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1 Tuesday, January 12

1 Tuesday, January 12

E 1.1 Background e

From Phil’s email:

Personally, I found the following online references particularly useful:

• Dietmar Salamon: Spin Geometry and Seiberg-Witten Invariants [5]

• Richard Mandelbaum: Four-dimensional Topology: An Introduction [2]

– This book has a nice introduction to surgery aspects of four-manifolds, but as a warning:
It was published right before Freedman’s famous theorem. For instance, the existence of
an exotic Rˆ4 was not known. This actually makes it quite useful, as a summary of what
was known before, and provides the historical context in which Freedman’s theorem was
proven.

• Danny Calegari: Notes on 4-Manifolds [1]

• Yuli Rudyak: Piecewise Linear Structures on Topological Manifolds [4]

• Akhil Mathew: The Dirac Operator [3]

• Tom Weston: An Introduction to Cobordism Theory [6]

A wide variety of lecture notes on the Atiyah-Singer index theorem, which are available online.

E 1.2 Introduction e

Definition 1.2.1 (Topological Manifold)
Recall that a topological manifold (or C0 manifold) X is a Hausdorff topological space
locally homeomorphic to Rn with a countable topological base, so we have charts ϕu : U → Rn
which are homeomorphisms from open sets covering X.

Example 1.2.2(The circle): S1 is covered by two charts homeomorphic to intervals:
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1 Tuesday, January 12

S1
U2 ↪→ R

U1 ↪→ R

R2

Remark 1.2.3: Maps that are merely continuous are poorly behaved, so we may want to impose
extra structure. This can be done by imposing restrictions on the transition functions, defined as

tuv := ϕV → ϕ−1
U : ϕU (U ∩ V )→ ϕV (U ∩ V ).

Definition 1.2.4 (Restricted Structures on Manifolds)

• We say X is a PL manifold if and only if tUV are piecewise-linear. Note that an
invertible PL map has a PL inverse.

• We say X is a Ck manifold if they are k times continuously differentiable, and smooth
if infinitely differentiable.

• We say X is real-analytic if they are locally given by convergent power series.

• We say X is complex-analytic if under the identification Rn ∼= Cn/2 if they are holo-
morphic, i.e. the differential of tUV is complex linear.

• We say X is a projective variety if it is the vanishing locus of homogeneous polynomials
on CPN .

1.2 Introduction 6



1 Tuesday, January 12

Remark 1.2.5: Is this a strictly increasing hierarchy? It’s not clear e.g. that every Ck manifold is
PL.

Question 1.2.6
Consider Rn as a topological manifold: are any two smooth structures on Rn diffeomorphic?

Remark 1.2.7: Fix a copy of R and form a single chart R id−→ R. There is only a single transition
function, the identity, which is smooth. But consider

X → R
t 7→ t3.

This is also a smooth structure on X, since the transition function is the identity. This yields a
different smooth structure, since these two charts don’t like in the same maximal atlas. Otherwise
there would be a transition function of the form tV U : t 7→ t1/3, which is not smooth at zero.
However, the map

X → X

t 7→ t3.

defines a diffeomorphism between the two smooth structures.

Claim: R admits a unique smooth structure.

Proof (sketch).
Let R̃ be some exotic R, i.e. a smooth manifold homeomorphic to R. Cover this by coordinate
charts to the standard R:

R̃

Fact
There exists a cover which is locally finite and supports a partition of unity: a collection of
smooth functions fi : Ui → R with fi ≥ 0 and suppf ⊆ Ui such that

∑
fi = 1 (i.e., bump

functions). It is also a purely topological fact that R̃ is orientable.

So we have bump functions:

1.2 Introduction 7



1 Tuesday, January 12

R̃Ui

Take a smooth vector field Vi on Ui everywhere aligning with the orientation. Then
∑

fiVi is
a smooth nowhere vector field on X that is nowhere zero in the direction of the orientation.
Taking the associated flow

R→ R̃
t 7→ ϕ(t).

such that ϕ′(t) = V (ϕ(t)). Then ϕ is a smooth map that defines a diffeomorphism. This
follows from the fact that the vector field is everywhere positive.

�

Slogan 1.2.9
To understand smooth structures on X, we should try to solve differential equations on X.

Remark 1.2.10: Note that here we used the existence of a global frame, i.e. a trivialization of the
tangent bundle, so this doesn’t quite work for e.g. S2.

Question 1.2.11
What is the difference between all of the above structures? Are there obstructions to admitting any
particular one?

Answer 1.2.12

1. (Munkres) Every C1 structure gives a unique Ck and C∞ structure.1

2. (Grauert) Every C∞ structure gives a unique real-analytic structure.

3. Every PL manifold admits a smooth structure in dimX ≤ 7, and it’s unique in dimX ≤ 6,
and above these dimensions there exists PL manifolds with no smooth structure.

4. (Kirby–Siebenmann) Let X be a topological manifold of dimX ≥ 5, then there exists a

1Note that this doesn’t start at C0, so topological manifolds are genuinely different! There exist topological manifolds
with no smooth structure.

1.2 Introduction 8



2 Friday, January 15

cohomology class ks(X) ∈ H4(X;Z/2Z) which is 0 if and only if X admits a PL structure.
Moreover, if ks(X) = 0, then (up to concordance) the set of PL structures is given by
H3(X;Z/2Z).

5. (Moise) Every topological manifold in dimX ≤ 3 admits a unique smooth structure.

6. (Smale et al.): In dimX ≥ 5, the number of smooth structures on a topological manifold
X is finite. In particular, Rn for n 6= 4 has a unique smooth structure. So dimension 4 is
interesting!

7. (Taubes) R4 admits uncountably many non-diffeomorphic smooth structures.

8. A compact oriented smooth surface Σ, the space of complex-analytic structures is a complex
orbifold 2 of dimension 3g − 2 where g is the genus of Σ, up to biholomorphism (i.e. moduli).

Remark 1.2.13: Kervaire-Milnor: S7 admits 28 smooth structures, which form a group.

2 Friday, January 15

Remark 2.0.1: Let

V :=
{
a2 + b2 + c2 + d3 + e6k−1 = 0

}
⊆ C5

Sε :=
{
|a|2 + |b|2 + |c|2 + |d|2 + |e|2 = 1

}
.

Then Vk∩Sε ∼= S7 is a homeomorphism, and taking k = 1, 2, · · · , 28 yields the 28 smooth structures
on S7. Note that Vk is the cone over Vk ∩ Sε.

f

f

0

ε
S7

? Admits a smooth structure, and V k ⊆ CP5 admits
no smooth structure.

2Locally admits a chart to Cn/Γ for Γ a finite group.

Friday, January 15 9



2 Friday, January 15

Question 2.0.2
Is every triangulable manifold PL, i.e. homeomorphic to a simplicial complex?

Answer 2.0.3
No! Given a simplicial complex, there is a notion of the combinatorial link LV of a vertex V :

V

LV

It turns out that there exist simplicial manifolds such that the link is not homeomorphic to a sphere,
whereas every PL manifold admits a “PL triangulation” where the links are spheres.

Remark 2.0.4: What’s special in dimension 4? Recall the Kirby-Siebenmann invariant ks(x) ∈
H4(X;Z2) for X a topological manifold where ks(X) = 0 ⇐⇒ X admits a PL structure, with the
caveat that dimX ≥ 5. We can use this to cook up an invariant of 4-manifolds.

Friday, January 15 10



3 Main Theorems for the Course

Definition 2.0.5 (Kirby-Siebenmann Invariant of a 4-manifold)
Let X be a topological 4-manifold, then

ks(X) := ks(X × R).

Remark 2.0.6: Recall that in dimX ≥ 7, every PL manifold admits a smooth structure, and we
can note that

H4(X;Z2) = H4(X × R;Z2) = Z2, .

since every oriented 4-manifold admits a fundamental class. Thus

ks(X) =
{

0 X × R admits a PL and smooth structure
1 X × R admits no PL or smooth structures .

Remark 2.0.7: ks(X) 6= 0 implies that X has no smooth structure, since X × R doesn’t. Note
that it was not known if this invariant was ever nonzero for a while!

Remark 2.0.8: Note that H2(X;Z) admits a symmetric bilinear form QX defined by

QX : H2(X;Z)⊗2 → Z

α⊗ β 7→
∫
X
α ∧ β := (α ^ β)([X]).

where [X] is the fundamental class.

3 Main Theorems for the Course

Remark 3.0.1: Proving the following theorems is the main goal of this course:

Theorem 3.0.2(Freedman).
If X,Y are compact oriented topological 4-manifolds, then X ∼= Y are homeomorphic if and
only if ks(X) = ks(Y ) and QX ∼= QY are isometric, i.e. there exists an isometry

ϕ : H2(X;Z)→ H2(Y ;Z).

that preserves the two bilinear forms in the sense that 〈ϕα, ϕβ〉 = 〈α, β〉.
Conversely, every unimodular bilinear form appears as H2(X;Z) for some X, i.e. the pairing
induces a map

H2(X;Z)→ H2(X;Z)∨

α 7→ 〈α, −〉.

which is an isomorphism. This is essentially a classification of simply-connected 4-manifolds.

Main Theorems for the Course 11



3 Main Theorems for the Course

Remark 3.0.3: Note that preservation of a bilinear form is a stand-in for “being an element of the
orthogonal group”, where we only have a lattice instead of a full vector space.

Remark 3.0.4: There is a map H2(X;Z) PD−−→ H2(X;Z) from Poincaré , where we can think of
elements in the latter as closed surfaces [Σ], and

〈Σ1, Σ2〉 = signed number of intersections points of Σ1 t Σ2.

Note that Freedman’s theorem is only about homeomorphism, and is not true smoothly. This gives
a way to show that two 4-manifolds are homeomorphic, but this is hard to prove! So we’ll black-box
this, and focus on ways to show that two smooth 4-manifolds are not diffeomorphic, since we want
homeomorphic but non-diffeomorphic manifolds.

Definition 3.0.5 (Signature)
The signature of a topological 4- manifold is the signature of QX , where we note that QX is
a symmetric nondegenerate bilinear form on H2(X;R) and for some a, b

(H2(X;R), Qx) isometric−−−−−→ Ra,b.

where a is the number of +1s appearing in the matrix and b is the number of −1s. This is
Rab where e2

i = 1, i = 1 · · · a and e2
i = −1, i = a+ 1, · · · b, and is thus equipped with a specific

bilinear form corresponding to the Gram matrix of this basis.
1 0 0 0 0
0 1 0 0 0

0 0
. . . 0 0

0 0 0 −1 0
0 0 0 0 −1

 = Ia×a ⊕−Ib×b.

Then the signature is a− b, the dimension of the positive-definite space minus the dimension
of the negative-definite space.

Theorem 3.0.6(Rokhlin’s Theorem).
Suppose 〈α, α〉 ∈ 2Z and α ∈ H2(X;Z) and X a simply connected smooth 4-manifold. Then
16 divides sig(X).

Remark 3.0.7: Note that Freedman’s theorem implies that there exists topological 4-manifolds
with no smooth structure.

Theorem 3.0.8(Donaldson).
Let X be a smooth simply-connected 4-manifold. If a = 0 or b = 0, then QX is diagonalizable
and there exists an orthonormal basis of H2(X;Z).

Remark 3.0.9: This comes from Gram-Schmidt, and restricts what types of intersection forms
can occur.

Main Theorems for the Course 12



3 Main Theorems for the Course

E 3.1 Warm Up: R2 Has a Unique Smooth
Structure

e

Remark 3.1.1: Last time we showed R1 had a unique smooth structure, so now we’ll do this for
R2. The strategy of solving a differential equation, we’ll now sketch the proof.

Definition 3.1.2 (Riemannian Metrics)
A Riemannian metric g ∈ Γ(Sym2 T∨X) for X a smooth manifold is a metric on every TpX,
so gp ∈ (TpX⊗2)∨, such that

gp : TpX ⊗ TpX → R g(v, v) ≥ 0, g(v, v) = 0 ⇐⇒ v = 0.

Definition 3.1.3 (Almost complex structure)
An almost complex structure is a morphism J ∈ End

Vect(X)
(TX) of vector bundles over X

such that J2 = − idTX .

Definition 3.1.4 (Integrable)
An almost-complex structure is integrable J if it comes from a complex structure in the
following sense: for a complex manifold M ∈ Mfd(C), take holomorphic coordinates z = x+ iy

and set J ∂

∂x
:= ∂

∂y
and J ∂

∂y
:= − ∂

∂x
.

