# Tuesday, April 06 ## Surgery Exact Triangle :::{.definition title="Surgery on a Knot"} Recall that for $K \subseteq M^3$ a knot, surgery on $K$ involves the following: take a tubular neighborhood of $K$, $\nd(K)$, and set $X \da M \sm \nd(K)$, whose boundary is a solid torus $S^1 \cross \DD^2$: ![image_2021-04-06-11-18-17](figures/image_2021-04-06-11-18-17.png) Take a basis for its homology: - $\mu$ to be a meridian of $K$, which bounds a disc in $M^3$. - $\lambda$ to be a meridian of $K$ with $\#(\mu \intersect \lambda) = -1$. Note that there are many choices, we can wind many times: ![image_2021-04-06-11-19-05](figures/image_2021-04-06-11-19-05.png) We can then write any simple closed curve $\gamma$ as $[\gamma] = p[\mu] + q[\lambda]$, where for shorthand we'll just write \( \gamma= p \mu + q \lambda \). We'll refer to the pair $(K, \lambda)$ as a **framed knot** and the corresponding surgery as $M_{p\over q}(K)$, which is surgery on $K$ such that the following curve is $p\mu + q\lambda$: ![image_2021-04-06-11-22-32](figures/image_2021-04-06-11-22-32.png) We'll write $M_{ \lambda}(L) = M_0(K)$ for the surgery that sends \( \lambda \) to this curve instead, since this corresponds to $p=0, q=1$. ::: :::{.definition title="Triad of 3-Manifolds"} Suppose \( \gamma_0, \gamma_1, \gamma_{\infty }\) are oriented simple closed curves on \( \bd X = M - \nd(K) \) such that \[ -1 = \#( \gamma_0 \intersect \gamma_1) = \#( \gamma_1 \intersect \gamma_{\infty }) = \#( \gamma_{\infty } \intersect \gamma_0) ,\] and we have a cyclic ordering \begin{tikzcd} & {\gamma_0} \\ \\ {\gamma_\infty} && {\gamma_1} \arrow["{-1}", curve={height=-12pt}, from=1-2, to=3-3] \arrow["{-1}", curve={height=-18pt}, from=3-3, to=3-1] \arrow["{-1}", curve={height=-12pt}, from=3-1, to=1-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMSwwLCJcXGdhbW1hXzAiXSxbMiwyLCJcXGdhbW1hXzEiXSxbMCwyLCJcXGdhbW1hX1xcaW5mdHkiXSxbMCwxLCItMSIsMCx7ImN1cnZlIjotMn1dLFsxLDIsIi0xIiwwLHsiY3VydmUiOi0zfV0sWzIsMCwiLTEiLDAseyJjdXJ2ZSI6LTJ9XV0=) Then writing $M_{i } \da M_{ \gamma_{i }}(K)$, the triple $(M_{\infty }, M_0, M_1)$ is a **tried of 3-manifold**. ::: :::{.example title="?"} Let \( \gamma_{\infty } = \mu, \gamma_0 = \lambda, \gamma_1 = a\mu - b\lambda \), and the punch line is that the third is determined by the other two. What are $a$ and $b$? We have \[ \#(\gamma_0, \intersect \gamma_1) = \#( \lambda, a\mu + b \lambda) = -a \#(\mu \intersect \lambda) = (-1) a \implies a = -1 \\ \\ \#( \gamma_1 \intersect \gamma_{\infty }) = \#( a \mu + b\lambda, \mu) = b \#(\lambda \intersect \mu) = b(1) = b \implies b = -1 .\] We thus obtain the following picture, which has the curves arrange in a clockwise fashion: ![image_2021-04-06-11-32-35](figures/image_2021-04-06-11-32-35.png) Here we get the triad \( (M_{\infty }(K) = M, M_0(K), M_1(K) \). ::: :::{.exercise title="?"} Show that $(M, M_{-1}(K), M_0(K))$ is also a triad. ::: :::{.example title="?"} Let \( \lambda_{\infty } = p\mu + q\lambda \) and \( \lambda_0 = r\mu + s\lambda \), then \[ -1 &= \#( \gamma_{\infty } \intersect \gamma_0) \\ &= \#( p\mu + q \lambda, r \mu + s \lambda) \\ &= ps \#( \mu \intersect \lambda) + qr \# (\lambda \intersect \mu) \\ &= -ps + qr \\ &\implies qr - ps = 1 .