# Thursday, February 25 ## Whitney Discs :::{.remark} Recall that we discussed the domains of discs: for \( \varphi\in \varphi_2(x, y) \) we defined the 2-chain \( D( \varphi) = \sum_{i=1}^n a_i D_i \) where we've written \[ \Phi \sm \alpha\union \beta = \disjoint_{i=1}^m \open{D_i} \] and $a_i$ is the number of points in $\im( \varphi) \intersect L_{z_i}$ for $z_i \in D_i$. ::: :::{.exercise title="?"} For \( \varphi\in \pi_2(x, y) \), \( \bd D( \varphi) \) is a 1-chain in \( \alpha \union \beta \). Then \[ \ro{ \bd D( \varphi )}{ \alpha} = \sum_{i=1}^g y_i - \sum_{i=1}^g x_i \ro{ \bd D( \varphi )}{ \beta} = \sum_{i=1}^g x_i - \sum_{i=1}^g y_i \] where $x_i, y_i \in \alpha_i$. ::: :::{.corollary title="?"} For \( \varphi\in \pi_2(x, y) \), consider an intersection point $w$ which labels 4 nearby regions with coefficients $a,b,c,d$: ![image_2021-02-25-11-28-01](figures/image_2021-02-25-11-28-01.png) Consider several cases: 1. $w\not\in x$ and $w\not\in y$: Then \( \bd\qty{ \bd \ro{D( \varphi)}{ \alpha} } \not\ni w \). We can expand this out as \[ D( \varphi) = a D_1 + bD_2 + c D_3 + dD_4 \\ \bd^2 D( \varphi) = \bd \qty{ a \bd D_1 } + {\cdots} .\] Now restrict this to \( \alpha_i \) to yield \[ \bd^2 D( \varphi) = ae_1 + be_2 -ce_2 -de_1 .\] Checking coefficients of $w$ contributes $-aw + bw - cw -d(-w)$, and these should sum to zero. This yields $a+c = b+d$, and similarly if $w\intersect x \intersect y$, this also yields $a+c = b+d$. 2. $w\in x$ and $w\not \in y$ implies that $a+c = b +d +1$. 3. $w\not\in x$ and $w\in y$ implies $a+c+1 = b+d$. ::: :::{.remark} So if you want to check to see if some 2-chain could be the domain of a Whitney disc, this local condition can be checked, i.e. this is an obstruction to existence. It turns out that this is an if and only if condition. ::: :::{.definition title="?"} A 2-chain $A \da \sum_{i=1}^m a_i D_i$ **connects** $x$ to $y$ if and only if the following local linear conditions are satisfied: \[ \bd^2 \ro{A}{ \alpha} &= y-x \\ \bd^2 \ro{A}{ \beta} &= x-y \\ .\] ::: :::{.proposition title="?"} Suppose $g>1$. If a 2-chain $A$ connects $x$ to $y$ then there exists a Whitney disc \( \varphi\in \pi_2(x, y) \) such that $D( \varphi) = A$. If $g>2$, \( \varphi \) is uniquely determined by $A$. ::: :::{.remark} See proof in Osvath-Szabo paper. ::: :::{.example title="?"} Think of the screen as a plane, and circled letters are handles attached out of the page according to their orientations. Consider the following diagram along with the indicated intersection points: ![image_2021-02-25-11-45-11](figures/image_2021-02-25-11-45-11.png) Set the coefficients of the unlabeled regions to zero, and let \( x \da \ts{ x_1, x_2} \) and \( y \da \ts{ y_1, y_2 } \). We can check that if the following yellow region has coefficient 1, it can be the domain of a Whitney disc: ![image_2021-02-25-11-47-15](figures/image_2021-02-25-11-47-15.png) This follows from checking the local conditions (there is a mnemonic involving the diagonal sums for the various cases). ::: :::{.example title="?"} Consider a new diagram, changed by an isotopy (here: a "finger move"): ![image_2021-02-25-11-52-12](figures/image_2021-02-25-11-52-12.png) Is there a Whitney disc connecting \( x \da \ts{ x_1, x_2 } \mapsvia{\varphi} y \da \ts{ y_1, y_2 } \)? Checking the diagonals, all of the local conditions hold, so yes. ::: :::{.exercise title="?"