following local linear conditions are
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satisfied:

∂2A|α = y − x
∂2A|β = x− y

.

Proposition 13.1.6(?).
Suppose g > 1. If a 2-chain A connects x to y then there exists a Whitney disc ϕ ∈ π2(x, y)
such that D(ϕ) = A. If g > 2, ϕ is uniquely determined by A.

Remark 13.1.7: See proof in Osvath-Szabo paper.

Example 13.1.8(?): Think of the screen as a plane, and circled letters are handles attached out
of the page according to their orientations. Consider the following diagram along with the indicated
intersection points:

Figure 118: image_2021-02-25-11-45-11

Set the coefficients of the unlabeled regions to zero, and let x := {x1, x2} and y := {y1, y2}. We can
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check that if the following yellow region has coefficient 1, it can be the domain of a Whitney disc:

Figure 119: image_2021-02-25-11-47-15

This follows from checking the local conditions (there is a mnemonic involving the diagonal sums
for the various cases).

Example 13.1.9(?): Consider a new diagram, changed by an isotopy (here: a “finger move”):
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Figure 120: image_2021-02-25-11-52-12

Is there a Whitney disc connecting x := {x1, x2}
ϕ−→ y := {y1, y2}? Checking the diagonals, all of

the local conditions hold, so yes.

Exercise 13.1.10 (?)
Find the 3-manifold that these two diagrams represent.

E 13.2 Holomorphic Discs e

Remark 13.2.1: Ultimately these are what we want to define the differential in the chain complex.

Figure 121: image_2021-02-25-12-08-55
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We’ll set up a correspondence:
(Riemann surfaces F,∂αF,∂βF )

πΣ−−→(Σ,α,β)w� g-fold branched cover πD
(D,e1,e2)

∂F=(∂αF )
∐
∂

(∂βF )
πD(∂α)=e1 πD(∂β)=e2


 {holomorphic u:(D2,e1,e2)→(Symg(Σ),Tα,Tβ)}

To do this, we define u(z) = πΣ(π−1
D (z)) ∈ Symg(Σ). Check that if πD, πΣ are holomorphic, then u

is holomorphic.

F Σ× Symg−1(Σ) Σ

D2 Symg(Σ)

g-fold branched cover

u

πD:g-fold branched cover

π1

πΣ

Link to Diagram

Then if u is holomorphic, it can be shown that πD, πΣ are also holomorphic. Given ϕ ∈ π2(x, y),
defineM(ϕ) to be the moduli space of holomorphic discs connecting x to y in the same homotopy
class as ϕ (i.e. such discs represent ϕ). After perturbing the complex structure Symg(j) to make
it generic,M(ϕ) will be smooth. We’ll have a notion of dimension, the Maslov index µ(ϕ), which
is the expected dimension ofM(ϕ). There will be an R-action onM(ϕ), where we remember the
biholomorphism between the disc and the vertical strip:
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Figure 122: image_2021-02-25-12-19-15

We’ll define M̂(ϕ) :=M(ϕ)/R. The chain complex will be defined as

HF(Σ, α, β) :=
⊕

x∈Tα∩Tβ

Z/2 〈x〉

∂x :=
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y)?

#M̂(ϕ).

We’ll need

• Check that ∂ is well-defined and ∂2 = 0,

• Check independence of choices, e.g. the Heegard the diagram, the complex structure, the
perturbations of Symg(j), etc.

Question 13.2.2
This takes a lot of work! Is the homology of this complex interesting? Is this stronger than singular
homology?

Answer 13.2.3
Let M ∈ ZHS3, so the homology doesn’t distinguish M from a sphere and H∗(M ;Z) ∼= H∗(S3;Z).
It turns out that H∗(HF(M3)) ∼= H∗(HF(S3)), so the answer is no!
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Remark 13.2.4: Osvath-Szabo picked a basepoint z ∈ Σ \ (α ∪ β) and work with pointed Heegard
diagrams (Σ, α, β, z). Perturb the differential to obtain

∂̃x :=
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=0,
nz(ϕ)=0

#M̂(ϕ)y.

where nz denotes the coefficient of ϕ at the basepoint z, i.e. the number of intersection points
#(imϕ ∩ Lz).

Defining ĤF as the same chain complex with the new differential now gets interesting! We’ll define
ĤF as the homology of this new complex.

14 The Heegard-Floer Chain Complex &
Maslov Index (Tuesday, March 02)

E 14.1 Pointed Heegard Diagrams e

Remark 14.1.1: Last time: to strengthen the homology theory, take a pointed Heegard diagram
(Σ, α, β, z ∈ Σ \ α ∪ β and define a new chain complex

ĤF(Σ, α, β, z) =
⊕

x∈Tα∩Tβ

Z/2 〈x〉

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=1,
nz(ϕ)=0

#M̂(ϕ)y.

Note that nz(ϕ) = 0 means that the coefficient attached to the region containing z is zero. Recall
that we had diagram moves, how do they translate to the pointed setting?

• Allow pointed isotopies, which are isotopies disjoint from z.
• Allow pointed handleslides, where now the bounded pair-of-pants is disjoint from z:

Figure 123: image_2021-03-02-11-18-40
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• Allow isotopies of the base point.

Lemma 14.1.2(?).
Any two pointed Heegard diagrams for a 3-manifold M3 can be connected by a sequence of
the following moves:

• Stabilization or destabilization,
• Pointed isotopy,
• Pointed handleslides,
• Isotopes of the basepoint away from α, β.

Exercise 14.1.3 (?)
Prove this lemma.

Example 14.1.4(S3): Here is the simplest Heegard diagram from S3:

Figure 124: image_2021-03-02-11-22-54

Here there is just one one intersection point, so ĤF = Z/2 〈x〉 is 1-dimensional, and ∂x = 0. So
ĤF = Z/2.

Example 14.1.5(RP3): We can write RP3 = L(2, 1) and produce the following Heegard diagram:
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Figure 125: image_2021-03-02-11-38-42

Is there a disc between x and y? We can check the obstruction ε(x, y) by labeling the generators in
homology and tracing the following green path:

Figure 126: image_2021-03-02-11-40-13

We obtain

ε(x, y) = [B] ∈ H1(T 2)
〈[α] = [A], [β] = [A+ 2B]〉 .

In this quotient, [B] 6= 0, and this quotient is Z/2 = 〈[B]〉 so that 2B = 0. So there are no disks in
π2(x, y), making ∂x = ∂y = 0. So ĤF (RP3) = Z/2⊕ Z/2.
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Exercise 14.1.6 (?)
Compute ĤF(L(p, 1)). Use that ε(x, y) + ε(y, z) = ε(x, z).

E 14.2 Maslov Index e

Remark 14.2.1: Recall that we had a natural concatenation operation on Whitney discs:

∗ : π2(x, y)× π2(y, z)→ π2(x, z),

using the identification of these discs with paths in the path space and using concatenation of paths
there. Note that the domains of concatenations are given by D(ϕ1 ∗ ϕ2) = D(ϕ1) + D(ϕ2), since
this amounts to adding algebraic intersection numbers.

There is an inverse

π2(x, y)→ π2(y, x)
ϕ 7→ ϕ−1(s, t) := ϕ(s,−t),

which reverses the parameterization on (s, t) ∈ I ×R and runs the path backward. Here D(ϕ−1) =
−D(ϕ).