\] Similarly, \[ -1 = \#( \gamma_0 \intersect \gamma_1) &= sa -rb = -1 \#( \gamma_1 \intersect \gamma_{\infty }) &= bp - aq = -1 .\] ::: :::{.example title="?"} Pick a framed knot $K$ (or really just a fixed longitude), then pick \( \gamma_{\infty } = \mu, \gamma_0 = p\mu + \lambda \). Then \( \gamma_1 = (p+1) \mu + \lambda \), and we get the triad $M_{\mu}(K) = M, M_{\gamma_0}(K) = M_p(K), M_{p+1}(K)$. ::: :::{.theorem title="?"} Suppose $(M, M_0, M_1)$ is a triad, then there exist exact triangles: \begin{tikzcd} {\hat\HF(M_0)} && {\hat\HF(M_1)} \\ \\ & {\hat\HF(M_\infty)} \arrow["{\hat{F}_0}", from=1-1, to=1-3] \arrow["{\hat{F}_1}", from=1-3, to=3-2] \arrow["{\hat{F}_\infty}", from=3-2, to=1-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXGhhdFxcSEYoTV8wKSJdLFsyLDAsIlxcaGF0XFxIRihNXzEpIl0sWzEsMiwiXFxoYXRcXEhGKE1fXFxpbmZ0eSkiXSxbMCwxLCJcXGhhdHtGfV8wIl0sWzEsMiwiXFxoYXR7Rn1fMSJdLFsyLDAsIlxcaGF0e0Z9X1xcaW5mdHkiXV0=) ::: :::{.remark} Here exactness means that e.g. $\ker(\hat{F}_1 = \im( \hat{F}_0)$. There is a similar triangle for $\HF^+$, as well as $\HF^{\infty }$ and $\HF^-$, although these are more complicated. However, $\HF^-$ becomes easier to work with when one is looking at knot invariants instead. ::: :::{.example title="?"} Let $K$ be the unknot in $S^3$, and take as before \( (S^3, S_0^3(K) = S^1 \cross S^2, S_{+1}^3(K) = S^3 \). We get the exact triangle \begin{tikzcd} {\hat\HF(S^3)= \ZZ/2 } && {\hat\HF(S^1 \cross S^2) = (\ZZ/2)^{\oplus 2}} \\ \\ & {\hat\HF(S^3) = \ZZ/2} \arrow["{\hat{F}_0}", hook, from=1-1, to=1-3] \arrow["{\hat{F}_1}", two heads, from=1-3, to=3-2] \arrow["{\hat{F}_\infty = 0}", from=3-2, to=1-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXGhhdFxcSEYoU14zKT0gXFxaWi8yICJdLFsyLDAsIlxcaGF0XFxIRihTXjEgXFxjcm9zcyBTXjIpID0gKFxcWlovMilee1xcb3BsdXMgMn0iXSxbMSwyLCJcXGhhdFxcSEYoU14zKSA9IFxcWlovMiJdLFswLDEsIlxcaGF0e0Z9XzAiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsxLDIsIlxcaGF0e0Z9XzEiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMiwwLCJcXGhhdHtGfV9cXGluZnR5ID0gMCJdXQ==) ::: :::{.lemma title="?"} Suppose the following is an exact triangle of vector spaces for some cyclic ordering: \begin{tikzcd} {V_0} && {V_1} \\ \\ & {V_{\infty}} \arrow["{f_1}", from=1-3, to=3-2] \arrow["{f_\infty}", from=3-2, to=1-1] \arrow["{f_0}", from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJWXzAiXSxbMiwwLCJWXzEiXSxbMSwyLCJWX3tcXGluZnR5fSJdLFsxLDIsImZfMSJdLFsyLDAsImZfXFxpbmZ0eSJdLFswLDEsImZfMCJdXQ==) Then \[ V_{\infty } = V_0 \oplus V_1 \iff \rk V_{\infty } = \rk(V_0) + \rk(V_1) ,\] and if $f_0 = 0$ then $f_1$ is injective and $f_{\infty }$ is surjective. ::: :::{.proof title="?"} \[ \rk V_{\infty } &\cong \rk \ker f_{\infty } \bigoplus \rk \im f_{\infty } \\ &= \rk \im f_1 \oplus \im f_{\infty } \\ &\leq \rk V_1 + \rk V_0 .\] Equality holds if and only if $\rk V_1 = \rk \im f_1$, which implies $f_1$ is injective, and similarly $\rk V_0 = \rk \im f_{\infty } \implies f_{\infty }$ is surjective. These together would imply that $f_0 = 0$. ::: :::{.example title="?"