} Find the 3-manifold that these two diagrams represent. ::: ## Holomorphic Discs :::{.remark} Ultimately these are what we want to define the differential in the chain complex. ![image_2021-02-25-12-08-55](figures/image_2021-02-25-12-08-55.png) We'll set up a correspondence: \[ \correspond{ (\text{Riemann surfaces } F, {\color{red} \bd_{ \alpha}}F, {\color{blue}\bd_{\beta}}F) \mapsvia{\pi_{\Sigma}} ( \Sigma, {\color{red} \alpha}, {\color{blue} \beta }) \\ {\big\Downarrow} \hspace{4em} {\scriptsize \text{$g\dash$fold branched cover $\pi_D$} } \\ (D, e_1, e_2) \\ \bd F = (\bd_{ \alpha} F) \disjoint_{ \bd} (\bd_{ \beta} F) \\ \pi_D( \bd_{ \alpha} ) = e_1 \hspace {2em} \pi_D( \bd_{ \beta} ) = e_2 } &\mapstofrom \correspond{ \text{holomorphic } u: (D^2, e_1, e_2) \to (\Sym^g(\Sigma), \TT_{ \alpha}, \TT_{ \beta}) \text{} } \] To do this, we define $u(z) = \pi_{\Sigma}( \pi_D \inv(z) ) \in \Sym^g(\Sigma)$. Check that if $\pi_D, \pi_\Sigma$ are holomorphic, then $u$ is holomorphic. \begin{tikzcd} &&& {} \\ F && {\Sigma \times \Sym^{g-1}(\Sigma)} && \Sigma \\ \\ {D^2} && {\Sym^g(\Sigma)} \arrow["{g\dash\text{fold branched cover}}", from=2-3, to=4-3] \arrow["u"', from=4-1, to=4-3] \arrow["{\pi_D: g\dash\text{fold branched cover}}"', color={rgb,255:red,214;green,92;blue,92}, from=2-1, to=4-1] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=2-1, to=2-3] \arrow["{\pi_1}"', from=2-3, to=2-5] \arrow["{\pi_\Sigma}"', curve={height=-24pt}, dashed, from=2-1, to=2-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwzLCJEXjIiXSxbMiwzLCJcXFN5bV5nKFxcU2lnbWEpIl0sWzIsMSwiXFxTaWdtYSBcXHRpbWVzIFxcU3ltXntnLTF9KFxcU2lnbWEpIl0sWzAsMSwiRiJdLFs0LDEsIlxcU2lnbWEiXSxbMywwXSxbMiwxLCJnXFxkYXNoXFx0ZXh0e2ZvbGQgYnJhbmNoZWQgY292ZXJ9Il0sWzAsMSwidSIsMl0sWzMsMCwiXFxwaV9EOiBnXFxkYXNoXFx0ZXh0e2ZvbGQgYnJhbmNoZWQgY292ZXJ9IiwyLHsiY29sb3VyIjpbMCw2MCw2MF19LFswLDYwLDYwLDFdXSxbMywyLCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dLFsyLDQsIlxccGlfMSIsMl0sWzMsNCwiXFxwaV9cXFNpZ21hIiwyLHsiY3VydmUiOi00LCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) Then if $u$ is holomorphic, it can be shown that $\pi_D, \pi_{\Sigma}$ are also holomorphic. Given \( \varphi\in \pi_2(x, y) \), define \( \mathcal{M}( \varphi) \) to be the moduli space of holomorphic discs connecting $x$ to $y$ in the same homotopy class as \( \varphi \) (i.e. such discs *represent* $\phi$). After perturbing the complex structure $\Sym^g(j)$ to make it generic, \( \mathcal{M}( \varphi) \) will be smooth. We'll have a notion of dimension, the *Maslov index* $\mu( \varphi)$, which is the expected dimension of \( \mathcal{M}( \varphi) \). There will be an $\RR\dash$action on \( \mathcal{M}( \varphi) \), where we remember the biholomorphism between the disc and the vertical strip: ![image_2021-02-25-12-19-15](figures/image_2021-02-25-12-19-15.png) We'll define \( \hat{ \mathcal{M}}( \varphi) \da \mathcal{M}( \varphi) / \RR \). The chain complex will be defined as \[ \CF( \Sigma, \alpha, \beta) &\da \bigoplus_{x \in \TT_{ \alpha} \intersect\TT_{ \beta} } \ZZ/2 \gens{ x } \\ \bd x &\da \sum_{y\in \TT_{ \alpha} \intersect \TT_{ \beta} } \sum _{ \varphi\in \pi_2(x, y) ?} \# \hat{ \mathcal{M}}(\varphi) .\] We'll need - Check that $\bd$ is well-defined and $\bd^2=0$, - Check independence of choices, e.g. the Heegard the diagram, the complex structure, the perturbations of $\Sym^g(j)$, etc. ::: :::{.question} This takes a lot of work! Is the homology of this complex interesting? Is this stronger than singular homology? ::: :::{.answer} Let $M \in \ZHS^3$, so the homology doesn't distinguish $M$ from a sphere and $H_*(M; \ZZ) \cong H_*(S^3; \ZZ)$. It turns out that $H_*( \CF(M^3)) \cong H_*(\CF(S^3))$, so the answer is no! ::: :::{.remark} Osvath-Szabo picked a basepoint $z\in \Sigma\sm \qty{ \alpha\union \beta}$ and work with *pointed* Heegard diagrams $(\Sigma, \alpha, \beta, z)$. Perturb the differential to obtain \[ \tilde \bd x \da \sum_{y \in \TT_{ \alpha} \intersect\TT_{ \beta} } \sum_{ \substack{ \varphi \in \pi_2(x, y), \\ \mu( \varphi) = 0, \\ n_z( \varphi) = 0 }} \# \hat{\mathcal{M}}(\varphi) y .\] where $n_z$ denotes the coefficient of $\phi$ at the basepoint $z$, i.e. the number of intersection points $\# (\im \varphi \intersect L_z)$. Defining $\hat{\CF}$ as the same chain complex with the new differential now gets interesting! We'll define $\hat{\HF}$ as the homology of this new complex. :::