There is also a sphere addition

π2(Symg(Σ), x)× π2(x, y)→ π2(x, y)
(Ω, ϕ) 7→ Ω ∗ ϕ.

Figure 127: Maps entire boundary to a point, yielding a sphere.

Note that for g ≥ 2, the π2 on the left-hand side is isomorphic to Z, which came from quotienting
by the hyperelliptic involution several lectures ago. Writing the positive generator as S, we have
Ω = kS for some k ∈ Z.
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Exercise 14.2.2(?)
Show that

D(S) =
m∑
i=1

Di = [Σ].

Proposition 14.2.3(?).
There exists a function µ : π2(x, y)→ Z called the Maslov index satisfying:

1. Additivity: µ(ϕ1 ∗ ϕ2) = µ(ϕ1) + µ(ϕ2).

2. Invertibility: µ(ϕ−1) = −µ(ϕ).

3. Sphere addition: µ(kS ∗ ϕ) = µ(ϕ) + 2k where k ∈ Z and S ∈ π2(Symg(Σ)).

4. If ϕ ∈ π2(x, x) is constant, then µ(ϕ) = 0.

Note that 2 =⇒ 4.

Remark 14.2.4: The Maslov index is the “expected” dimension of

M(ϕ) =
{
u : I → R→ Symg(Σ)

∣∣∣ [u] = ϕdu ◦ i = J ◦ du
}

where i is the standard complex structure on the strip and J will be a perturbation of the complex
structure over the Heegard surface. This will yield an operator

∂J : B → L
u 7→ du ◦ i− J ◦ du

for some appropriate infinite dimensional spaces. The elements ofM(ϕ) will be in the kernel of this
operator. We want 0 to be a regular value (surjective derivative) for ∂J , since in finite dimensions
the inverse image would be a smooth manifold. In the infinite dimensional setting, we’ll have by the
inverse function theorem thatM(ϕ) = ∂−1

J (0) will be a smooth manifold. We’ll want the following
derivative to be surjective:

Du∂J : TuB → T∂JuL

for all u ∈ ∂−1
J (0), which is referred to as transversality of the operator, and can be made to hold

by perturbing the complex structure. Since the dimension of a manifold is the dimension of the
tangent spaces, we’ll have M(ϕ) smooth of dimension equal to dim kerDu∂J for any u ∈ ∂−1

J (0).
This will be an order 2 elliptic operator (or more generally a Fredholm operator), for which we have
a notion of index:

ind(D∂J) = dim(kerD∂J)− dim(cokerD∂J).

If surjectivity holds, the cokernel will be zero, so it will suffice to compute the dimension of the
kernel to get the dimension of the moduli space. The index of this operator will be the Maslov
index.

Remark 14.2.5: Take a look at Gromov compactness again!
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15 Maslov Index Formula (Thursday, March
04)

E 15.1 Review e

Remark 15.1.1: Recall that for x, y ∈ Tα ∩ Tβ, there is a map
µ : π2(x, y)→ Z

µ = ind(D∂J).

This index is the expected dimension of M(ϕ). The following theorem can be found in the paper
“A cylindrical reformulation of Heegard Floer homology”:

Theorem 15.1.2(Lipschitz).
Let x = {x1, · · · , xg} and y = {y1, · · · , yg} and ϕ ∈ π2(x, y). Then

µ(ϕ) = e(D(ϕ)) + nx(D(ϕ)) + ny(D(ϕ)).

where e(−) is the Euler measure and nx(· · · ), ny(· · · ) is referred to as the point measure.
Note that these only depend on the domain of ϕ.

Definition 15.1.3 (Euler Measure)

Let D(ϕ) =
m∑
i=1

nzi(ϕ)Di, then

e(D(ϕ)) :=
m∑
i=1

nzi(ϕ)e(Di) e(Di) := χ(Di) + 1
4C1 −

1
4C2.

Here we use the fact that all regions are polygons whose corners occur in one of two types:

Figure 128: image_2021-03-04-11-20-25

So we define C1 to be the number of corners of the first type and C2 the number of the second
type. The point measure is defined as

nx(D(ϕ)) :=
g∑
i=1

nxi(D(ϕ)) = n1 + n2 + n3 + n4
4 ,

where the ni are the surrounding regions’ coefficients:
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Figure 129: image_2021-03-04-11-24-27

Example 15.1.4(?): Let x = {x1, x2} , y = {y1, y2} and compute µ(ϕ) where D(ϕ) is one of the
following domains:

1. The first type:

Figure 130: image_2021-03-04-11-26-34

Figure 131: image_2021-03-04-11-30-34

• Here D(ϕ) = 0 and e(D) = 1 + 1
4(0)− 1

4(0) = 0.

• nx(D(ϕ)) = nx1(D) + nx2(D)F = 1
4 + 1

4 = 1
2 .

• ny(D(ϕ)) = ny1(D) + ny2(D) + 1
4 + 1

4 = 1
2 .

• So µ(ϕ) = 1.

2. A second type:
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Figure 132: image_2021-03-04-11-32-08

• Here we have an annulus and D(ϕ) = D implies that e(D(ϕ)) = e(D) = χ(D) + · · · =
0 + 1

4(0)− 1
4(4) = −1.

• nx(D(ϕ)) = nx1(D) + nx2(D) = 1
4 + 1

4 = 1
2

• µ(ϕ) = −1 + 1
2 + 1

2 = 0.

3. A third type:

Figure 133: image_2021-03-04-11-36-09

• Here x2 = y2 and are disjoint from D1, D2, D3:
• D(ϕ) = D1 +D2 +D3.
• e(D(ϕ)) =

∑
e(Di) =

(
1− 1

4(4)
)

+
(

1− 1
4(2)

)
+
(

1− 1
4(2)

)
= 0 + 1

2 + 1
2 = 1.

– We could have alternatively noted that D(ϕ) is a disc with χ = 1 and used the formula
to get 1 + 1

4(1)− 1
4(1).

• nx(D(ϕ)) = nx1(D(ϕ)) + nx2(D(ϕ)) = 1
4 + 0 = 1

4 .

15.1 Review 114



15 Maslov Index Formula (Thursday, March 04)

• ny(D(ϕ)) = ny1(D(ϕ)) + ny2(D(ϕ)) = 3
4 + 0 = 3

4 .
• Thus µ(ϕ) = 2.

Example 15.1.5(?): Another example calculation:

Figure 134: image_2021-03-04-11-47-57

Question 15.1.6
Does this domain have a holomorphic representative?

E 15.2 Positivity Principle e

Proposition 15.2.1(Positivity Principle).
For ϕ ∈ π2(x, y), if M(ϕ) 6= ∅ then D(ϕ) ≥ 0, i.e. D(ϕ) =

∑
niDi where ni ≥ 0. This

happens if and only if nw(ϕ) ≥ 0 for all w ∈ Σ \ α ∪ β.

Proof (Idea).
If u ∈ M(ϕ) then u : D → Symg(Σ) is holomorphic and im(u) is a complex submanifold. If
w ∈ Σ \ α ∪ β then Lw is holomorphic.

�

Example 15.2.2(?): Show that transverse complex submanifolds intersect non-negatively, i.e.

nw(ϕ) := # (im(u) ∩ Lw) ≥ 0.