Remark 3.1.5: A manifold M ∈ smMfd(R) admits an almost-complex structure iff TM admits a
reduction of structure group GL2n(R)→ GLn(C).

Remark 3.1.6: Let e ∈ TpX and e 6= 0, then if X is a surface then {e, Jpe} is a basis of TpX,
where Jp is the restriction of J to TpX:

3.1 Warm Up: R2 Has a Unique Smooth Structure 13



3 Main Theorems for the Course

Je
e

TpX

Exercise 3.1.7 (?)
Show that {e, Jpe} are linearly independent in TpX. In particular, Jp is determined by a point
in R2 \ {the x-axis}

Proof (That R2 admits a unique smooth structure (sketch)).
Let R̃2 be an exotic R2.

3.1.1 Step 1

Choose a metric on R̃2, say g :=
∑

fIgi with gi metrics on coordinate charts Ui and fi a
partition of unity.

3.1.2 Step 2

Find an almost complex structure on R̃2. Choosing an orientation of R̃2, the metric g defines
a unique almost complex structure Jpe := f ∈ TpR̃2 such that

• g(e, e) = g(f, f)
• g(e, f) = 0.
• {e, f} is an oriented basis of TpR̃2

This is because after choosing e, there are two orthogonal vectors, but only one choice yields
an oriented basis.

3.1 Warm Up: R2 Has a Unique Smooth Structure 14



4 Sheaves, Bundles, Connections (Lecture 3, Wednesday, January 20)

f

e

−f

TpR̃2

3.1.3 Step 3

We then apply a theorem:

Theorem 3.1.8(Almost-complex structures on surfaces come from complex
structures).
Any almost complex structure on a surface comes from a complex structure, in the sense
that there exist charts ϕi : Ui → C such that J is multiplication by i.

So

dϕ(J · e) = i · dϕi(e),

and (R̃2, J) is a complex manifold. Since it’s simply connected, the Riemann Mapping Theorem
shows that it’s biholomorphic to D or C, both of which are diffeomorphic to R2.

�

Remark 3.1.9: See the Newlander-Nirenberg theorem, a result in complex geometry.

4 Sheaves, Bundles, Connections (Lecture 3,
Wednesday, January 20)

E 4.1 Sheaves e

Sheaves, Bundles, Connections (Lecture 3, Wednesday, January 20) 15



4 Sheaves, Bundles, Connections (Lecture 3, Wednesday, January 20)

Definition 4.1.1 (Presheaves and Sheaves)
Recall that if X is a topological space, a presheaf of abelian groups F is an assignment
U → F(U) of an abelian group to every open set U ⊆ X together with a restriction map
ρUV : F(U)→ F(V ) for any inclusion V ⊆ U of open sets. This data has to satisfying certain
conditions:

a. F(∅) = 0, the trivial abelian group.

b. ρUU : F(U)→ F(U) = idF(U)

c. Compatibility if restriction is taken in steps: U ⊆ V ⊆W =⇒ ρVW ◦ ρUV = ρUW .

We say F is a sheaf if additionally:

d. Given si ∈ F(Ui) such that ρUi∩Uj (si) = ρUi∩Uj (sj) implies that there exists a unique

s ∈ F
(⋃

i

Ui

)
such that ρUi(s) = si.

X

U1
U2

s2
s1

U3
s3

s

Example 4.1.2(?): Let X be a topological manifold, then F := C0(−,R) the set of continuous
functionals form a sheaf. We have a diagram

4.1 Sheaves 16



4 Sheaves, Bundles, Connections (Lecture 3, Wednesday, January 20)

U C0(U ;R)

V C0(V ;R)

restrict cts. functions

F

F

Link to diagram

Property (d) holds because given sections si ∈ C0(Ui;R) agreeing on overlaps, so si|Ui∩Uj = sj |Ui∩Uj ,

there exists a unique s ∈ C0
(⋃

i

Ui;R
)

such that s|Ui = si for all i – i.e. continuous functions glue.

Remark 4.1.3: Recall that we discussed various structures on manifolds: PL, continuous, smooth,
complex-analytic, etc. We can characterize these by their sheaves of functions, which we’ll denote
O. For example, O := C0(−;R) for topological manifolds, and O := C∞(−;R) is the sheaf for
smooth manifolds. Note that this also works for PL functions, since pullbacks of PL functions are
again PL. For complex manifolds, we set O to be the sheaf of holomorphic functions.

Example 4.1.4(Locally Constant Sheaves): Let A ∈ Ab be an abelian group, then A is the
sheaf defined by setting A(U) to be the locally constant functions U → A. E.g. let X ∈ MfdTop
be a topological manifold, then R(U) = R if U is connected since locally constant =⇒ globally
constant in this case.

4! Warning 4.1.5
Note that the presheaf of constant functions doesn’t satisfy (d)! Take R and a function with two
different values on disjoint intervals:

4.1 Sheaves 17

https://q.uiver.app/?q=WzAsNCxbMCwwLCJVIl0sWzAsMiwiViJdLFsyLDAsIkNeMChVOyBcXFJSKSJdLFsyLDIsIkNeMChWOyBcXFJSKSJdLFsxLDAsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzIsMywiXFx0ZXh0e3Jlc3RyaWN0IGN0cy4gZnVuY3Rpb25zfSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn0sImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDIsIlxcbWF0aGNhbHtGfSJdLFsxLDMsIlxcbWF0aGNhbHtGfSIsMl1d


4 Sheaves, Bundles, Connections (Lecture 3, Wednesday, January 20)

s1

s2

U1 U2

X = R

Note that s1|U1∩U2
= s2|U1∩U2

since the intersection is empty, but there is no constant function
that restricts to the two different values.

E 4.2 Bundles e

Remark 4.2.1: Let π : E → X be a vector bundle, so we have local trivializations π−1(U) hu−→
Y d×U where we take either Y = R,C, such that hv ◦h−1

u preserves the fibers of π and acts linearly
on each fiber of Y × (U ∩ V ). Define

tUV : U ∩ V → GLd(Y )

where we require that tUV is continuous, smooth, complex-analytic, etc depending on the context.

4.2 Bundles 18



4 Sheaves, Bundles, Connections (Lecture 3, Wednesday, January 20)

X

E

π−1(U)

Rn

U U

Example 4.2.2(Bundles over S1): There are two R1 bundles over S1:

S1 × R The Mobius strip

U1

+1
−1

U2

tUV : U1 ∩ U2→ GL1(R)

Note that the Mobius bundle is not trivial, but can be locally trivialized.

Remark 4.2.3: We abuse notation: E is also a sheaf, and we write E(U) to be the set of sections
s : U → E where s is continuous, smooth, holomorphic, etc where π ◦ s = idU . I.e. a bundle is a
sheaf in the sense that its sections form a sheaf.

Example 4.2.4(?): The trivial line bundle gives the sheaf O : maps U s−→ U × Y for Y = R,C
such that π ◦ s = id are the same as maps U → Y .

Definition 4.2.5 (O-modules)
An O-module is a sheaf F such that F(U) has an action of O(U) compatible with restriction.

Example 4.2.6(?): If E is a vector bundle, then E(U) has a natural action of O(U) given by
f y s := fs, i.e. just multiplying functions.

Example 4.2.7(Non-example): The locally constant sheaf R is not an O-module: there isn’t
natural action since the sections of O are generally non-constant functions, and multiplying a
constant function by a non-constant function doesn’t generally give back a constant function.
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Remark 4.2.8: We’d like a notion of maps between sheaves:

Definition 4.2.9 (Morphisms of Sheaves)
A morphism of sheaves F → G is a group morphism ϕ(U) : F(U) → G(U) for all opens
U ⊆ X such that the diagram involving restrictions commutes:

F(U) G(U)

F(V ) F(V )

ϕ(U)

ρUV ρUV

ϕ(V )

Example 4.2.10(An O-module that is not a vector bundle.): Let X = R and define the
skyscraper sheaf at p ∈ R as

Rp(U) :=
{
R p ∈ U
0 p 6∈ U.

.

The O(U)-module structure is given by

O(U)×O(U)→ Rp(U)
(f, s) 7→ f(p)s.

This is not a vector bundle since Rp(U) is not an infinite dimensional vector space, whereas the
space of sections of a vector bundle is generally infinite dimensional (?). Alternatively, there are
arbitrarily small punctured open neighborhoods of p for which the sheaf makes trivial assignments.

Example 4.2.11(of morphisms): Let X = R ∈ smMfd viewed as a smooth manifold, then
multiplication by x induces a morphism of structure sheaves:

(x·) : O → O
s 7→ x · s

for any x ∈ O(U), noting that x · s ∈ O(U) again.

Exercise 4.2.12(The kernel of a sheaf morphism is a sheaf)
Check that kerϕ is naturally a sheaf and ker(ϕ)(U) = ker(ϕ(U)) : F(U)→ G(U)

Here the kernel is trivial, i.e. on any open U we have (x·) : O(U) ↪→ O(U) is injective. Taking the
cokernel coker(x·) as a presheaf, this assigns to U the quotient presheaf O(U)/xO(U), which turns
out to be equal to R0. So O → R0 by restricting to the value at 0, and there is an exact sequence

0→ O (x·)−−→ O → R0 → 0.

This is one reason sheaves are better than vector bundles: the category is closed under taking
quotients, whereas quotients of vector bundles may not be vector bundles.
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5 Lecture 4 (Friday, January 22)

E 5.1 The Exponential Exact Sequence e

Remark 5.1.1: Let X = C and consider O the sheaf of holomorphic functions and O× the sheaf
of nonvanishing holomorphic functions. The former is a vector bundle and the latter is a sheaf
of abelian groups. There is a map exp : O → O×, the exponential map, which is the data
exp(U) : O(U)→ O×(U) on every open U given by f 7→ ef . There is a kernel sheaf 2πiZ, and we
get an exact sequence

0→ 2πiZ→ O exp−−→ O× → coker(exp)→ 0.

Question 5.1.2
What is the cokernel sheaf here?

Remark 5.1.3: Let U be a contractible open set, then we can identify O×(U)/ exp(O×(U)) = 1.

Uf

Any f ∈ O×(U) has a logarithm, say by taking a branch cut, since π1(U) = 0 =⇒ log f has an
analytic continuation. Consider the annulus U and the function z ∈ O×(U), then z 6∈ exp(O(U)) –
if z = ef then f = log(z), but log(z) has monodromy on U :
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U

Thus on any sufficiently small open set, coker(exp) = 1. This is only a presheaf: there exists an
open cover of the annulus for which z|Ui , and so the naive cokernel doesn’t define a sheaf. This is
because we have a locally trivial section which glues to z, which is nontrivial.

Exercise 5.1.4 (Fixing the sheaf cokernel)
Redefine the cokernel so that it is a sheaf. Hint: look at sheafification, which has the defining
property

Hom
Sh
pre

(G,F
Sh
pre) = Hom

Sh
(G,FSh)

for any sheaf G.

E 5.2 Global Sections e
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5 Lecture 4 (Friday, January 22)

Definition 5.2.1 (Global Sections Sheaf)
The global sections sheaf of F on X is given by H0(X;F) = F(X).

Example 5.2.2(?):
• C∞(X) = H0(X,C∞) are the smooth functions on X
• V F (X) = H0(X;T ) are the smooth vector fields on X for T the tangent bundle
• If X is a complex manifold then O(X) = H0(X;O) are the globally holomorphic functions

on X.
• H0(X;Z) = Z(X) are ??

Remark 5.2.3: Given vector bundles V,W , we have constructions V ⊕W,V ⊗W,V ∨,Hom(V,W ) =

V ∨ ⊗W, Symn V,
p∧
V , and so on. Some of these work directly for sheaves:

• F ⊕ G(U) := F(U)⊕ G(U)
• For tensors, duals, and homs H om(V,W ) we only get presheaves, so we need to sheafify.

4! Warning 5.2.4
Hom(V,W ) will denote the global homomorphisms H om(V,W )(X), which is a sheaf.

Example 5.2.5(?): LetXn ∈ Mfdsm and let Ωp be the sheaf of smooth p-forms, i.e
p∧
T∨, i.e. Ωp(U)

are the smooth p forms on U , which are locally of the form
∑

fi1,··· ,ip(x1, · · · , xn)dxi1∧dxi2∧· · · dxip
where the fi1,··· ,ip are smooth functions.