} For $K$ the unknot in $S^3$, take the triad \( (S^3, S^3_p(K) = L(p, 1), L(p+1, 1) \). This yields the exact triangle \begin{tikzcd} {\hat{\HF}(S^3)=\ZZ/2} && {\hat{\HF}(L(p, 1))=(\ZZ/2)^{\oplus p}} \\ \\ & {\hat{\HF}(L(p+1, 1))=(\ZZ/2)^{\oplus p+1}} \arrow["{f_1}", hook', from=1-3, to=3-2] \arrow["{f_\infty}", two heads, from=3-2, to=1-1] \arrow["{f_0=0}", from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXGhhdHtcXEhGfShTXjMpPVxcWlovMiJdLFsyLDAsIlxcaGF0e1xcSEZ9KEwocCwgMSkpPShcXFpaLzIpXntcXG9wbHVzIHB9Il0sWzEsMiwiXFxoYXR7XFxIRn0oTChwKzEsIDEpKT0oXFxaWi8yKV57XFxvcGx1cyBwKzF9Il0sWzEsMiwiZl8xIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJib3R0b20ifX19XSxbMiwwLCJmX1xcaW5mdHkiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMCwxLCJmXzA9MCJdXQ==) ::: :::{.remark} Note that this gives a way to produce $L\dash$spaces. ::: :::{.definition title="$L\dash$spaces"} Any $M\in \QHS^3$ is called an **$L\dash$space** if \[ \rk \hat\HF(M) = \abs{ H_1(M; \ZZ) } .\] ::: :::{.example title="?"} If $p, q$ are coprime then $\hat\HF L(p, q) = (\ZZ/2)^{\oplus p}$ since there is one $\Spinc$ class for each element of $H^1$. So $\rk \hat\HF = p$, and on the other hand, $\abs{H_1} = \abs{\ZZ/p} = p$. ::: :::{.exercise title="?"} For any triad \( (M_{\infty }, M_0, M_1) \) there exists a cyclic reordering such that \[ \abs{ H_1(M_{\infty })} = \abs{ H_1(M_{0})} = \abs{ H_1(M_{1 })} ,\] where we define \[ \abs{ H_1(M) } = \begin{cases} \# H_1(M) & \text{ if this is a finite group} \\ 0 & \text{otherwise}. \end{cases} \] ::: :::{.example title="?"} For the triad \( (S^3, L(p, 1), L(p+1, 1)) \) we have \[ p+1 \abs{ H_1(L(p+1, 1) ) } = \abs{ H_1(S^3) } + \abs{ H_1( L(p, 1)) } = 1 + p .\] ::: :::{.remark} This exercise is useful because it can be used to prove the following: ::: :::{.lemma title="?"} Suppose $(M, M_0, M_1)$ is a triad with an ordering fixed such that \[ \abs{ H_1 M } = \abs{ H_1 M_0} + \abs{ H_1 M_1 } .\] If $M_0, M_1$ are $L\dash$spaces, then $M$ is also an $L\dash$space. ::: :::{.proof title="?"} We have the exact triangle \begin{tikzcd} {\abs{H_1 M_0} = \rk\hat{\HF}(M_0)} && {\abs{H_1 M_1} = \rk\hat{\HF}(M_1)} \\ \\ & {\hat{\HF}(M_)} \arrow["{f_1}", from=1-3, to=3-2] \arrow["{f_\infty}", from=3-2, to=1-1] \arrow[from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJcXGFic3tIXzEgTV8wfSA9IFxccmtcXGhhdHtcXEhGfShNXzApIl0sWzIsMCwiXFxhYnN7SF8xIE1fMX0gPSBcXHJrXFxoYXR7XFxIRn0oTV8xKSJdLFsxLDIsIlxcaGF0e1xcSEZ9KE1fKSJdLFsxLDIsImZfMSJdLFsyLDAsImZfXFxpbmZ0eSJdLFswLDFdXQ==) Thus \[ \rk \hat\HF M \leq \rk \hat\HF M_0 + \rk \hat\HF M_1 \\ &\leq \abs{ H_1 M_0} + \abs{ H_1 M_1 } \\ = \abs{ H_1 M } .\] In general, $\abs{ H_1 M} \leq \rk \hat \HF M$, so we get an equality \( \rk \hat \HF M = \abs{ H_1 M } \). ::: :::{.example title="?"} Let $K \subseteq S^3$ be a knot, and take the triad \( (S^3, S_p^3(K), S_{p+1}^3(K) \). So if $S_p^3(K)$ is an $L\dash$space, so is $S_{p+1}^3(K)$. Inductively this shows that $S^3_n(K)$ is an $L\dash$space for all $n\geq p$. ::: :::{.example title="?"} For $K = T_{p, q}$, the surgery $S^3_{pq-1}(T_{p, q})$ is a lens space. Thus $S_n^3(T_{p, q})$ is an $L\dash$space for all $n\geq pq-1$. :::