Example 15.2.3(?): Consider S1 × S2 with the following Heegard diagram:
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Figure 135: image_2021-03-04-12-18-25

We have ĤF(Σ, α, β, z) = Z/2 〈x, y〉. Then for ϕ ∈ π2(x, y) with µ(ϕ) = 1 and nz(ϕ) = 0, we can
write D(ϕ) = aD1 + bD2. Now checking the diagonals:

Figure 136: image_2021-03-04-12-20-40

Since the sum of multiplicities NW → SE should be 1 more than the sum NE → SW, we have
a+ b = 1 and by the positivity principle, D(ϕ) ≥ 0 implies a, b ≥ 0. We then obtain{

a = 0, b = 1 =⇒ D(ϕ) = D2 3 ϕ2

a = 1, b = 0 =⇒ D(ϕ) = D1 3 ϕ1
.

Example 15.2.4(?): For example, if µ(ϕ1) = µ(ϕ2) = 1, we’re looking for holomorphic maps
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Figure 137: image_2021-03-04-12-23-52

For any p on the α circle from y to x, there exists a unique holomorphic map with µ(1) = p
by the Riemann mapping theorem. After taking the quotient M̂(ϕ1) = M(ϕ1)/R, we obtain
#M̂(ϕ1) = 1 = #M(ϕ2). Then note that

∂x =
(
#M̂(ϕ1) + #M̂(ϕ2)

)
y = 0,

since we are taking coefficients mod 2. Then ϕ ∈ µ(x, y) implies that a + b = −1, so there is no
non-negative disk and ∂y = 0.

Exercise 15.2.5(?)
Show that there is no non-negative disc in π2(x, x) and π2(y, y) by looking at local coefficients.

So ∂ = 0 which implies that ĤF(Σ, α, β, z) = (Z/2)⊕2.

Question 15.2.6
What if we used an isotopic diagram?

Figure 138: image_2021-03-04-12-30-18

The only difference between this and the first is an isotopy of β, and we’ll see that there’s an
invariance and a condition called admissibility to help decide which to use.

15.2 Positivity Principle 117



16 Tuesday, March 09

Exercise 15.2.7 (?)
Do another isotopy to create 4 intersection points and show that the ranks of homology are
unchanged.

16 Tuesday, March 09

Remark 16.0.1: Recall that we were working with a diagram for S1 × S2:

Figure 139: image_2021-03-09-11-14-10

Here we have ∂x = 2y = 0 since we’re working mod 2, and ∂y = 0, so we have

ĤF(H1) = ker ∂
im ∂

= 〈x, y〉1 = (Z/2)⊕2.

However, with a different diagram, we get a different result:

Figure 140: image_2021-03-09-11-15-46

Here ĤF(H2) = 0. To prevent this, we’ll have some class of admissible diagrams.
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Definition 16.0.2 (Periodic Domains)

A 2-chain P =
m∑
i=1

aiDi is called a periodic domain if and only if

1. The local multiplicity of P at z is zero, i.e. nz(P ) = 0, and
2. ∂P is a linear combination of α, β.

Remark 16.0.3: Note that for (2), the boundary could involve 1-chains, so this condition avoids
corners on ∂P . The local picture is the following:

Figure 141: image_2021-03-09-11-19-12

Example 16.0.4(?): In this picture, P = nD1 will be a periodic domain for any n;

Figure 142: image_2021-03-09-11-20-54

Example 16.0.5(?): Labeling the first picture, we have
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Figure 143: image_2021-03-09-11-21-32

We should have n1 + n2 = 0, so any P = n(D1 − D2) will be a periodic domain. Checking the
boundary yields ∂P = nα± nβ. In fact there is single “generator” for the periodic domains here:

Figure 144: image_2021-03-09-11-23-43

Definition 16.0.6 (Weakly Admissible Diagrams)
A Heegaard diagram H = (Σ, α, β, z) is called weakly admissible if any periodic domain P
has both positive and negative coefficients.

Example 16.0.7(?): H1 from above is weakly admissible, but H2 is not.

Remark 16.0.8: For any Whitney disc ϕ ∈ π2(x, x) with nz(ϕ) = 0, D(ϕ) is a periodic domain.
For any periodic domain P , we can associate a homology class H(P ) ∈ H2(M). Writing

∂P =
g∑
i=1

aiαi +
g∑
i=1

biβi
H−→ H(P ) := [P +

g∑
i=1

aiAi +
g∑
i=1

biBi].

using that each αi is the boundary of some disc Ai in one handlebody, and βi = ∂Bi similarly.
Noting that P is a boundary, this amounts to adding a number of discs to get a closed nontrivial
cycle.

Exercise 16.0.9 (?)
Show that if H(P ) = 0 the P = 0, and that H is a bijection.
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Remark 16.0.10: Let P =
m∑
i=1

niDi be a 2-chain that satisfies condition 2, so ∂P =
m∑
i=1

aiαi +
m∑
i=1

biβi. Then we can obtain a periodic domain:

P0 := P − nz(P )
(

m∑
i=1

Di

)
:= P − nz(P )[Σ].

Exercise 16.0.11 (?)
Show that if g > 2, then

π2(x, x) ∼−→ Z⊕H2(M)
P = P0 + nz(P )[Σ] 7→ (nz(P ), H(P0)).

Alternatively, given ϕ ∈ nz(ϕ)S where S is the positive generator of π2(Symg(Σ)) ∗ϕ0 (i.e. the
hyperelliptic involution) where D(ϕ0) is a periodic domain.

Use that for g ≥ 2 there is a bijection between Whit-
ney discs and domains, and domains of Whitney
discs are domains satisfying condition (2) above.

Exercise 16.0.12 (?)
Show that for a closed 3-manifold M ∈ QHS3, H2(M ;Z) = 0.

Corollary 16.0.13(?).
If H2(M) = 0 (e.g. if M ∈ QHS3) then any Heegard diagram is weakly admissible.

Remark 16.0.14: This is because H2(M) = 0 means there are no periodic domains.

Lemma 16.0.15(?).
If H is weakly admissible, then for any x, y ∈ Tα ∩ Tβ there are finitely many Whitney discs
ϕ ∈ π2(x, y) with D(ϕ) ≥ 0.

Theorem 16.0.16(?).
Any Heegard diagram can be made admissible using finitely many isotopies.

Example 16.0.17(?): For g = 1, we have Sym1(Σ) = Σ. We’ll use this in what follows.

Lemma 16.0.18(?).
For any x, y ∈ α ∩ β, the 0-dimensional moduli space of holomorphic disks connecting x to y
correspond to orientation-preserving immersions of the following form which satisfy:
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Figure 145: image_2021-03-09-12-06-12

1. u(e1) ⊆ β, u(e2) ⊆ α, u(−i) = x, u(i) = y.
2. There are π/2 radian corners at x, y, but these are smooth immersions at other boundary

points.

Exercise 16.0.19 (?)
Prove this lemma using the Riemann mapping theorem.

Example 16.0.20(?): Consider the following example:

Figure 146: image_2021-03-09-12-09-05

List all of the bigons in this picture that will contribute to the differential.

17 Thursday, March 11

Remark 17.0.1: Recall the example from last time: we are trying to show that changing a diagram
by isotopy doesn’t change the homology.
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Figure 147: image_2021-03-11-11-16-15

Here we have g = 1 and so Sym1(T 2) = T 2, and α ∩ β = {a, b, c, d, e}. So ĤF(Σ, α, β, z) =
Z/2 〈a, b, c, d, e〉.