Example 5.2.6(Sub-example): Take X = S1, writing this as R/Z, we have Ω1(X) 3 dx. There
are two coordinate charts which differ by a translation on their overlaps, and dx(x+ c) = dx for c
a constant:

Translation

R

Exercise 5.2.7(?)
Check that on a torus, dxi is a well-defined 1-form.

5.2 Global Sections 23



6 Lecture 4 (Friday, January 22)

Remark 5.2.8: Note that there is a map d : Ωp → Ωp+1 where ω 7→ dω.

4! Warning 5.2.9
d is not a map of O-modules: d(f · ω) = f · ω + df ∧ ω, where the latter is a correction term.
In particular, it is not a map of vector bundles, but is a map of sheaves of abelian groups since
d(ω1 + ω2) = d(ω1) + d(ω2), making d a sheaf morphism.

Remark 5.2.10: Let X ∈ MfdC, we’ll use the fact that TX is complex-linear and thus a C-vector
bundle.

C
M

Remark 5.2.11(Subtlety 1): Note that Ωp for complex manifolds is
p∧
T∨, and so if we want to

view X ∈ MfdR we’ll write XR. TXR is then a real vector bundle of rank 2n.

Remark 5.2.12(Subtlety 2): Ωp will denote holomorphic p-forms, i.e. local expressions of the
form ∑

fI(z1, · · · , zn)
∧
dzI .

For example, ezdz ∈ Ω1(C) but zzdz is not, where dz = dx + idy. We’ll use a different notation
when we allow the fI to just be smooth: Ap,0, the sheaf of (p, 0)-forms. Then zzdz ∈ A1,0.

Remark 5.2.13: Note that T∨XR⊗C = A1,0 ⊕ A0,1 since there is a unique decomposition ω =
fdz + gdz where f, g are smooth. Then ΩdXR ⊗R C =

⊕
p+q=d

Ap,q. Note that Ωp
sm 6= Ap,q and these

are really quite different: the former are more like holomorphic bundles, and the latter smooth.
Moreover dim Ωp(X) <∞, whereas Ω1

sm is infinite-dimensional.
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6 Principal G-Bundles and Connections
(Monday, January 25)

Definition 6.0.1 (Principal Bundles)
Let G be a (possibly disconnected) Lie group. Then a principal G-bundle π : P → X is a
space admitting local trivializations hu : π−1(U)→ G× U such that the transition functions
are given by left multiplication by a continuous function tUV : U ∩ V → G.

U × S1

U

V × {0}

V

V × S1

U × {0}

X

Remark 6.0.2: Setup: we’ll consider TX for X ∈ MfdSm, and let g be a metric on the tangent
bundle given by

gp : TpX⊗2 → R,

a symmetric bilinear form with gp(u, v) ≥ 0 with equality if and only if v = 0.

Definition 6.0.3 (The Frame Bundle)
Define Frame

p
(X) := {bases of TpX}, and Frame(X) :=

⋃
p∈X

Frame
p

(X).

Remark 6.0.4: More generally, Frame(E) can be defined for any vector bundle E , so Frame(X) :=
Frame(TX). Note that Frame(X) is a principal GLn(R)-bundle where n := rank(E). This follows
from the fact that the transition functions are fiberwise in GLn(R), so the transition functions are
given by left-multiplication by matrices.
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Remark 6.0.5(Important): A principal G-bundle admits a G-action where G acts by right
multiplication:

P ×G→ P

((g, x), h) 7→ (gh, x).

This is necessary for compatibility on overlaps. Key point: the actions of left and right multipli-
cation commute.

Definition 6.0.6 (Orthogonal Frame Bundle)
The orthogonal frame bundle of a vector bundle E equipped with a metric g is defined as
OFrame

p
(E) := {orthonormal bases of Ep}, also written Or(R) where r := rank(E).

Remark 6.0.7: The fibers Px → {x} of a principal G-bundle are naturally torsors over G, i.e. a
set with a free transitive G-action.

Definition 6.0.8 (Hermitian metric)
Let E → X be a complex vector bundle. Then a Hermitian metric is a hermitian form on
every fiber, i.e.

hp : Ep × Ep → C.

where hp(v, v) ≥ 0 with equality if and only if v = 0. Here we define Ep as the fiber of the
complex vector bundle E whose transition functions are given by the complex conjugates of
those from E .

Remark 6.0.9: Note that E , E are genuinely different as complex bundles. There is a conjugate-
linear map given by conjugation, i.e. L(cv) = cL(v), where the canonical example is

Cn → Cn

(z1, · · · , zn) 7→ (z1, · · · , zn).

Definition 6.0.10 (Unitary Frame Bundle)
We define the unitary frame bundle UFrame(E) :=

⋃
p

UFrame(E)p, where at each point this

is given by the set of orthogonal frames of Ep given by (e1, · · · , en) where h(ei, ej) = δij .

Remark 6.0.11: This is a principal G-bundle for G = Ur(C), the invertible matrices A/C satisfy
AA

t = id.

Example 6.0.12(of more principal bundles): For G = Z/2Z and X = S1, the Möbius band is
a principal G-bundle:
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P

S1

Example 6.0.13(more principal bundles): For G = Z/2Z, for any (possibly non-oriented)
manifold X there is an orientation principal bundle P which is locally a set of orientations on
U , i.e.

P :=
{

(x,O)
∣∣∣ x ∈ X, O is an orientation of TpX

}
.

Note that P is an oriented manifold, P → X is a local isomorphism, and has a canonical orientation.
(?) This can also be written as P = Frame(X)/GL+

n (R), since an orientation can be specified by a
choice of n linearly independent vectors where we identify any two sets that differ by a matrix of
positive determinant.

Definition 6.0.14 (Associated Bundles)
Let P → X be a principal G-bundle and let G→ GL(V ) be a continuous representation. The
associated bundle is defined as

P ×G V =
{

(p, v)
∣∣∣ p ∈ P, v ∈ V } / ∼ where (p, v) ∼ (pg, g−1v),

which is well-defined since there is a right action on the first component and a left action on
the second.

Example 6.0.15(?): Note that Frame(E) is a GLr(R)-bundle and the map GLr(R) id−→ GL(Rr) is

Principal G-Bundles and Connections (Monday, January 25) 27



7 Wednesday, January 27

a representation. At every fiber, we have G×G V = (p, v)/ ∼ where there is a unique representative
of this equivalence class given by (e, pv). So P ×G Vp → {p} ∼= Vx.

Exercise 6.0.16(?)
Show that Frame(E)×GLr(R) Rr ∼= E . This follows from the fact that the transition functions
of P ×G V are given by left multiplication of tUV : U ∩ V → G, and so by the equivalence
relation, im tUV ∈ GL(V ).

Remark 6.0.17: Suppose thatM3 is an oriented Riemannian 3-manifold. Them TM → Frame(M)
which is a principal SO(3)-bundle. The universal cover is the double cover SU(2)→ SO(3), so can
the transition functions be lifted? This shows up for spin structures, and we can get a C2 bundle
out of this.

7 Wednesday, January 27

E 7.1 Bundles and Connections e

Definition 7.1.1 (Connections)
Let E → X be a vector bundle, then a connection on E is a map of sheaves of abelian groups

∇ : E → E ⊗ Ω1
X

satisfying the Leibniz rule:

∇(fs) = f∇s+ s⊗ ds

for all opens U with f ∈ O(U) and s ∈ E(U). Note that this works in the category of complex
manifolds, in which case ∇ is referred to as a holomorphic connection.

Remark 7.1.2: A connection ∇ induces a map

∇̃ : E ⊗ Ωp → E ⊗ Ωp+1

s⊗ ω 7→ ∇s ∧ w + s⊗ dω.

where ∧ : Ωp ⊗ Ω1 → Ωp+1. The standard example is

d : O → Ω1

f 7→ df.

where the induced map is the usual de Rham differential.

Exercise 7.1.3 (?)

Wednesday, January 27 28



7 Wednesday, January 27

Prove that the curvature of ∇, i.e. the map

F∇ := ∇ ◦∇ : E → E ⊗ Ω2

is O-linear, so F∇(fs) = f∇ ◦ ∇(s). Use the fact that ∇s ∈ E ⊗ Ω1 and ω ∈ Ωp and so
∇s⊗ ω ∈ EΩ1 ⊗ Ωp and thus reassociating the tensor product yields ∇s ∧ ω ∈ E ⊗ Ωp+1.

Remark 7.1.4: Why is this called a connection?

0

E

X

v
p

ṽ ∈ Ep

q

p̃ q̃2

q̃1

γ1

γ2

This gives us a way to transport v ∈ Ep over a path γ in the base, and ∇ provides a differential
equation (a flow equation) to solve that lifts this path. Solving this is referred to as parallel
transport. This works by pairing γ′(t) ∈ Tγ(t)X with Ω1, yielding ∇s = (γ′(t)) = s(γ(t)) which
are sections of γ.

Note that taking a different path yields an endpoint in the same fiber but potentially at a different
point, and F∇ = 0 if and only if the parallel transport from p to q depends only on the homotopy
class of γ.
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Note: this works for any bundle, so can become con-
fusing in Riemannian geometry when all of the bun-
dles taken are tangent bundles!

Example 7.1.5(A classic example): The Levi-Cevita connection ∇LC on TX, which depends
on a metric g. Taking X = S2 and g is the round metric, there is nonzero curvature:

A = θ

A = π/2

In general, every such transport will be rotation by some vector, and the angle is given by the area
of the enclosed region.
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Definition 7.1.6 (Flat Connection and Flat Sections)
A connection is flat if F∇ = 0. A section s ∈ E(U) is flat if it is given by

L(U) :=
{
s ∈ E(U)

∣∣∣ ∇s = 0
}
.

Exercise 7.1.7 (?)
Show that if ∇ is flat then L is a local system: a sheaf that assigns to any sufficiently small
open set a vector space of fixed dimension. An example is the constant sheaf Cd. Furthermore
rank(L) = rank(E).

Remark 7.1.8: Given a local system, we can construct a vector bundle whose transition functions
are the same as those of the local system, e.g. for vector bundles this is a fixed matrix, and in
general these will be constant transition functions. Equivalently, we can take L ⊗R O, and L ⊗ 1
form flat sections of a connection.

E 7.2 Sheaf Cohomology e

Definition 7.2.1 (Čech complex)
Let F be a sheaf of abelian groups on a topological space X, and let U := {Ui} ⇒ X be an
open cover of X. Let Ui1,··· ,ip := Ui1 ∩ Ui2 ∩ · · · ∩ Uip . Then the Čech Complex is defined as

CpU(X,F) :=
∏

i1<···<ip
F(Ui1,··· ,ip)

with a differential

∂p : CpU(X,F)→ Cp+1
U (XF)

σ 7→ (∂σ)i0,··· ,ip :=
∏
j

(−1)j σ
i0,··· ,îj ,··· ,ip

∣∣∣
Ui0,··· ,ip

where we’ve defined this just on one given term in the product, i.e. a p-fold intersection.

Exercise 7.2.2 (?)
Check that ∂2 = 0.

Remark 7.2.3: The Čech cohomologyHp
U(X,F) with respect to the cover U is defined as ker ∂p/ im ∂p−1.

It is a difficult theorem, but we write Hp(X,F) for the Čech cohomology for any sufficiently refined
open cover when X is assumed paracompact.

Example 7.2.4(?): Consider S1 and the constant sheaf Z:
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U2U2 S1

ere we have

C0(S1,Z) = Z(U1)⊕ Z(U2) = Z⊕ Z,

and

C1(S1,Z) =
⊕

double
intersections

Z(Uij)Z(U12) = Z(U1 ∩ U2) = Z⊕ Z.

We then get

C0(S1,Z) ∂−→ C1(S1,Z)
Z⊕ Z→ Z⊕ Z
(a, b) 7→ (a− b, a− b),

Which yields H∗(S1,Z) = [Z,Z, 0, · · · ].

8 Sheaf Cohomology (Friday, January 29)

Last time: we defined the Čech complex CpU(X,F) :=
∏

i1,··· ,ip
F(Ui1 ∩ · · · ∩ Uip) for U := {Ui} is an

open cover of X and F is a sheaf of abelian groups.
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Fact 8.0.1
If U is a sufficiently fine cover then Hp

U(X,F) is independent of U, and we call this Hp(X;F).

Remark 8.0.2: Recall that we computed Hp(S1,Z = [Z,Z, 0, · · · ].