First mark the component that contains the base point z and give it a coefficient of zero:

Figure 148: image_2021-03-11-11-18-34

We can make this part bigger, and find that there are only two bigons involving a.
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Figure 149: image_2021-03-11-11-23-41

This is because starting at a point and following the orientation should yield red first and then blue,
matching up with the orientation on the disc.

Figure 150: image_2021-03-11-11-35-44

So ∂a = b+ d, since we require 90 degree corners. Similarly,

• ∂e = b+ d
• ∂b = c
• ∂d = c
• ∂c = 0

We can simplify this information with a graph with arrows pointing toward boundaries:
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Figure 151: image_2021-03-11-11-29-41

Then any linear combination with the same image will have zero boundary, so we have

ker ∂ = 〈a+ e, b+ d, c〉
im ∂ = 〈b+ d, c〉 ,

and thus ĤF(Σ, α, β, z) = Z/2.

Figure 152: image_2021-03-11-11-37-28

Example 17.0.2(?): Drawing this on a surface yields the following:
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Figure 153: image_2021-03-11-12-01-09

One useful trick here is labeling the points along one curve with letters and the other with numbers.
Another is making a table like the following:

Figure 154: image_2021-03-11-12-05-41

From this it’s easy to read off the 4 possible generators {ae, ce, bf, bd}. The regions the contain z
can be seen in the latter picture:
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Figure 155: image_2021-03-11-12-07-48

Translating this to the original picture yields these regions:
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Figure 156: image_2021-03-11-12-09-26

Note that the half-bigons in the diagram actually pair to a bigon on the surface, so consider this
simplified drawing of the surface:
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Figure 157: image_2021-03-11-12-11-38

• For the bigon from a→ c, we can get ae→ ce using the embedding

D u−→ Σ ↪→ Sym2(Σ).

• For the bigon d→ f , we get bd→ bf .

Setting D1 = D(ϕ) for ϕ ∈ π2(ae, bf), we have µ(ϕ) = 1 since we showed that rectangular regions
have Maslov index 1. Are there any holomorphic representatives? The claim is that #M̂(ϕ).
Checking boundaries yields the following:

Figure 158: image_2021-03-11-12-19-43
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Then

ker ∂ = 〈ce, bf〉
im ∂ = 〈ce+ bf〉

=⇒ ĤF (Σ, α, β, z) ∼= Z.

This is good, since some valid moves will make this into a standard diagram for S3 (?).

Remark 17.0.3: Recall that given a rectangle, there is a 2-to-1 branched cover:

Figure 159: image_2021-03-11-12-25-02

Such branched coverings bijectively correspond to biholomorphic involutions

a
 e

b
 f.

This is because there is a unique involution exchanging them by the Schwarz lemma, since any pole
of the involution must lie along the line connecting points it exchanges, and exchanging each pair
of corners in the rectangle forces to pole to be precisely the point in the center of the rectangle. So
these correspond got biholomorphic involutions of D using complex analysis.

Remark 17.0.4: Next week: more about the Maslov index and SpinC structures, then invariance
under diagram moves.
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18 Maslov Grading and SpinC Structures
(Tuesday, March 16)

Remark 18.0.1: LetM ∈ Mfd3(R) be a closed oriented 3-manifold and H = (Σ, α, β, z) a Heegaard
diagram for M . Letting bi be the Betti numbers, note that b1 = 0 ⇐⇒ M ∈ QHS3 is a rational
homology 3-sphere, i.e. Hi(M ;Q) ∼= Hi(S3;Q) for all i. This also implies that H2(M ;Z) = 0. Under
this condition, we can define a relative Z-grading (i.e. we have a difference of grading between
any two elements) on ĈF in the following way: for x, y two generators, we set

gr (x)− gr (y) := µ(ϕ)− 2nz(ϕ) for some ϕ ∈ π2(x, y).

Recall that µ(−) denotes the Maslov index, nz(−) is the local multiplicity of a Whitney disc at z,
and x, y denote tuples of points.

Remark 18.0.2: This involves a choice of disc, so why is it well-defined? We’ll also see why we
need M ∈ QHS3.

Proof (of well-definedness).
Let ϕ,ϕ′ ∈ π2(x, y). We have

ϕ ∗ (−ϕ′) ∈ π2(x, x) = Z⊕H2(M) = Z⊕ 0,

so this is some multiple kS where S is the positive generator of π2 Symg Σ. So

µ(ϕ ∗ (−ϕ′)) = µ(ϕ)− µ(ϕ′) = kµ(S) = 2k.

Similarly,

nz(ϕ ∗ (−ϕ′)) = nz(ϕ)− nz(ϕ′) = knz(S) = k,

where we’ve used µ(S) = 2, nz(S) = 1. Then

µ(ϕ)− µ(ϕ′) = 2(nz(ϕ)− nz(ϕ′))
=⇒ µ(ϕ)− 2nz(ϕ) = µ(ϕ′)− 2nz(ϕ′).

�

Remark 18.0.3: Note that the relative grading is only defined if π2(x, y) 6= ∅ ⇐⇒ ε(x, y) = 0 ∈
H1(M ;Z). This generated an equivalence relation of elements in Tα∩Tβ by x ∼ y ⇐⇒ ε(x, y) = 0,
so we have a decomposition

ĈF (H) =
⊕

?
ĈF (H, ?).

which is preserved by ∂, so ĤF (H) will split similarly as

ĤF (H) =
⊕

?
ĈF (H, ?).
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18 Maslov Grading and SpinC Structures (Tuesday, March 16)

It turns out that the right thing to replace the “?” with will be SpinC structures.

E 18.1 SpinC Structures e

Remark 18.1.1: We’ll discuss Turaev’s (?) reformulation of SpinC structure for Mfd3. Note that
χ(M) = 0, so there exists nowhere vanishing vector fields on M by Poincaré-Hopf.

Definition 18.1.2 (?)
Let v1, v2 be nowhere vanishing vector fields on M . We say

v1 ∼ v2 ⇐⇒ v1|M\B ' v2|M\B,

i.e. their restrictions to M \ B are homotopic, and here B is a 3-ball in M . Equivalently,
v1 ∼ v2 ⇐⇒ v1, v2 are homotopic in the complement of finitely many 3-balls in M .

Definition 18.1.3 (SpinC Structures)

SpinC(M) := {Nowhere vanishing vector fields on M}/∼ .

Definition 18.1.4 (?)
Let H = (Σ, α, β, z) be a Heegard diagram for M , then define a map

Sz : Tα ∩ Tβ → SpinC(M).

Step 1: Choose a self-indexing Morse function f with # Crit0(f) = # Crit3(f) = 1 such that
its corresponding Heegaard diagram is H:
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Figure 160: image_2021-03-16-11-47-19

Note that we have a surface in f−1(3/2) and there are exactly q critical points along each
of f−1(1), f−1(2). For each x = {x1, x2, · · · , xg} ∩ Tα ∩ Tβ, we have xi ∈ αi ∩ βσ(i) for some
permutation σ ∈ Sg Then α 7→ pi and βσ(i) 7→ qσ(i):

Figure 161: image_2021-03-16-11-49-42

Trajectories of −∇f that pass through x1, x2, · · · , xg are g pairwise disjoint arcs connecting
q1, q2, · · · , qg to p1, p2, · · · , pg, so there is a one-to-one correspondence between these intersection
points.
Now taking tubular neighborhoods of the g+1 disjoint arcs yields g+1 pairwise disjoint 3-balls
in M , so write this as B := B1

∐
· · ·
∐

Bg+1.