Theorem 8.0.3(When sheaf cohomology is isomorphic to singular cohomology).
Let X be a paracompact and locally contractible topological space. Then Hp(X,Z) ∼=
Hp

Sing(X,Z). This will also hold more generally with Z replaced by A for any A ∈ Ab.

Definition 8.0.4 (Acyclic Sheaves)
We say F is acyclic on X if H>0(X;F) = 0.

Remark 8.0.5: How to visualize when H1(X;F) = 0:

X

Ui

sij ∈ F(Ui ∩ Uj)

On the intersections, we have im ∂0 =
{

(si − sj)ij
∣∣∣ si ∈ F(Ui)

}
, which are cocycles. We have

C1(X;F) are collections of sections of F on every double overlap. We can check that ker ∂1 ={
(sij)

∣∣∣ sij − sik + sjk = 0
}
, which is the cocycle condition. From the exercise from last class,

∂2 = 0.

Theorem 8.0.6((Important!)).
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Let X be a paracompact Hausdorff space and let

0→ F1
ϕ−→ F2 → F3 → 0

be a SES of sheaves of abelian groups, i.e. F3 = coker(ϕ) and ϕ is injective. Then there is a
LES in cohomology:

0 H0(X;F1) H0(X;F2) H0(X;F3)

H1(X;F1) H1(X;F2) H1(X;F3)

· · ·

Example 8.0.7(?): For X a manifold, we can define a map and its cokernel sheaf:

0→ Z ·2−→ Z→ Z/2Z→ 0.

Using that cohomology of constant sheaves reduces to singular cohomology, we obtain a LES in
homology:

0 H0(X;Z) H0(X;Z) H0(X;Z/2Z)

H1(X;Z) H1(X;Z) H1(X;Z/2Z)

· · ·

Corollary 8.0.8(of theorem).
Suppose 0→ F → I0

d0−→ I1
d1−→ I2

d2−→ · · · is an exact sequence of sheaves, so on any sufficiently
small set kernels equal images., and suppose In is acyclic for all n ≥ 0. This is referred to as
an acyclic resolution. Then the homology can be computed at Hp(X;F) = ker(Ip(X) →
Ip+1(X))/ im(Ip−1(X)→ Ip(X)).

Note that locally having kernels equal images is
different than satisfying this globally!
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Proof (of corollary).
This is a formal consequence of the existence of the LES. We can split the LES into a collection
of SESs of sheaves:

0→ F → I0
d0−→ im(d0)→ 0 im(d0) = ker(d1)

0→ ker(d1) ↪→ I1 → I1/ ker(d1) = im(d1) im(d1) = ker(d2)
.

Note that these are all exact sheaves, and thus only true on small sets. So take the associated
LESs. For the SES involving I0, we obtain:

· · ·

Hp−1(F) Hp−1(I′) = 0 Hp−1(im(d′))

Hp(F) · · · = 0

∼=

The middle entries vanish since I∗ was assumed acyclic, and so we obtain Hp(F) ∼=
Hp−1(im d0) ∼= Hp−1(ker d1). Now taking the LES associated to I1, we get Hp−1(ker d1) ∼=
Hp−2(im d1). Continuing this inductively, these are all isomorphic to Hp(F) ∼=
H0(ker dp)/dp−1(H0(Ip−1)) after the pth step.

�

Corollary 8.0.9(of the previous corollary).
Suppose U ⇒ X, then if F is acyclic on each Ui1,··· ,ip , then U is sufficiently fine to compute
Čech cohomology, and Hp

U(X;F) ∼= Hp(X;F).

Proof (?).
See notes.

�

Corollary 8.0.10(of corollary).
Let X ∈ Mfdsm, then Hp(X,R) = Hp

dR(X; RR).

Proof (?).
Idea: construct an acyclic resolution of the sheaf R on M . The following exact sequence works:
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0→ R→ O d−→ Ω1 d−→ Ω2 → · · · .

So we start with locally constant functions, then smooth functions, then smooth 1-forms,
and so on. This is an exact sequence of sheaves, but importantly, not exact on the total
space. To check this, it suffices to show that ker dp = im dp−1 on any contractible coordinate
chart. In other words, we want to show that if dω = 0 for ω ∈ Ωp(Rn) then ω = dα for
some α ∈ Ωp−1(Rn). This is true by integration! Using the previous corollary, Hp(X;R) =
ker(Ωp(X) d−→ Ωp+1(X))/ im(Ωp−1(X) d−→ Ωp(X)).

�

Check Hartshorne to see how injective resolutions line
up with derived functors!

9 Monday, February 01

Remark 9.0.1: Last time R on a manifold M has a resolution by vector bundles:

0→ R ↪→ Ω1 d−→ Ω2 d−→ · · · .

This is an exact sequence of sheaves of any smooth manifold, since locally dω = 0 =⇒ ω = dα (by
the Poincaré d-lemma). We also want to know that Ωk is an acyclic sheaf on a smooth manifold.

Exercise 9.0.2 (?)
Let X ∈ Top and F ∈ Sh(Ab)/X . We say F is flasque if and only if for all U ⊇ V the map
F(U) ρUV−−→ F(V ) is surjective. Show that F is acyclic, i.e. H i(X;F) = 0. This can also be
generalized with a POU.

Example 9.0.3(?): The function 1/x ∈ O(R \ {0}), but doesn’t extend to a continuous map on
R. So the restriction map is not surjective.

Remark 9.0.4: Any vector bundle on a smooth manifold is acyclic. Using the fact that Ωk is
acyclic and the above resolution of R, we can write Hk(X;R) = ker(dk)/ im dk−1 := Hk

dR(X;R).

Remark 9.0.5: Now letting X ∈ MfdC, recalling that Ωp was the sheaf of holomorphic p-forms.
Locally these are of the form

∑
|I|=p

fI(z)dzI where fI(z) is holomorphic. There is a resolution

0 −→ Ωp −→ Ap,0,

where in Ap,0 we allowed also fI are smooth. These are the same as bundles, but we view sections
differently. The first allows only holomorphic sections, whereas the latter allows smooth sections.
What can you apply to a smooth (p, 0) form to check if it’s holomorphic?

Monday, February 01 36



9 Monday, February 01

Example 9.0.6(?): For p = 0, we have

0→ O → A0,0.

where we have the sheaf of holomorphic functions mapping to the sheaf of smooth functions. We
essentially want a version of checking the Cauchy-Riemann equations.

Definition 9.0.7 (∂ and ∂ operators)
Let ω ∈ Ap,q(X) where

dω =
∑ ∂fI

∂zj
dzj ∧ dzI ∧ dzJ +

∑
j

∂fI
∂zj

dzj ∧ dzIdzJ := ∂ + ∂

with |I| = p, |J | = q.

Example 9.0.8(?): The function f(z) = zz ∈ A0,0(C) is smooth, and df = zdz + zdz. This can
be checked by writing zj = xj + iyj and zj = xj − iyj , and

∂

∂z
g = 0 if and only if g is holomorphic.

Here we get ∂ω ∈ Ap+1,q(X) and ∂ ∈ Ap,q+1(X), and we can write d(zz) = ∂(zz) + ∂(zz).

Definition 9.0.9 (Cauchy-Riemann Equations)
Recall the Cauchy-Riemann equations: ω is a holomorphic (p, 0)-form on Cn if and only if
∂ω = 0.

Remark 9.0.10: Thus to extend the previous resolution, we should take

0→ Ωp ↪→ Ap,0
∂−→ Ap,1

∂−→ Ap,2 → · · · .

The fact that this is exact is called the Poincaré ∂-lemma.

Remark 9.0.11: There are no bump functions in the holomorphic world, and since Ωp is a holo-
morphic bundle, it may not be acyclic. However, the Ap,q are acyclic (since they are smooth vector
bundles and thus admit POUs), and we obtain

Hq(X; Ωp) = ker(∂q)/ im(∂q−1).

Note the similarity to HdR, using ∂ instead of d. This is called Dolbeault cohomology, and
yields invariants of complex manifolds: the Hodge numbers hp,q(X) := dimCH

q(X; Ωp). These
are analogies:

Smooth Complex

R Ωp

Ωk Ap,q

Betti numbers βk Hodge numbers hp,q

Note the slight overloading of terminology here!
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Theorem 9.0.12(Properties of Singular Cohomology).
Let X ∈ Top, then H i

Sing(X;Z) satisfies the following properties:

• Functoriality: given f ∈ Hom
Top

(X,Y ), there is a pullback f∗ : H i(Y ;Z)→ H i(X;Z).

• The cap product: a pairing

H i(X;Z)⊗Z Hj(X;Z)→ Hj−i(X;Z)

ϕ⊗ σ 7→ ϕ
(
σ|∆0,··· ,j

)
σ|∆i,··· ,j

.

This makes H∗ a module over H∗.

• There is a ring structure induced by the cup product:

H i(X;R)×Hj(X;R)→ H i+j(X;R) α ∪ β = (−1)ijβ ∪ α.

• Poincaré Duality: If X is an oriented manifold, there exists a fundamental class [X] ∈
Hn(X;Z) ∼= Z and (−) ∩X : H i → Hn−i is an isomorphism.

Remark 9.0.13: Let M ⊂ X be a submanifold where X is a smooth oriented n-manifold. Then
M ↪→ X induces a pushforward Hn(M ;Z) ι∗−→ Hn(X;Z) where σ 7→ ι ◦ σ. Using Poincaré duality,
we’ll identify HdimM (X;Z) → HcodimM (X;Z) and identify [M ] = PD(ι∗([M ])). In this case, if
M t N then [M ] ∩ [N ] = [M ∩N ], i.e. the cap product is given by intersecting submanifolds.

4! Warning 9.0.14
This can’t always be done! There are counterexamples where homology classes can’t be represented
by submanifolds.
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Consider an oriented surface, and take two oriented submanifolds
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p

α

βX

We can then take the fundamental classes of the submanifolds, say [α], [β] ∈ H1(X;Z) PD−−→ H1(X,Z).
Here Tpα⊕ Tpβ = TpX, since the intersections are transverse. Since α, β are oriented, let {e} be a
basis of Tpα (up to R+) and similarly {f} a basis of Tpβ. We can then ask if {e, f} constitutes an
oriented basis of TpX. If so, we write α ·p β := +1 and otherwise α ·p β = −1. We thus have

[α] ^ [β] ∈ H2(X;Z) PD−−→ H0(X;Z) = Z

since X is connected. We can thus define the intersection form α · β := [α] ^ [β]. In general if
A,B are oriented transverse submanifolds of M which are themselves oriented, we’ll have [A] ^
[B] = [A∩B]. We need to be careful: how do we orient the intersection? This is given by comparing
the orientations on A and B as before.

Example 10.0.1(?): If dimM = dimA + dimB, then any p ∈ A ∩ B is oriented by comparing
{orA, orB} to orM .
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M 3
A

B

P

orB

orA

Here it suffices to check that {e, f1, f2} is an oriented basis of TpM .

Example 10.0.2(?): In this case, [α] ^ [β] = 0 and so α · β = 0:
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X β

α

Remark 10.0.3: Note that cohomology with Z coefficients can be defined for any topological space,
and Poincaré duality still holds.

Remark 10.0.4: We’ll be considering M = M4, smooth 4-manifolds. How to visualize: take a
3-manifold and cross it with time!
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Figure 1: Picking one basis element in the time direction

Here ? is oriented in the “forward time” direction, and this is a surface at time t = 0. Where
A · B = +1, since {e1, e2, f1, f2} = {ex, ey, ez, et} is a oriented basis for R4. For ?2, switching the
order of α, β no longer yields an oriented basis, but in this case it is ? and A · B = B · A. This is
because

A :=
[
0 1
1 0

]
=⇒ det(A) = −1 det

[
A

A

]
= 1.

Remark 10.0.5: Let M2n be an oriented manifold, then the cup product yields a bilinear map
Hn(M ;Z)⊗Hn(M ;Z)→ Z which is symmetric when n is odd and antisymmetric (or symplectic)
when n is even. This is a perfect (or unimodular) pairing (potentially after modding out by
torsion) which realizes an isomorphism:

(Hn(M ;Z)/tors) ∨ ∼−→ Hn(M ;Z)/tors
α ^ − 7→α,

where the LHS are linear functionals on cohomology.
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Remark 10.0.6: Recall the universal coefficients theorem:

H i(X;Z)/tors ∼= (Hi(X;Z)/tors) ∨.

The general theorem shows that H i(X;Z)tors = Hi−1(X;Z)tors.

Remark 10.0.7: Note that if M is an oriented 4-manifold, then

tors torsionfree tors torsionfree

H0 0 Z H0 0 Z

H1 0 Zβ1 H1 A Zβ1

H2 A Zβ2 H2 A Zβ2

H3 A Zβ1 H3 0 Zβ1

H4 0 Z H4 0 Z

PD

In particular, if M is simply connected, then H1(M) = Ab(π1(M)) = 0, which forces A = 0 and
β1 = 0.

Definition 10.0.8 (Lattice)
A lattice is a finite-dimensional free Z-module L together with a symmetric bilinear form

· : L⊗2 → Z
`⊗m 7→ ` ·m.

The lattice (L, ·) is unimodular if and only if the following map is an isomorphism:

L→ L∨

` 7→ ` · (−).

Remark 10.0.9: How to determine if a lattice is unimodular: take a basis {e1, · · · , en} of L and
form the Gram matrix Mij := (ei · ej) ∈ Mat(n× n,Z)Sym. Then (L, ·) is unimodular if and only if
det(M) = ±1 if and only if M−1 is integral. In this case, the rows of M−1 will form a basis of the
dual basis.

Definition 10.0.10 (Index of a lattice)
The index of a lattice is |detM |.
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Exercise 10.0.11 (?)
Prove that |detM | =

∣∣L∨/L∣∣.
Remark 10.0.12: In general, for M4k, the H2k/tors is unimodular. For M4k+2, the H2k+1/tors
is a unimodular symplectic lattice, which is obtained by replacing the word “symmetric” with
“antisymmetric” everywhere above.

Example 10.0.13(?): For the torus, since the dimension is 2 (mod 4), you get the skew-symmetric
matrix [

0 1
−1 0

]
.

Check!

Definition 10.0.14 (Nondegenerate lattices)
A lattice is nondegenerate if detM 6= 0.

Definition 10.0.15 (Base change of lattices)
The tensor product L⊗Z R is a vector space with an R-valued symmetric bilinear form. This
allows extending the lattice from Zn to Rn.

Remark 10.0.16: If (L, ·) is nondegenerate, then Gram-Schmidt will yield an orthonormal basis
{vi}. The number of positive norm vectors is an invariant, so we obtain Rp,q where p is the number
of +1s in the Gram matrix and q is the number of −1s. The signature of (L,−) is (p, q), or by
abuse of notation p− q. This is an invariant of the 4-manifold, as is the lattice itself H2(X;Z)/tors
equipped with the intersection form.

Remark 10.0.17: There is a perfect pairing called the linking pairing:

H i(X;Q/Z)⊗Hn−i−1(X;Q/Z)→ Q/Z.
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L1

M 3

nL2

Remark 10.0.18: A ·B :=
∑

p∈A∩B
sgnp(A,B), where A t B and this turns out to be equal to the

cup product. This works for topological manifolds – but there are no tangent spaces there, so taking
oriented bases doesn’t work so well! You can also view

[A] ^ [ω] =
∫
A
ω.

11 Friday, February 05

Remark 11.0.1: Recall that a lattice is unimodular if the map L → L∨ := Hom(L,Z) is an
isomorphism, where ` 7→ ` · (−). To check this, it suffices to check if the Gram matrix M of a basis
{ei} satisfies |detM | = 1.

Example 11.0.2(Determinant 1 Integer Matrices): The matrices [1] and [−1] correspond to
the lattice Ze where either e2 := e · e = 1 or e2 = −1. If M1,M2 both have absolute determinant 1,
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then so does [
M1 0
0 M2

]
.

So if L1, L2 are unimodular, then taking an orthogonal sum L1⊕L2 also yields a unimodular lattice.
So this yields diagonal matrices with p copies of +1 and q copies of −1. This is referred to as
rm1p,q, and is an odd unimodular lattice of signature (p, q) (after passing to R). Here odd means
that there exists a v ∈ L such that v2 is odd.

Example 11.0.3(Even unimodular lattices): An even lattice must have no vectors of odd norm,
so all of the diagonal elements are in 2Z. This is because (

∑
niei)2 =

∑
i

n2
i e

2
i +

∑
i<j

2ni, njei · ej .

Note that the matrix must be symmetric, and one example that works is[
0 1
1 0

]
.

We’ll refer to this lattice as H, sometimes referred to as the hyperbolic cell or hyperbolic plane.

Example 11.0.4(A harder even unimodular lattice): This is built from the E8 Dynkin dia-
gram:

•e8

•e7 •e6 •e5 •e4 •e3 •e2 •e1

The rule here is

ei · ej =


−2 i = j

1 ei → ej

0 if not connected.

So for example, e2 · e6 = 0, e1 · e3 = 1, e2
2 = −2. You can check that det(ei · ej) = 1, and this is

referred to as the E8 lattice. This is of signature (0, 8), and it’s negative definite if and only if v2 < 0
for all v 6= 0. One can also negate the intersection form to define −E8. Note that any simply-laced
Dynkin diagram yields some lattice. For example, E10 is unimodular of signature (1, 9), and it
turns out that E10 ∼= E8 ⊕H.

Definition 11.0.5 (Unimodular lattice II)
Take

IIa,a+8b :=
a⊕
i=1

H ⊕
b⊕

j=1
E8,

which is an even unimodular lattice since the diagonal entries are all −2, and using the fact
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that the signature is additive, is of signature (a, a+ 8b). Similarly,

IIa+8b,a :=
a⊕
i=1

H ⊕
b⊕

j=1
(−E8),

which is again even and unimodular.

Remark 11.0.6: Thus

• Ip,q is odd, unimodular, of signature (p, q).
• IIp,q is even, unimodular, of signature (p, q) only for p ≡ q (mod 8).

Theorem 11.0.7(Serre).
Every unimodular lattice which is not positive or negative definite is isomorphic to either Ip,q
or IIp,q with 8

∣∣ p− q.
Remark 11.0.8: So there are obstructions to the existence of even unimodular lattices. Other
than that, the number of (say) positive definite even unimodular lattices is

Dimension Number of Lattices

8 1: E8
16 2: E⊕2

8 , D+
16

24 24: The Neimeir lattices (e.g. the Leech lattice)
32 >8× 1016!!!!

Note that the signature of a definite lattice must be divisible by 8.

Remark 11.0.9: There is an isometry: f : E8 → E8 where f ∈ O(E8), the linear maps preserving
the intersection form (i.e. the Weyl group W (E8), given by v 7→ v+ (v, ei)ei. The Leech lattice also
shows up in the sphere packing problems for dimensions 2, 4, 8, 24. See Hale’s theorem / Kepler
conjecture for dimension 3! This uses an identification of L as a subset of Rn, namely L⊗ZR ∼= R24

for example, and the map L ↪→ (R24, ·) is an isometric embedding into Rn with the standard form.
Connection to classification of Lie groups: root lattices.

Remark 11.0.10: IfM4 is a compact oriented 4-manifold and if the intersection form on H2(M ;Z)
is indefinite, then the only invariants we can extract from that associated lattice are

• Whether it’s even or odd, and
• Its signature

If the lattice is even, then the signature satisfies 8
∣∣ p− q. So Poincaré duality forces unimodularity,

and then there are further number-theoretic restrictions. E.g. this prohibits β2 = 7, since then the
signature couldn’t possibly be 8 if the intersection form is even.
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E 11.1 Characteristic Classes e

Definition 11.1.1 (Classifying space)
Let G be a topological group, then a classifying space EG is a contractible topological space
admitting a free continuous G-action with a “nice” quotient.

Remark 11.1.2: Thus there is a map EG→ BG := EG/G which has the structure of a principal
G-bundle.

EG

pG-orbits

BG

G · p ∼ G
g · p
 g

Here we use a point p depending on U in an orbit to identify orbits g ·p with g, and we want to take
transverse slices to get local trivializations of U ∈ BG. It suffices to know where π−1(U) ∼= U ×G,
and it suffices to consider U × {e}. Moreover, EG→ BG is a universal principal G-bundle in the
sense that if P → X is a universal G-bundle, there is an f : X → BG.

P EG

X BG
f

Link to Diagram

Here bundles will be classified by homotopy classes of f , so{
Principal G-bundles/X

}

 [X,BG].

4! Warning 11.1.3
This only works for paracompact Hausdorff spaces! The line R with the doubled origin is a
counterexample, consider complex line bundles.
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Revisit this last section, had to clarify a few things for myself!

12 Monday, February 08

Last time: BG and EG. See Milnor and Stasheff.

Example 12.0.1(?): Let G := GLn(R) = R×, then we can take

EG = R∞ :=
{

(a1, a2, · · · )
∣∣∣ ai ∈ R, ai�0 = 0, ai not all zero

}
.

Then R× acts on EG by scaling, and we can take the quotient R∞ \ {0} /R×, where a ∼ λa for all
λ ∈ R×. This yields RP∞ as the quotient. You can check that EG is contractible: it suffices to show
that S∞ :=

{∑
|ai| = 1

}
is contractible. This works by decreasing the last nonzero coordinate

and increasing the first coordinate correspondingly. Moreover, local lifts exist, so we can identify
RP∞ ∼= BR× = BG. Similarly BC× ∼= CP∞ with EC× := C∞ \ {0}.

Example 12.0.2(?): Consider G = GLn(R). It turns out that BG = Gr(d,R∞), which is the set
of linear subspaces of R∞ of dimension d. This is spanned by d vectors {ei} in some large enough
RN ⊆ R∞, since we can take N to be the largest nonvanishing coordinate and include all of the
vectors into R∞ by setting a>N = 0. For any L ∈ Grd(R∞), since Rd has a standard basis, there is
a natural GLd torsor: the set of ordered bases of linear subspaces. So define

EG := {bases of linear subspaces L ∈ Grd(R∞)} ,

then any A ∈ GLd(R) acts on EG by sending (L, {ei}) 7→ (L, {Lei}). We can identify EG as
d-tuples of linearly independent elements of R∞, and there is a map

EG→ BG

{ei} 7→ spanR {ei} .

Thus there is a universal vector bundle over BGLd:

EL := L E

BGLd

So E ⊆ BGLd × R∞, where we can define E :=
{

(L, p)
∣∣∣ p ∈ L}. In this case, EG = Frame(E) is

the frame bundle of this universal bundle. The same setup applies for G := GLd(C), except we take
Grd(C∞).
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Example 12.0.3(?): Consider G = Od, the set of orthogonal transformations of Rd with the
standard bilinear form, and Ud the set of unitary such transformations. To be explicit:

Ud :=
{
A ∈ Mat(d× d,C)

∣∣∣ 〈Av, Av〉 = 〈v, v〉
}
,

where

〈[v1, · · · , vn], [v1, · · · , vn]〉 =
∑
|vi|2.

Alternatively, AtA = I for Od and AtA = I for Ud. In this case, BOd = Grd(R∞) and BUd =
Grd(C∞), but we’ll make the fibers smaller: set the fiber over L to be

(EOd)L := {orthogonal frames of L}

and similarly (EUd)L the unitary frames of L. That there are related comes from the fact that GLd
retracts onto Od using the Gram-Schmidt procedure.

Remark 12.0.4: Recall that there is a bijective correspondence{
Principal G- bundles

on X

}

 [X,BG]

and there is also a correspondence{
Principal GLd -bundles

on X

}


{

Principal Od-bundles
on X

}
Using the associated bundle construction, on the LHS we obtain vector bundles E → X of rank d,
and on the RHS we have bundles with a metric. In local trivializations U ×Rd → Rd, the metric is
the standard one on Rd. This is referred to as a reduction of structure group, i.e. a principal
GLd bundle admits possibly different trivializations for which the transition functions lie in the
subgroup Od.

Example 12.0.5(?): Given any trivial principal G-bundle, it has a reduction of structure group
to the trivial group. But the fact that the bundle is trivial may not be obvious.
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Remark 12.0.6: We want to compute H∗(BUd;Z). Why is this important? Given any complex
vector bundle E → X there is an associated principal Ud bundle by choosing a metric, so we get
a homotopy class [X,BUd]. Given any f ∈ [X,BUd] and any α ∈ Hk(BUd;Z), we can take the
pullback f∗α ∈ Hk(X;Z), which are Chern classes.