18.1 SpinC Structures 133
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Figure 162: image_2021-03-16-11-53-04

Note that

• −∇f does not vanish in M \B.

• −∇f can be extended to a nowhere vanishing vector field on M

Exercise 18.1.5 (?)
Show this!
Hint: the trajectories of −∇f in each ball connect critical points of different parities, and
so each −∇f |∂Bi has index zero.

Define Sz(x) ∈ SpinC(M) to be the equivalence class represented by this vector field. This is
well-defined since outside of the finitely many balls, this vector field is just equal to −∇f .

Exercise 18.1.6 (?)
Show that this does not depend on which Morse function is chosen.

Proposition 18.1.7(?).
There is a one-to-one correspondence

SpinC(M)
 H2(M ;Z).

Picking a trivialization τ : TM →M × R3 and a Riemannian metric on M , then{
Nowhere vanishing vector fields

on M

}

 {functions f :M→S2}

v : M → R3 \ {0} 7→ x
fv−→ v̂x
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Definition 18.1.8 (?)
Let α ∈ H2(S2;Z) be the positive generator, then define

δτ (v) := f∗v (α) ∈ H2(M ;Z).

Note that if v1 ∼ v2, we have δτ (v1) = δτ (v2) since they are homotopic on the complement of
a ball:

M \B i
↪→M

fv−→ S2.

Conclude that

(fv1 ◦ i)∗(α) = (fv2 ◦ i)∗(α),

i∗ is an isomorphism, so f∗v1(α) = f∗v2(α), yielding the identification.

Exercise 18.1.9 (?)

1. Show that δτ is a bijection.

2. δ(v1, v2) := δτ (v1)− δτ (v2) ∈ H2(M ;Z) is well-defined and independent of the choice of
τ , and satisfies

δ(v1, v2) + δ(v2, v3) = δ(v1, v3).

Thus we also have a relative map

SpinC(M)
 H2(M ;Z)
s1, s2 := [v1]− [v2] 7→ s1 − s2 := δ(v1, v2).

19 Thursday, March 18

E 19.1 SpinC Structures and Invariance e

Remark 19.1.1: Recall that given a Heegard diagram (Σ, α, β, z) gives an equivalence relation

x ∼ y ⇐⇒ ε(x, y) = 0 ∈ H1(M) PD= H2(M).

This yields a decomposition of ĤF into a direct sum over equivalence classes of subcomplexes defined
by SpinC structures. Note that the differential will preserve each direct summand. We defined
SpinC(M) as the set of nowhere vanishing vector fields on M modulo being homotopic outside
finitely many 3-balls in M . We had a map

Tα ∩ Tβ
sz−→ SpinC(M),
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recalling that the left-hand side are the generators of ĤF. We took a self-indexing Morse function
on M , took the inverse image of 3/2 to get the Heegard surface, and each intersection point xi gave
a flow line from an index 2 critical point to an index 1 critical point passing through xi:

Figure 163: Trajectories of negative gradient flow

We proceeded by cancelling adjacent flow lines (at the level of vector fields), and then modifying
γz (the flow line passing through the basepoint z connecting the index 0 to the index 3) to get a
nowhere vanishing vector field. We then took a trivialization τ : TM →M × R3 defined a map

SpinC(M) γτ−→ H2(M)
s = [v] 7→ f∗v (α).

where α is the volume form of S2 and

fv : M → S2

x 7→ v̂x := vx
‖vx‖

.

Note that δτ a priori depends on τ , but

δ(s1, s2) = δτ (s1)− δτ (s2) ∈ H2(M),

and the difference is independent of τ .
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Lemma 19.1.2(?).
For x, y ∈ Tα ∩ Tβ, defining s1 − s2 = δ(s1, s2) ∈ H2(M), we have

sz(y)− sz(x) = PD[ε(x, y)].

As corollaries,

1. If x ∼ y then sz(y) = sz(x), and
2. If x 6∼ y then the above equation holds.

Exercise 19.1.3 (?)
Prove this!
Hint, take the Poincaré dual of the link below to get the formula:

sz(y)− sz(x) = PD[γy ∪ (−γx)].

This implies that the two vector fields are equal everywhere outside of a tubular neighborhood
of the link. Then show that [γx ∪ (−γx) = [ε(x, y)].

Remark 19.1.4: We thus have

ĤF(Σ, α, β, z) =
⊕

s∈SpinC(M)

ĤF(Σ, α, β, z, s).

Remark 19.1.5: We have several properties of SpinC structures. There is a map

J : SpinC(M)→ SpinC(M)
s = [v] 7→ s := [−v].

There is also a first Chern class

c1 : SpinC(M)→ H2(M)
s 7→ s− s,

i.e. c1(s) = δ(s, s).

Theorem 19.1.6(Topological Invariance).
The association

(Σ, α, β, z), J  ĤF(Σ, α, β, z)

does not depend on the choice of Heegard diagram or the almost complex structure J , so this
yields a well-defined invariant of M which we’ll denote ĤF(M) for M ∈ Mfd3(R).

Remark 19.1.7: There are few things to discuss:

1. The almost complex structure J :
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2. Isotopies

3. Handle slides

4. Stabilization

Remarks on these:

1. This involves a standard argument from Lagrangian Floer homology.
2. There are two cases:

• If the isotopy doesn’t create a new intersection, we have a 1-to-1 correspondence between
generators for any two choices, and changing J to J ′ will give a correspondence between
the differentials. This just involves picking a diffeomorphism that maps α circles to α′
circles, and so on. So this reduces to showing 1.

• If is does create new intersection points, there are again standard arguments in Lagrangian
Floer homology for this.

3. This involves the following situation, which induces a map

Figure 164: image_2021-03-18-11-51-38

For an appropriate choice of J on Σ #T 2, the map f above will induce a chain homotopy equivalence

f̃ : ĤF(Σ, α, β, z) ∼−→ ĤF(Σ #T 2, α′, β′, z).

4. What’s the picture?
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Figure 165: image_2021-03-18-11-56-59

This will yield a map

(Σ, α, β, z) (Σ, α, γ, z).

For i = 1, · · · , g − 1, we’ll have γi isotopic to βi, and for i = g, γg is obtained by sliding βg over
βg−1. We’ll combine these into the same diagram with different colors to compare them, yielding a
Heegard triple:

(Σ, α, β, γ, z).

We can think of this as three separate diagrams:

(Σ, α, β, z) M

(Σ, β, γ, z) ?
(Σ, α, γ, z) M.

What does the middle one represent?

Figure 166: Heegard diagram

Here this is a diagram for (S1 × S2)# 2.

Note that we draw γi such that it intersects βi in two transverse intersection points to make sure
the diagram is admissible.
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Remark 19.1.8: Give a Heegard triple (Σ, α, β, γ, z, pick three intersection points

x ∈ Tα ∩ Tβ
y ∈ Tβ ∩ Tγ
w ∈ Tγ ∩ Tα.

We can use Whitney triangles to connect x, y, w:

Figure 167: image_2021-03-18-12-23-07

We then define π2(x, y, z) to be the homotopy class of Whitney triangles connecting x, y, w. We can
similarly defineM(ψ) to be the moduli space of J-holomorphic representatives of ψ ∈ π2(x, y, w),
along with a chain map

fαβγ : ĤF(Σ, α, β, z)⊗ ĤF(Σ, β, γz)→ ĤF(Σ, α, γ, z)
x⊗ y 7→

∑
w∈Tα∩Tβ

∑
ψ∈π2(x,y,w)
µ(ψ)=0
nz(ψ)=0

#M(ψ) · w.

Theorem 19.1.9(?).
fαβγ is a chain map.

Remark 19.1.10: Next time: we’ll show how to get a chain homotopy equivalence from the first
tensor term above to the codomain. We’ll also see surgery exact triangles.

20 Thursday, March 25

Remark 20.0.1: Recall that we have several variants: namely ĤF,HF−,HF+,HF∞. LetM ∈ Mfd3

and take a Heegard diagram (Σ, α, β, z). Note that HF−(Σ, α, β, z) is the free Z/2[u]-module
generated by Tα ∩ Tβ with differential given by ?.
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Missing some stuff.

Definition 20.0.2 (Nice Diagrams)
A Heegaard diagram is called nice if every connected component of Σ \ α ∪ β that does not
contain z is either a bigon or a rectangle.

Remark 20.0.3: For nice Heegaard diagrams, the Maslov index 1 holomorphic discs with nz(ϕ) = 0
are embedded bigons and rectangles.

Lemma 20.0.4(?).
Any 3-manifold has a nice Heegaard diagram, so computing ĤF is combinatorial.

Remark 20.0.5: Some properties:

1. SpinC structures: we have a decomposition

HF−(M) =
⊕

s∈SpinC(M)

HF−(M, s)

which induces

HF?(M) =
⊕

s∈SpinC(M)

HF?(M, s)

where ? = +,−,∞.

2. Maslov grading: For a QHS3, HF−(M) is relatively Z-graded. The degree of u is -2, and this
grading can be lifted to an absolute Q-grading.

3. There is a SES

0→ HF−(M, s) ·u−→ HF−(M, s)→ ĤF(M, s)→ 0.

This yields an exact triangle

HF−(M, s) HF−(M, s)

ĤF(M, s)

·u

Link to Diagram

4. There is a short exact sequence
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0→ HF−(M)→ HF∞(M)→ HF+(M)→ 0.

yielding an exact triangle

HF−(M, s) HF∞(M, s)

HF+(M, s)

Link to Diagram

5. Z/2[u] is a PID, so by the structure theorem, any module over it will decompose and we have

HF−(M, s) =
⊕
i

Z/2[u]⊕
⊕
j

Z/2[u]
〈unj 〉

.

Supposing that M ∈ QHS3, then by Osvath-Szabo, for any s ∈ SpinC(M) there is exactly one free
summand. Let d be the Maslov grading of the free generator, and cj be the grading of the torsion
part. We write the u-torsion part as HFred(M, s).

Definition 20.0.6 (d-invariant)
The Maslov grading of the free summand d = d(M, s) is referred to as the d-invariant or
correction term, and

d(M, s) = max
{

gr (α)
∣∣∣ α ∈ HF−(M, s), unα 6= 0∀n

}
.

Definition 20.0.7 (Rational Homology Cobordism Group)
The rational homology cobordism group is denoted(

Θ3
Q :=

{
M ∈ QHS3

}
/ ∼,#

)
where M1 ∼M2 if and only if they are rationally homology cobordant, i.e.

1. There exists an W ∈ Mfd4 (connected, oriented) such that ∂W = −M1
∐
M2, i.e. W is a

cobordism from M1 to M2.

2. Hi(W ;Q) = 0 for i = 1, 2, so W is a rational homology cylinder.

Remark 20.0.8: Note that this is only a monoid without the equivalence relation, but this equiv-
alence creates inverses.
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Definition 20.0.9 (?)
Define the d-invariant of M as

d(M) =
∑

s∈SpinC(M)

d(M, s).

Remark 20.0.10: This induces a homomorphism

d : Θ3
Q → Q.

21 Tuesday, March 30

E 21.1 L-spaces e

Missing lecture

Remark 21.1.1: Today: L-spaces and the surgery exact triangle. We’ve been loosely following
[OS-1], references for upcoming topics include [OS-2] and Jen Hom’s survey [H].

Remark 21.1.2: Recall that we were discussing HF−(M, s) for M ∈ Mfd3(R) and s a SpinC

structure, and if M ∈ QHS this decomposes as Z/2[u] ⊕
(⊕

i

Z/2[u]
〈uni〉

)
:= Z/2[u] ⊕ HFred(M, s).

The Maslov grading of 1 in the first summand is the d-invariant, d(M, s). If one defines d(M) :=∑
s∈SpinC(M)

d(M, s), then d : Θ3
Q → Q is a group homomorphism. We want to talk about X ∈ Mfd3

which have the “simplest” Floer theory, in the sense that the torsion summand above vanishes.

Definition 21.1.3 (?)
A manifold M ∈ QHS3 is an L-space if HFred(M, s) = 0, which happens if and only if
HF−(M, s) = Z/2[u].

Remark 21.1.4: Recall that there is an exact triangle

HF−(M, s) HF−(M, s)

ĤF− (M, s)

·u

p0
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Link to Diagram

Since multiplication by u is injective, we obtain

ĤF = im p ∼=
HF−(M, s)

ker p
∼=

Z/2[u]
uZ/2[u]

∼= Z/2.

Exercise 21.1.5 (?)
So HF−(M, s) ∼= Z/2[u] =⇒ ĤF(M, s) ∼= Z/2. Show the converse is also true.

Corollary 21.1.6(?).
M is an L-space if and only if ĤF(M, s) ∼= Z/2 for all s ∈ SpinC(M). This happens if and
only if rankZ[u]ĤF(M, s) = 1, if and only if #SpinC(M) = #H2(M) PD= #H1(M), which is
finite for QHS.

Corollary 21.1.7(?).
Any M ∈ QHS3 is an L-space if and only if rankZ[u]ĤF(M) = #H1(M).

Remark 21.1.8: Note that we’ve proved the forward implication but not the reverse. This is
sometimes used as a definition in talks!

Sketch of the proof ( ⇐= ): A computation will show that χĤF(M, s) = ±1 for all s, since the
grading can be shifted. This is proved in [OS-2], and is the main ingredient in this proof. This
implies that rankĤF(M, s) ≥ 1, and so adding all summands yields rankĤF(M) ≥ #H1(M). This
implies that ĤF(M, s) ∼= Z/2 for all s, making M an L-space.

Remark 21.1.9: Here note that C∗ is Z/2-graded, as is (ĤF(M), ∂), so we define χ(C∗) = rankC0−
rankC1. Since we have a relative Z-grading given by µ, we get a relative Z/2-grading given by
gr Z/2(x, y) = gr Z(x, y), which gives us χĤF(M) up to sign.

Example 21.1.10(?): We have seen lens spaces, here’s an example of L(2, 3):

Figure 168: image_2021-03-30-11-46-39
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Here ĤFL(2, 3) ∼= (Z/2)⊕2 and rankĤFL(2, 3) = 2 = #H1(L(2, 3);Z/2).

Example 21.1.11(?): In general, every L(p, q) is a lens space, hence the name! Note that
H1(L(p, q)) ∼= Z/p is not a ZHS3.