Exercise 12.0.7 (?)
Show that H∗(BUd;Z) stabilizes as d → ∞ to an infinitely generated polynomial ring
Z[c1, c2, · · · ] with each ci in cohomological degree 2i, so ci ∈ H2i(BUd,Z).

Definition 12.0.8 (Chern class)
There is a map BUd−1 → BUd, which we can identify as

Grd−1(C∞)→ Grd(C∞)
{v1, · · · , vd−1} 7→ span {(1, 0, 0, · · · ), sv1, · · · , svd−1} .

This is defined by sending a basis where s : C∞ → C∞ is the map that shifts every coordinate
to the right by one.
Question: does Grd(C∞) deformation retract onto the image of this map?

This will yield a fiber sequence

S2d−1 → BUd−1 → BUd

and using connectedness of the sphere and the LES in homotopy this will identify

H∗(BUd) = H∗(BUd−1)[cd] where cd ∈ H2d(BUd).

The Chern class of a vector bundle E , denoted ck(E), will be defined as the pullback f∗ck.

13 Wednesday, February 10

Theorem 13.0.1(Stable cohomology of BOn).
As n→∞, we have

H∗(BOn,Z/2Z) = Z/2Z[w1, w2, · · · ] wi ∈ H i.

Definition 13.0.2 (Stiefel-Whitney class)
Given any principal On-bundle P → X, there is an induced map X f−→ BOn, so we can pull
back the above generators to define the Stiefel-Whitney classes f∗wi.

Remark 13.0.3: If P := OFrameTX, then f∗w1 measures whetherX has an orientation, i.e. f∗w1 =
0 ⇐⇒ X can be oriented. We also have f∗wi(P ) = wi(E) where P = OFrame(E). In general, we’ll
just write wi for Stiefel-Whitney classes and ci for Chern classes.
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Definition 13.0.4 (Pontryagin Classes)
The Pontryagin classes of a real vector bundle E are defined as

pi(E) = (−1)ic2i(E ⊗R C).

Note that the complexified bundle above is a complex vector bundle with the same transition
functions as E , but has a reduction of structure group from GLn(C) to GLn(R).

Observation 13.0.5
RP∞ and CP∞ are examples of K(π, n) spaces, which are the unique-up-to-homotopy spaces defined
by

πkK(π, n) =
{
π k = n

0 else.

Theorem 13.0.6(Brown Representability).

Hn(X;π) ∼= [X,K(π, n)].

Example 13.0.7(?):

[X,RP∞] ∼= H1(X;Z/2Z)
[X,CP∞] ∼= H2(X;Z).

Proposition 13.0.8(Classification of complex line bundles).
There is a correspondence

{Complex line bundles}
 [X,CP∞] = [X,BC×]
 H2(X;Z)

Importantly, note that for X ∈ MfdC, H2(X;Z) measures smooth complex line bundles and
not holomorphic bundles.

Proof (of proposition).
We’ll take an alternate direct proof. Consider the exponential exact sequence on X:

0→ Z → O exp−−→ O×.

Note that Z consists of locally constant Z-valued functions, O consists of smooth functions,
and O× are ???.
Can’t read screenshot! :(

This yields a LES in homology:
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H0(X;Z) H0(X;O) H0(X;O×)

H1(X;Z) H1(X;O) H1(X;O×)

H2(X;Z) H2(X;O) H2(X;O×)

Link to Diagram
Since O admits a partition of unity, H>0(X;O) = 0 and all of the red terms vanish. For
complex line bundles L, H1(X,O×) ∼= H2(X;Z). Taking a local trivialization L|U ∼= U × C,
we obtain transition functions

tUV ∈ C∞(U ∩ V,GL1(C))

where we can identify GL1(C) ∼= C×. We then have

(tUij ) ∈
∏
i<j

O×(Ui ∩ Uj) = C1(X;O×).

Moreover, (
tUij t

−1
Uik
tUjk

)
i,j,k

= ∂(tUij )i,j = 0,

since transitions functions satisfy the cocycle condition. So in fact (tUij ) ∈ Z1(X;O×) =
ker ∂1, and we can take its equivalence class [(tUij )] ∈ H1(X;O×) = ker ∂1/ im ∂0. Changing
trivializations by some si ∈

∏
i

O×(Ui) yields a composition which is a different trivialization

of the same bundle:

L|Ui Ui × C Ui × Chi ·si

Link to Diagram
So the (tUij change exactly by an ∂0(si). Thus the following map is well-defined:

L 7→ [(tUij )] ∈ H1(X;O×).

There is another construction of the map

{L} → H2(X;Z)
L 7→ c1(L).

Take a smooth section of L and s ∈ H0(X;L) that intersects an O-section of L transversely.
Then

V (s) :=
{
x ∈ X

∣∣∣ s(x) = 0
}

is a submanifold of real codimension 2 in X, and c1(L) = [V (s)] ∈ H2(X;Z).
�
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Theorem 13.0.9(Splitting Principle for Complex Vector Bundles).

1. Suppose that E =
r⊕
i=1

Li and let c(E) :=
∑

ci(E . Then

c(E) =
r∏
i=1

(1 + ci(Li)) .

2. Given any vector bundle E → X, there exists some Y and a map Y → X such that

f∗ : Hk(X;Z) ↪→ Hk(Y ;Z) is injective and f∗E =
r⊕
i=1

Li.

Slogan 13.0.10
To verify any identities on characteristic classes, it suffices to prove them in the case where E splits
into a direct sum of line bundles.

Example 13.0.11(?):

c(E ⊕ F) = c(E)c(F).

To prove this, apply the splitting principle. Choose Y, Y ′ splitting E , E ′ respectively, this produces
a space Z and a map f : Z → X where both split. We can write

f∗E =
⊕

Li c(f∗E) =
∏

(1 + c1(Li))

f∗F =
⊕

Mj c(f∗E) =
∏

(1 + c1(Mj)) .

We thus have

c(f∗E ⊕ f∗F) =
∏

(1 + c1(Li)) (1 + c1(Mj))
= c(f∗E)c(f∗F),

and f∗(c(E ⊕ F) = f∗(c(E)c(F)). Since f∗ is injective, this yields the desired identity.

Example 13.0.12(?): We can compute c(Sym2 E), and really any tensorial combination involving
E , and it will always yield some formula in the ci(E).

14 Friday, February 12

Remark 14.0.1: Last time: the splitting principle. Suppose we have E = L1 ⊕ · · · ⊕ Lr and let

xi := ci(Li). Then ck(E) is the degree 2k part of
r∏
i=1

(1 + xi) where each xi is in degree 2. This is

equal to ek(x1, · · · , xr) where ek is the kth elementary symmetric polynomial.
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Example 14.0.2(?): For example,

• e1 = x1 + · · ·xr.

• e2 = x1x2 + x1x3 + · · · =
∑
i<j

xixj

• e3 =
∑
i<j<k

xixjxk, etc.

Remark 14.0.3: The theorem is that any symmetric polynomial is a polynomial in the ei. For
example, p2 =

∑
x2
i can be written as e2

1− 2e2. Similarly, p3 =
∑

x3
i = e3

1− 3e1e2− 3e3 Note that
the coefficients of these polynomials are important for representations of Sn, see Schur polynomials.

Remark 14.0.4: Due to the splitting principle, we can pretend that xi = ci(Li) exists even when
E doesn’t split. If E → X, the individual symbols xi don’t exist, but we can write ’

x3
1 + · · ·+ x3

r = e3
1 − 3e1e2 − 3e3 := c1(E)3 + 3c1(E)c2(E) + · · · ,

which is a well-defined element of H6(X;Z). So this polynomial defines a characteristic class of E ,
and this can be done for any symmetric polynomial. We can change basis in the space of symmetric
polynomials to now define different characteristic classes.

Definition 14.0.5 (Chern Character)
The Chern character is defined as

ch(E) :=
r∑
i=1

exi ∈ H∗(X;Q)

:=
r∑
i=1

∞∑
k=0

xki
k!

=
∞∑
k=0

pk(x1, · · · , xr)
k!

= rank(E) + c1(E) + c1(E)− c2(E)
2! + c1(E)3 − 3c1(E)c2(E)− 3c3(E)

3! + · · ·

∈ H0 +H2 +H4 +H6

= ch0(E) + ch1(E) + ch2(E) + · · · ,
chi(E) ∈ H2i(X;Q).

Definition 14.0.6 (Total Todd class)
The total Todd class

td(E) :=
r∏
i=1

xi
1− e−xi .
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Note that

xi
1− e−xi = 1 + xi

2 + x2
i

12 + x4
i

720 + · · · = 1 + xi
2 +

∞∑
i=1

(−1)i−1Bi
(2i)! x2i.

where L’Hopital shows that the derivative at xi = 0 exists, so it’s analytic at zero and the
expansion makes sense, and the Bi are Bernoulli numbers.

Remark 14.0.7(Very important and useful!!): ch(E ⊕ F) = ch(E) + ch(F) and ch(E ⊗ F) =∑
i,j

exi+yj = ch(E) ch(F) using the fact that c1(L1⊗L2) = c1(L1)c1(L2). So ch is a “ring morphism”

in the sense that it preserves multiplication ⊗ and addition ⊕, making the Chern character even
better than the total Chern class.

Definition 14.0.8 (Todd Class)
Let X ∈ MfdC, then define the Todd class of X as tdC(X) := td(TX) where TX is viewed
as a complex vector bundle. If X ∈ MfdR, define tdR = td(TX ⊗R C).

E
14.1 Section 5: Riemann-Roch and

Generalizations
e

Remark 14.1.1: Let X ∈ Top and let F be a sheaf of vector spaces. Suppose hi(X;F) :=
dimH i(X;F) <∞ for all i and is equal to 0 for i� 0.

Definition 14.1.2 (Euler Characteristic of a Sheaf)
The Euler characteristic of F is defined as

χ(X;F) := χ(F) :=
∞∑
i=0

(−1)ihi(X;F).

4! Warning 14.1.3
This is not always well-defined!

Example 14.1.4(?): Let X ∈ Mfdcpt and take F := R, we then have

χ(X;R) = h0(X;R)− h1(X;R) + · · · = b0 − b1 + b2 − · · · := χTop(X).

Example 14.1.5(?): Let X = C and take F := O := Oholo the sheaf of holomorphic functions.
We then have h>0(X;O) = 0, but H0(X;O) is the space of all holomorphic functions on C, making
dimC h

0(X;O) infinite.

Example 14.1.6(?): Take X = P1 with O as above, h0(P1;O) = 1 since P1 is compact and the
maximum modulus principle applies, so the only global holomorphic functions are constant. We
can write P1 = C1 ∪C2 as a cover and hi(C,O) = 0, so this is an acyclic cover and we can use it to
compute h1(P1;O) using Čech cohomology. We have
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• C0(P1;O) = O(C1)⊕O(C2)

• C1(P1;O) = O(C1 ∩ C2) = O(C×).

• The boundary map is given by
∂0 : C0 → C1

(f(z), g(z)) 7→ g(1/z)− f(z)
and there are no triple intersections.

Is every holomorphic function on C× of the form g(1/z)− f(z) with f, g holomorphic on C. The
answer is yes, by Laurent expansion, and thus h1 = 0. We can thus compute χ(P1;O) = 1− 0 = 1.

15 Monday, February 15

Remark 15.0.1: Last time: we saw that χ(P1,O) = 1, and we’d like to generalize to holomorphic
line bundles on a Riemann surface. This will be the main ingredient for Riemann-Roch.

Theorem 15.0.2(Euler characteristic and homological vanishing for holomorphic
vector bundles).
Let X ∈ MfdC be compact and let F be a holomorphic vector bundle on X a Then χ is
well-defined and

h>dimCX(X;F) = 0.
aOr more generally a finitely-generated O-module, i.e. a coherent sheaf.

Remark 15.0.3: The locally constant sheaf C is not an O-module, i.e. C(U) 6∈ O(U)-Mod. In fact,
h2i(X,C) = C for all i.

Proof (of theorem).
We’ll can resolve F as a sheaf by first mapping to its smooth sections and continuing in the
following way:

0→ F → C∞F ∂−→ F ⊗A0,1 → · · · ,

where ∂f =
∑
i

∂f

∂zi
dzi. Suppose we have a holomorphic trivialization of F|U ∼= O

⊕r
U and we

have sections (s1, · · · , sr) ∈ C∞F(U), which are smooth functions on U . In local coordinates
we have

∂s := (∂s1, · · · , ∂sr),

but is this well-defined globally? Given a different trivialization over V ⊆ X, the si are related
by transition functions, so the new sections are tUV (s1, · · · , sr) where tUV : U ∩ V → GLr(C).
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Since tUV are holomorphic, we have

∂(tUV (s1, · · · , sr)) = tUV ∂(s1, · · · , sr).