Example 21.1.12(?): A Poincaré homology sphere ±P 3 (with either the standard orientation or
its reverse) will be an L-space.

Conjecture 21.1.13.
Poincaré-type conjecture in Heegard Floer homology: the only irreducible ZHS3 L-spaces are
S3 and ±P 3. Still open!

Remark 21.1.14: So ĤF can detect these two among all integral homology spheres using ĤF.

E 21.2 Surgery e

Definition 21.2.1 (Dehn Surgery)
Let K ⊆ M ∈ Mfd3 be a knot, i.e. the image of an embedding S1 ↪→ M . Remove a tubular
neighborhood of K, and set X = M \ ν(K). Fill in the torus boundary with a solid torus
S1 × D2 using a diffeomorphism

ϕ : ∂(S1 × D2) diffeo−−−→ ∂X.

Any surgery will be determined by the image of the red circle γ := pt× ∂D2 in the following:

Figure 169: image_2021-03-30-12-01-24
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So ϕ is determined by ϕ(γ), and in fact only depends on its class in homology since π1T
2 =

H1T
2. If ϕ(γ) = λ, we denote the resulting manifold as Mλ(K), the Dehn surgery on K.

Definition 21.2.2 (Meridian and Longitude)
A meridian µ of K will be a simple closed curve on ∂X that bounds a disk in the tubular
neighborhood ν(K):

Figure 170: image_2021-03-30-12-05-02

Here we orient µ on the boundary of this disk.
A longitude will be a nullhomotopic simple closed curve such that #(µ ∩ λ) = −1. For
example:

?

Observation 21.2.3

• λ is not unique, i.e. λ+ nµ will again be a longitude for all n ∈ Z.

• µ, λ is a basis for H1(∂X), so any simple closed curve γ is a Z-linear combination of them:

[γ] = a[µ] + b[λ], a, b ∈ Z.

Definition 21.2.4 (?)
A knot K along with a choice of longitude λ is called a framed knot.
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Remark 21.2.5: This allows us to specify Dehn surgeries by a rational number.

Definition 21.2.6 (?)
Let K be a framed knot, then M p

q
(K) = Mγ(K) where [γ] = p[µ]+q[λ]. We’ll use the notation

γ = pµ+ qλ.

Definition 21.2.7 (?)
If K is nullhomologous, for example when M = S3 since H1S3 = 0, there is a canonical choice
for λ by assuming that

• λ is nullhomologous in X = M \ ν(K)
• Equivalently, lk(K,λ) = 0.

This longitude is called the Seifert framing.

Exercise 21.2.8 (?)
Show this equivalence, and find the Seifert framing for the trefoil in S3.

Example 21.2.9(?): • S3
p/q(U) = L(p, q) for U the unknot.

• S3
∞(K) := S3

1
0
(K) = S3.

• S3
0 := S3

0
1

= S1 × S2

• S3
+1(T2,3) = P 3 (torus knot).

Theorem 21.2.10(Gordan-Leuke, ’80s).
IF K 6= U and p

q
6=∞, then S3

p
q
(K) 6= S3.

Remark 21.2.11: Can we get everything 3-manifold this way, as surgery on a knot? The answer
is no, but yes if you allow links!

Theorem 21.2.12(Lickorish-Wallace).
There is a bijection{

M∈Mfd3
∣∣∣ closed, oriented, connected}
 {Integer ±1 surgeries on links in S3}

21.2 Surgery 147



22 Tuesday, April 06

22 Tuesday, April 06

E 22.1 Surgery Exact Triangle e

Definition 22.1.1 (Surgery on a Knot)
Recall that for K ⊆M3 a knot, surgery on K involves the following: take a tubular neighbor-
hood of K, nd(K), and set X := M \ nd(K), whose boundary is a solid torus S1 × D2:

Figure 171: image_2021-04-06-11-18-17

Take a basis for its homology:

• µ to be a meridian of K, which bounds a disc in M3.
• λ to be a meridian of K with #(µ ∩ λ) = −1. Note that there are many choices, we can

wind many times:

Figure 172: image_2021-04-06-11-19-05

We can then write any simple closed curve γ as [γ] = p[µ] + q[λ], where for shorthand we’ll just
write γ = pµ + qλ. We’ll refer to the pair (K,λ) as a framed knot and the corresponding
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surgery as M p
q
(K), which is surgery on K such that the following curve is pµ+ qλ:

Figure 173: image_2021-04-06-11-22-32

We’ll write Mλ(L) = M0(K) for the surgery that sends λ to this curve instead, since this
corresponds to p = 0, q = 1.

Definition 22.1.2 (Triad of 3-Manifolds)
Suppose γ0, γ1, γ∞ are oriented simple closed curves on ∂X = M − nd(K) such that

−1 = #(γ0 ∩ γ1) = #(γ1 ∩ γ∞) = #(γ∞ ∩ γ0),

and we have a cyclic ordering

γ0

γ∞ γ1

−1

−1

−1

Link to Diagram
Then writing Mi := Mγi(K), the triple (M∞,M0,M1) is a tried of 3-manifold.

Example 22.1.3(?): Let γ∞ = µ, γ0 = λ, γ1 = aµ − bλ, and the punch line is that the third is
determined by the other two. What are a and b? We have

#(γ0,∩γ1) = #(λ, aµ+ bλ) = −a#(µ ∩ λ) = (−1)a =⇒ a = −1

#(γ1 ∩ γ∞) = #(aµ+ bλ, µ) = b#(λ ∩ µ) = b(1) = b =⇒ b = −1.

We thus obtain the following picture, which has the curves arrange in a clockwise fashion:
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Figure 174: image_2021-04-06-11-32-35

Here we get the triad (M∞(K) = M,M0(K),M1(K).

Exercise 22.1.4 (?)
Show that (M,M−1(K),M0(K)) is also a triad.

Example 22.1.5(?): Let λ∞ = pµ+ qλ and λ0 = rµ+ sλ, then

−1 = #(γ∞ ∩ γ0)
= #(pµ+ qλ, rµ+ sλ)
= ps#(µ ∩ λ) + qr#(λ ∩ µ)
= −ps+ qr

=⇒ qr − ps = 1.

Similarly,

−1 = #(γ0 ∩ γ1) = sa− rb = −1#(γ1 ∩ γ∞) = bp− aq = −1.

Example 22.1.6(?): Pick a framed knotK (or really just a fixed longitude), then pick γ∞ = µ, γ0 =
pµ+ λ. Then γ1 = (p+ 1)µ+ λ, and we get the triad Mµ(K) = M,Mγ0(K) = Mp(K),Mp+1(K).

Theorem 22.1.7(?).
Suppose (M,M0,M1) is a triad, then there exist exact triangles:

ĤF(M0) ĤF(M1)

ĤF(M∞)

F̂0

F̂1F̂∞

Link to Diagram
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Remark 22.1.8: Here exactness means that e.g. ker(F̂1 = im(F̂0). There is a similar triangle for
HF+, as well as HF∞ and HF−, although these are more complicated. However, HF− becomes
easier to work with when one is looking at knot invariants instead.