This makes ∂ : C∞F → F ⊗A0,1 a well-defined (but not O-linear) map. We can thus continue
this resolution using the Leibniz rule:

0→ F → C∞F ∂−→ F ⊗A0,1 ∂−→ · · ·F ⊗A0,2 ∂−→ · · · ,

which is an exact sequence of sheaves since (A0,−, ∂) is exact.
Why? Split into line bundles?

We can identify C∞F = F ⊗A0,0, and F ⊗A0,q is a smooth vector bundle on X. Using
partitions of unity, we have that F ⊗A0,q is acyclic, so its higher cohomology vanishes, and

H i(X;F) ∼=
ker(∂ : F ⊗A0,i → F ⊗A0,i+1

im(∂ : F ⊗A0,i−1 → F ⊗A0,i .

However, we know that A0,p = 0 for all p > n := dimCX, since any wedge of p > n forms
necessarily vanishes since there are only n complex coordinates.

�

4! Warning 15.0.4
This only applies to holomorphic vector bundles or O-modules!

E 15.1 Riemann-Roch e

Theorem 15.1.1(Riemann-Roch).
Let C be a compact connected Riemann surface, i.e. C ∈ MfdC with dimC(C) = 1, and let
L → C be a holomorphic line bundle. Then

χ(C,L) = deg(L) + (1− g) where deg(L) :=
∫
C
c1(L)

and g is the genus of C.

Proof (of Riemann-Roch).
We’ll introduce the notion of a “point bundle”, which are particularly nice line bundles, denoted
O(p) for p ∈ C.
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C

p

D :=
z ∈ C

∣∣∣∣∣∣∣∣∣∣ |z| ≤ 1


U
V = C \ U

Taking D to be a disc of radius 1/2 and V to be its complement, we have tuv(z) = z−1 ∈
O∗(U∩V ). We can take a holomorphic section sp ∈ H0(C,O(p)), where sp|U = z and sp|V = 1.
Then tuv(sp|U ) = sp|V on the overlaps. We have a function which precisely vanishes to first
order at p. Recall that c1(O(p)) is represented by [V (s)] = [p], and moreover

∫
C
c1(O(p)) = 1.

We now want to generalize this to a divisor: a formal Z-linear combination of points.
Example 15.1.2(?): Take p, q, r ∈ C, then a divisor can be defined as something like D :=
2[p]− [q] + 3[r].
Define O(D) :=

⊗
i

O(pi)⊗ni for any D =
∑

ni[pi]. Here tensoring by negatives means taking

duals, i.e. O(−[p]) := O⊗−1 := O(p)∨, the line bundle with inverted transition functions. O(D)
has a meromorphic section given by

sD :=
∏

snipi ∈ Mero(C,O(D))

where we take the sections coming from point bundles. We can compute∫
C
c1(O(D)) =

∑
ni := deg(D).

.
Example 15.1.3(?):

deg(2[p]− [q] + 3[r]) = 4.

Remark 15.1.4: Assume our line bundle L is O(D), we’ll prove Riemann-Roch in this case
by induction on

∑
|ni|. The base case is O, which corresponds to taking an empty divisor.

Then either
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• Take D = D0 + [p] with deg(D0) <
∑
|ni| (for which we need some positive coefficient),

or
• Take D0 = D + [p].

Claim: There is an exact sequence

0→ O(D0)→ O(D)→ Cp → 0
s ∈ O(D0)(U) 7→ s · sp ∈ O(D0 + [p])(U),

where the last term is the skyscraper sheaf at p.

Proof (of claim).
The given map is O-linear and injective, since sp 6= 0 and ssp = 0 forces s = 0. Recall
that we looked at O ·z−→ O on C, and this section only vanishes at p (and to first order).
The same situation is happening here.

�

Thus there is a LES

0

H0(O(D0)) H0(O(D)) H0(O(Cp))

H1(O(D0)) H1(O(D)) H1(O(Cp)) = 0

0

Link to Diagram
We also have h1(Cp) = 0 by taking a sufficiently fine open cover where p is only in one open
set. So just checking Čech cocycles yields C1

U (C,Cp) :=
∏
i<j

Cp(Ui ∩ Uj) = 0 since p is in no

intersection.
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p

X

We obtain χ(O(D) = χ(O(D0)) + 1, using that it is additive in SESs

0→ E1 → E2 → E3 → 0 =⇒ χ(E2) = χ(E∞) + χ(E3)

and thus ∫
C
c1(O(D)) =

∑
ni = deg(D) = degD0 + 1.

The last step is to show that χ(C,O) = 1− g, so just define g so that this is true!
�

Remark 15.1.5: Why is every L ∼= O(D) for some D? Easy to see if L has meromorphic sections:
if s is a meromorphic section of L, then the following works:

D = Div(s) =
∑
p

Ordp(s)[p].

Then O ∼= L ⊗ O(−D) has a meromorphic section ss−D, a global nonvanishing section with
Div(ss−D) = ∅. Proving that every holomorphic line bundle has a meromorphic section is hard!
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E 16.1 Applications of Riemann-Roch e

Definition 16.1.1 (Curves)
A curve is a compact complex manifold of complex dimension 1.

Example 16.1.2(?): Let C be a curve, then Ω1
C is the sheaf of holomorphic 1-forms, and Ω>1

C = 0.
We also have the sheaves A1,0, A0,1, A1,1, the sheaves of smooth (p, q)-forms. Here the only nonzero
combinations are (0, 0), (0, 1), (1, 0), (1, 1) by dimensional considerations. Let L be a holomorphic
line bundle on C, then

χ(C,L) = h0(L)− h1(L) = deg(L) + 1− g.

Remark 16.1.3: In general it can be hard to compute h1(L), since this is sheaf cohomology
(sections over double overlaps, cocycle conditions, etc). On the other hand, h0 is easy to understand,
since h0(Ω1

C) is the dimension of the global holomorphic sections H0(C,L) = L(C). A key tool here
is the following:

16.1.1 Serre Duality

Proposition 16.1.4(Serre Duality).

H1(C,L) ∼= H0(C,L−1 ⊗ Ω1
C)∨,

noting that these are both global sections of a line bundle.

Proof (of Serre Duality).
Recall that we had a resolution of the sheaf L given by by smooth vector bundles:

0→ L ↪→ L⊗A0,0 ∂−→ L⊗A0,1 ∂−→ 0.

So we know that

H1(C,L) = H0(L⊗A0,1)/∂H0(L⊗A0,0).

Choose a Hermitian metric h on L, i.e. a map h : L ⊗ L → O. On fibers, we have hp :
Lp ⊗ Lp → C. We’ll also choose a metric on C, say g. Since C is a Riemann surface, we have
an associated volume form ν on C (essentially the determinant), so we can define a pairing
between sections of L⊗A0,0:

〈s, t〉 :=
∫
C
h(s, t) dν.
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Note that

〈s, s〉 =
∫
C
h(s, s) dν ≥ 0 since h(s, s)(p) = 0 ⇐⇒ sp = 0,

and moreover this integral is zero if and only if s = 0. So we have an inner product on
H0(L⊗A0,0). We can also define a pairing on sections of L⊗A0,1, say

〈s⊗ α, t⊗ β〉 =
∫
C
h(s, t)α ∧ β.

Note that h is a smooth function and α ∧ β is a (1, 1)-form. Moreover, this is positive and
nondegenerate. We want to understand the cokernel of the linear map

H0(L⊗A0,0) ∂−→ H0(L⊗A0,1).

To compute coker(∂), we can look at the kernel of the adjoint, and it suffices to find the
orthogonal complement of im(∂), i.e.

coker(∂) =
{
t ∈ H0(L⊗A0,1)

∣∣∣ 〈∂s, t〉 = 0∀s
}
.

So we want to understand sections t ∈ H0(L⊗A0,1) such that∫
C

(∂s)t = 0 ∀s ∈ H0(L⊗A0,0),

where ∂C = ∅. We’ll basically want to do integration by parts on this. Note that h(s, t) = hst
here where we view h as a certain section. Note that t ∈ H0(L ⊗ A1,0), so we can replace ∂
with d = ∂ + ∂ and apply Stokes’ theorem:∫

C
sd(ht) = 0 ∀s ∈ H0(L⊗A0,0)

0 =
∫
C
s∂(ht)

=
∫
C
s
∂(ht)
dν

dν

=
〈
s,

∂(ht)
dν

〉

16.1 Applications of Riemann-Roch 63



17 Monday, February 22

where h ∈ C∞(L−1⊗L−1) and ht ∈ C∞(L−1⊗A1,0). But the right-hand side is in H0(L⊗A0,0)
and by nondegeneracy we can conclude

∂(ht)
dν

= 0 ⇐⇒ ∂(ht) = 0.

We thus have ht ∈ H0(L−1⊗A1,0 which is a holomorphic line bundle tensored with A0,0. Thus
coker(∂) ∼=h H

0(L−1 ⊗ Ω1).
�

Remark 16.1.5: We showed
〈
∂s, t

〉
= 〈s, Y (t)〉 where Y is the adjoint given above. Then the

kernel of Y wound up being where ∂ vanishes, i.e. holomorphic sections of a separate bundle. Here
we had

• t ∈ H0(L⊗A0,1)
• t ∈ H0(L⊗A1,0)
• h ∈ H0(L−1 ⊗ L−1)

17 Monday, February 22

Remark 17.0.1: Last time: Serre duality, and we’ll review Riemann-Roch. Recall that this
depended on the statement that every holomorphic line bundle L→ C for C a complex curve is of
the form L = O(D) for some divisor D. Then

χ(C,L) = h0(L)− h1(L) = degL+ 1− g, degL =
∫
C
c1(L),

Serre duality said that the space of sections H1(C;L) is naturally isomorphic to H0(C,L−1⊗Ω1
C)∨.

Notation: given X ∈ MfdnC of complex, dimension n, the canonical bundle is written KX := Ωn
X

and is the sheaf of holomorphic n-forms. Serre duality will generalize: if E → X is a holomorphic
vector bundle, then H i(X; E) ∼= Hn−i(X; E∨⊗KX)∨. Note that only H0, H1 are the only nontrivial
degrees for a curve. For 4-manifolds, we’ll have an H2 as well.

E 17.1 Applications of Riemann-Roch e

Proposition 17.1.1(The 2-sphere has a unique complex structure).
There is a unique complex X ∈ MfdC diffeomorphic to S2.

Proof (of proposition).
Note existence is clear, since we can take CP1 := (C2 \ {0})/x ∼ λx for λ ∈ C×, which
is identified as the set of complex lines through 0 in C2. This decomposes as C ∪ C =
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{[1, ∗]}∪{[∗, 1]}. We now want to show that any two such complex manifolds are biholomorphic.
Let X ∈ Mfd1

C with X ∼=C∞ S2, and consider for p ∈ X the point bundle O(p) → X. The
defining property was that there exists a section sp ∈ H0(X;O(p)) which vanishes at first
order at p:

X z

We have

χ(X;O(p)) = degO(p) + 1− g(x) = 1 + 1− 0 = 2.

Exercise (?)
Check that degO(p) = 1.

On the other hand we have

χ(X;O(p)) = h0(O(p))− h1(O(p)).

We have h1(O(p)) = H60(K ⊗O(−p), and KX = Ω1
X = T∨X, so the question is: what is the

degree of TX for X ∼= S2? We need to compute
∫
X
c1(TX). How many zeros does a vector

field on the sphere have? You can take the gradient vector field for a height function to get 2,
noting that the two zeros come in with a positive orientation
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In coordinates on CP1, the coordinate is given by z and z
∂

∂z
7→ −2 ∂

∂w
for the coordinate

w = 1/z. We get
∫
X
c1(TX) = 2 and thus degKX = −2 by dualizing.

Fact
degKX = 2g − 2. Use the existence of a smooth vector field on X.

Lemma 17.1.4(When h0 of a line bundle on a curve vanishes).
If degL < 0 on C, thne h0(C,L) = 0.
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Proof (of lemma).
If s ∈ H0(C,L) is nonzero, then since s is a holomorphic section,

0 ≤
∑
p∈C

OrdP (s) = degL.