Example 22.1.9(?): LetK be the unknot in S3, and take as before (S3, S3
0(K) = S1×S2, S3

+1(K) =
S3. We get the exact triangle

ĤF(S3) = Z/2 ĤF(S1 × S2) = (Z/2)⊕2

ĤF(S3) = Z/2

F̂0

F̂1F̂∞=0

Link to Diagram

Lemma 22.1.10(?).
Suppose the following is an exact triangle of vector spaces for some cyclic ordering:

V0 V1

V∞

f1f∞

f0

Link to Diagram
Then

V∞ = V0 ⊕ V1 ⇐⇒ rankV∞ = rank(V0) + rank(V1),

and if f0 = 0 then f1 is injective and f∞ is surjective.

Proof (?).

rankV∞ ∼= rank ker f∞
⊕

rank im f∞

= rank im f1 ⊕ im f∞

≤ rankV1 + rankV0.

Equality holds if and only if rankV1 = rank im f1, which implies f1 is injective, and similarly
rankV0 = rank im f∞ =⇒ f∞ is surjective. These together would imply that f0 = 0.

�

Example 22.1.11(?): For K the unknot in S3, take the triad (S3, S3
p(K) = L(p, 1), L(p + 1, 1).

This yields the exact triangle
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ĤF(S3) = Z/2 ĤF(L(p, 1)) = (Z/2)⊕p

ĤF(L(p+ 1, 1)) = (Z/2)⊕p+1

f1f∞

f0=0

Link to Diagram

Remark 22.1.12: Note that this gives a way to produce L-spaces.

Definition 22.1.13 (L-spaces)
Any M ∈ QHS3 is called an L-space if

rankĤF(M) = |H1(M ;Z)|.

Example 22.1.14(?): If p, q are coprime then ĤFL(p, q) = (Z/2)⊕p since there is one SpinC class
for each element of H1. So rankĤF = p, and on the other hand, |H1| = |Z/p| = p.

Exercise 22.1.15 (?)
For any triad (M∞,M0,M1) there exists a cyclic reordering such that

|H1(M∞)| = |H1(M0)| = |H1(M1)|,

where we define

|H1(M)| =
{

#H1(M) if this is a finite group
0 otherwise.

Example 22.1.16(?): For the triad (S3, L(p, 1), L(p+ 1, 1)) we have

p+ 1|H1(L(p+ 1, 1))| =
∣∣∣H1(S3)

∣∣∣+ |H1(L(p, 1))| = 1 + p.

Remark 22.1.17: This exercise is useful because it can be used to prove the following:

Lemma 22.1.18(?).
Suppose (M,M0,M1) is a triad with an ordering fixed such that

|H1M | = |H1M0|+ |H1M1|.

If M0,M1 are L-spaces, then M is also an L-space.

Proof (?).
We have the exact triangle

22.1 Surgery Exact Triangle 152

https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXGhhdHtcXEhGfShTXjMpPVxcWlovMiJdLFsyLDAsIlxcaGF0e1xcSEZ9KEwocCwgMSkpPShcXFpaLzIpXntcXG9wbHVzIHB9Il0sWzEsMiwiXFxoYXR7XFxIRn0oTChwKzEsIDEpKT0oXFxaWi8yKV57XFxvcGx1cyBwKzF9Il0sWzEsMiwiZl8xIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJib3R0b20ifX19XSxbMiwwLCJmX1xcaW5mdHkiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMCwxLCJmXzA9MCJdXQ==


23 Surgery Exact Triangle and Knot Diagrams (Thursday, April 15)

|H1M0| = rankĤF(M0) |H1M1| = rankĤF(M1)

ĤF(M)

f1f∞

Link to Diagram
Thus

rankĤFM ≤ rankĤFM0 + rankĤFM1

≤ |H1M0|+ |H1M1|
= |H1M |.

In general, |H1M | ≤ rankĤFM , so we get an equality rankĤFM = |H1M |.
�

Example 22.1.19(?): Let K ⊆ S3 be a knot, and take the triad (S3, S3
p(K), S3

p+1(K). So if S3
p(K)

is an L-space, so is S3
p+1(K). Inductively this shows that S3

n(K) is an L-space for all n ≥ p.

Example 22.1.20(?): For K = Tp,q, the surgery S3
pq−1(Tp,q) is a lens space. Thus S3

n(Tp,q) is an
L-space for all n ≥ pq − 1.

23 Surgery Exact Triangle and Knot
Diagrams (Thursday, April 15)

Remark 23.0.1: Recall: let (M,M0,M1) be a triple of 3-manifolds corresponding to a knotK ⊆M ,
where M0 is 0-surgery, M1 is 1-surgery, and M∞ is ∞-surgery. Here M can be chosen such that M

• γ∞ is a meridian of K,
• γ0 is a longitude of K,
• γ1 = −γ∞ − γ0

Then there exists an exact triangle:

ĤF(M0) ĤF(M1)

ĤF(M)

f0

f1f=f∞
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Link to Diagram

Our goal is to define f : ĤF(M)→ ĤF(M0).

Remark 23.0.2: Note that M admits a Heegard diagram

(Σg, ~α = [α1, · · · , αg], ~β = [α1, · · · , αg])

such that (Σg, ~α, [β1, · · · , βg−1] is a “diagram” for M − nd(K). Recall the notion of handlebodies,
where each handle bounds a disc:

Figure 175: image_2021-04-15-11-20-29

We can generalize this to a compression body:

Figure 176: image_2021-04-15-11-22-13

• Start with Σ′g′ × [0, 1].
• Attach a solid handle K to Σ′ × {1}

This yields a cobordism from Σ′g′ × {0} to Σg′+k. So we can write ∂C = Σ′ × {0}
∐

Σ. Label the
curves bounding the embedded discs as γi:

Figure 177: image_2021-04-15-11-24-22

Then we can form a diagram (Σg, {γ1, · · · , γk} where k ≤ g will specify the compression body. If
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these are pairwise disjoint simple closed curves that are linearly independent in H1(Σ), this will be
a compression body from a surface with genus g − k to Σg.

Figure 178: image_2021-04-15-11-31-50

In this case, (Σ, ~α, {β1, · · · , βg−1} will be a diagram for M \ nd(K).
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Figure 179: The cobordism from Σ to the compressionbody

Example 23.0.3(?): Consider S3 \ nd(T ) for T the trefoil. Behold the beautiful trefoil:

Figure 180: image_2021-04-15-11-37-56

After thickening, we obtain the following:

Surgery Exact Triangle and Knot Diagrams (Thursday, April 15) 156



23 Surgery Exact Triangle and Knot Diagrams (Thursday, April 15)

Figure 181: image_2021-04-15-11-39-41

We can push the top down:

Figure 182: image_2021-04-15-11-40-24

And wrap part of it around:
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Figure 183: image_2021-04-15-11-43-42

We can keep moving this to undo the crossing:

Figure 184: image_2021-04-15-11-45-58
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Figure 185: image_2021-04-15-11-47-36

So the blue curve gets complicated, but the neighborhood of T is a genus 2 surface, since the outer
two circles bound discs. So in summary, we have the following process:

Figure 186: image_2021-04-15-11-50-12
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We can represent this with a planar picture:

Figure 187: image_2021-04-15-11-56-01

Following the longitude, we obtain:

Figure 188: image_2021-04-15-12-15-41

Here λ has been wrapped twice, and to do n-surgery, we wrap n times.
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Figure 189: image_2021-04-15-12-16-46

Exercise 23.0.4 (?)
Draw a diagram for S3

n (the figure eight).
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