�

By this lemma, h1(O(p)) = 0. We have H0(X;O(p)) = Csp⊕Cs for our specific section sp and
some other section s 6= λsp. Note that s/sp is a meromorphic section of O(p)×O(−p) = O,
so we have a map

ϕ : s
sp

: X → P1.

Note that P 7→ ∞ ∈ P1 under this ϕ, and it’s only the ratio that is well-defined. We have
ϕ−1(u) = {s/sp = u} = {s− usp = 0} which is a single point. So ϕ is a degree 1 map, and X
is biholomorphic to P1 via ϕ.

�

Remark 17.1.5: So there is only one genus 0 Riemann surface. What about genus 1?

C

g(C) = 1
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By Riemann-Roch we know

χ(C;O) = degO + l − 1 = 0 = h0(O)− h1(O).

We know h0(O) = 1 by the maximum modulus principle and h1(C;O) = 1. By Serre duality,
h0(C,K) = 1, and since degK = 2g − 2 = 0. So let s ∈ H0(C,K) by a nonzero section, which
we know exists. We then get Ordps = 0 for all p, so s vanishes nowhere. But then we get an
isomorphism of sheaves, since s everywhere nonvanishing implies trivial cokernel:

O ·s−→ K.

So KC = OC if g(C) = 1, and such a Riemann surface is an elliptic curve.

Example 17.1.6(?): Let C := C/Λ for Λ some lattice.

λ

Embedded neighborhood

All transition functions are of the form z 7→ z + λ for some λ ∈ Λ. What is a nonvanishing section
of KC , i.e. a holomorphic one form ω := f(z)dz on C that descends to C/Λ. We would need
f(z)dz = f(z + λ)d(z + λ) for all λ. Something like f = 1 works, so ω = dz descends. In fact, f
must be constant, since H0(C/Λ,O) = C dz by the maximum modulus principle. Now let p, q ∈ C
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and apply Riemann-Roch to the line bundle O(p+ q) yields

χ(O(p+ q)) = h0(O(p+ q))− h1(O(−p− q))
= h0(O(p+ q))− 0
= degO(p+ q) + 1− 1
= 2.

Thus there is a section sp+q ∈ H0(O(p+ q)) 3 s that vanishes at p+ q, and similarly a map

s

sp+q
: C ϕ−→ P1.

We can check ϕ−1(∞) = p+ q and degϕ = 2. Thus genus 1 surfaces have a generically 2-to-1 map
to P1.
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Figure 2: image_2021-02-25-20-41-53

Note that homothetic lattices define an isomorphism between the elliptic curves, and lattices mod
homothety are in correspondence of elliptic curves. By acting PGL2(C) y P1 since GL2 acts
on lines since scaling an element fixes a line. This is dimension 3. So elliptic curves are also
in correspondence with

{
4 points on P1

}
/PGL2(C) since this is now dimension 1. Note that by

applying homothety, the two basis vectors for a lattice can be rescaled so one is length 1 and the
other is a complex number τ , and we can identify this space with H/SL2(Z).
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Exercise 17.1.7 (?)
Show that any g(C) = 2 curve has a degree 2 map to P1.

Remark 17.1.8: Similarly g(C) = 3 are usually a curve of degree 4 in CP2. Severi proof in the
50s: false! issues with building moduli space for g ≥ 23. Need to use orbifold structure to take into
account automorphisms.

18 Wednesday, February 24

Last time:

χ(C,L) = h0(C,L)− h1(C,L)
= h0(C,L)− h0(C,L−1 ⊗KC)
= degL+ 1− g,

which is determined by purely topological information. We can generalize this to arbitrary ranks of
the bundle and arbitrary dimensions of manifold:

Theorem 18.0.1(Hirzebruch-Riemann-Roch (HRR) Formula).
Let X be a compact complex manifold and let E → X be a holomorphic vector bundle. Then

χ(E) =
∫
C

ch(E)td(X).

The constituents here:

• The Chern character, summed over R the Chern roots, which is in mixed cohomological
degree.

ch(E) :=
∑
xi∈R

exi = ch0(E) + ch1(E) + · · ·+ chi(E) ∈ H2i(X;Q).

• The Todd class, defined as

td(F ) :=
∏
xi∈R

xi
1− e−xi

where td(X) := td(TX) is viewed as a complex vector bundle, which is again in mixed
cohomological degree.

Remark 18.0.2: Note that integrating over cohomology classes in mixed degree is just equal to
the integral over the top degree terms. Applying this to X = C a curve and E := O, we obtain

χ(C,O) =
∫
C

ch(O)td(C).

We have
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• ch(O) = ec1(O) = e0 = 1

• td(C) := td(TC) = c1(TC)/(1−e−c1(TC)), whose Taylor coefficients are the Bernoulli numbers.
We can expand x/(1 − e−x) = 1 + (x/2) + (x2/12) − x4(720) + · · ·, and since terms above
degree 2 vanish, we have

· · · =
∫
C

1 +
(

1 + c1(TC)
2

)
=
∫
C

(
c1(TC)

2

)
= 1

2χTop(C) Chern-Gauss-Bonnet

= 2− 2g
2

= 1− g.

We thus obtain

χ(C,L) =
∫
C

ch(L)td(C)

=
∫
C

(1 + c1(L))
(

1 + c1(L)
2

)
=
∫
C
c1(L) + c1(TC)

2
= degL+ 1− g.

Remark 18.0.3: Note that this is a better definition of genus than the previous one, which was
just the correction term in Riemann-Roch. Here we can define it as g := h1/2.

Exercise 18.0.4 (?)
Try to state and prove a Riemann-Roch formula for vector bundles on curves.

Proposition 18.0.5(Formula for Euler characteristic of a line bundle on a complex
surface).
Let S be a compact complex surface, i.e. S ∈ Mfd2

C. An example might be C ×D for C,D
two complex curves, or CP2. Let L→ S be a holomorphic vector bundle. Then

χ(L) = χ(OS) + 1
2
(
L2 − L ·K

)
.

Note that L2 :=
∫
S
c1(L)c1(L) is just shorthand for taking the intersection of L with itself.

Recall that K := Ω2
S is the space of holomorphic top forms.

Proof (?).
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Let x1, x2 be the Chern roots of TS. By HRR, we have

χ(L) =
∫
S

ch(L)td(S)

=
∫
S

(
1 + c1(L) + c1(L)2

2!

)(
x1

1− e−x1

x2
1− e−x2

)

=
∫
S

(
1 + c1(L) + c1(L)2

2!

)(
1 + x1

2 + x2
1

12

)(
1 + x2

2 + x2
2

12

)

=
∫
S

(
1 + c1(L) + c1(L)2

2!

)(
1 + x1 + x2

2 + x2
1 + x2

2 + 3x1x2
12

)

=
∫
S

(
1 + c1(L) + c1(L)2

2!

)(
1 + c1(x1, x2)

2 + c1(x1, x2)2 + c2(x1, x2)
12

)

=
∫
S

(
1 + c1(L) + c1(L)2

2!

)(
1 + c1(T )

2 + c1(T )2 + c2(T )
2

)

=
∫
S

c1(L)2

2 + c1(L)c1(T )
2 + c1(T )2

2 + c2(T )
12 Take deg 4

=
∫
S

(
c1(L)2 + c1(L)c1(T )

2

)
+ χ(OS) HRR on last two terms.

where we’ve applied HRR to OS . It remains to show that c1(T ) = −c1(K). We have

K = Ω2
S =

∧2
T∨.

Note that
∧top

E := det(E) for any bundle E since this is a 1-dimensional bundle. We
have c1(T ) = −c1(T∨) since the Chern roots of T∨ are −x1,−x2. So it suffices to show
c1(T∨) = c1(K), but there is a general result that c1(E) = c1(det E). This uses the splitting

principle E =
r⊕
i=1

Li with xi = c1(Li). We have c1(E) =
∑

xi and det E =
r⊗
i=1

Li, so∑
xi = c1(L1 ⊗ · · · ⊗ Lr).

�

Remark 18.0.6: We want to use the following formula:

χ(S,L) = χ(OS) = 1
2(L2 − L ·K).

This requires knowing χ(OS). Applying HRR yields

χ(OS) =
∫
S

c1(T )2 + c2(T )
12

=
∫
S

(−c1(K))2 + c2(T )
12

=
K2 +

∫
S
c2(T )

12 ,
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so we just need to understand
∫
S
c2(T ). But for n = rank E , cn(E) (the top Chern class) is the

fundamental class of a zero locus of a section of E . Note that S ∈ Mfd4
R is oriented, so

∫
S
c2(T ) is

the signed number of zeros of a smooth vector field.

Figure 3: image_2021-02-25-20-42-49

Check.

Looking at the tangent bundle of the surface, the local sign of an intersection will be the number of
incoming directions (mod 2), i.e. the index of the critical point. Then the signed number of zeros
here yields 1− 6 + 1 = −4 = χTop(C). More generally, we have

χTop(Mn) =
∫
C
cn(TM),

the Chern-Gauss-Bonnet formula. We can thus write

χ(OS) = K2 + χTop(S)
12 .
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19 Friday, February 26

Remark 19.0.1: Last time: Riemann-Roch for surfaces, today we’ll discuss some examples. Recall
that if S ∈ Mfd2

C is closed and compact (noting that S ∈ Mfd4
R) and L→ S is a holomorphic line

bundle then

χ(S,L) = χ(OS) + 1
2(L2 − L ·K)

where K = c1(KS) for KS := Ω2
S the canonical bundle and L = c1(L). We also saw

χ(OS) = 1
12(K2 + χTop(S)),

where χTop is the Euler characteristic and is given by

χTop(S) = 2h0(S;C)− 2h1(S,C) + h2(S;C).

Example 19.0.2(?): Let S = CP2, which can be given in local coordinates by{
[x0 : x1 : x2]

∣∣∣ (x0, x1, x2) ∈ C3 \ {0}
}

where we only take equivalence classes of ratios [x, y, z] = [λx, λy, λz] for any λ ∈ C×. This
decomposes as

CP2 ∪ C ∪ {pt} = {[1 : x1 : x2]} ∪ {[0 : x1 : x2]} ∪ {[0 : 0 : 1]} ,

i.e. we take x0 6= 0, then x0 = 0, x1 6= 0, then x0 = x1 = 0. Note that

hi(CPn;Z) =
{
Z 0 ≤ i ≤ 2n even
0 else.

We can use this to conclude that χTop(CPn) = n + 1 and χTop(CP2) = 3. Over CPn we have a
tautological line bundle O(−1) given by sending each point to the corresponding line in Cn+1,
i.e. O(−1)→ CPn given by

λ(x0, · · · , xn) 7→ [x0 : · · · : xn].

Note that the total space is Bl
0

(Cn+1) is the blowup at zero, which separates the tangents at 0.

Remark 19.0.3: Let X be an algebraic variety, i.e. spaces cut out by polynomial equations, for
example {xy = 0} ⊆ C2 which has a singularity at the origin. A divisor is a Z-linear combination
of subvarieties of codimension 1. Note that for a curve X, this recovers the definition involving
points. For D a divisor on X, we associated a bundle OX(D) which had a meromorphic section
with a zero/pole locus whose divisor was precisely D.

Recall the construction: we chose a point, then a trivializing neighborhood where the transition
functions where V .
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tUV = z

On annulus:

V

D = pt

For a higher dimensional algebraic variety or complex manifold, for D a complex submanifold, pick
a chart around a point that the nearby portion of D to a coordinate axis in Cn, which e.g. can be
given by {z1 = 0}.

As before there’s a distinguished section sD ∈ H0(X;OX(D)) vanishing along D. Note that a
line bundle is a free rank 1 O-module, and analogously here the functions vanishing along D are
O-modules generated by (here) z1.

Definition 19.0.4 (Hyperplane)
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A hyperplane in CPn is any set of the form

H =
{

[x0 : · · · : x1]
∣∣∣ ∑ aixi = 0

}
∼= CPn−1.

Example 19.0.5(?): Take CPn−1 ⊆ CPn, e.g. {x0 = 0}. This is an example of a divisor on CPn,
i.e. a complex codimension 1 “submanifold”. We can take the line bundle constructed above to
get OCPn(CPn−1) which vanishes along CPn−1. More generally, for any hyperplane H we can take
OCPn(H), and these are all isomorphic, so we’ll denote them all by OCPn(1). The implicit claim is
that is the inverse line bundle of the tautological bundle, so O(1)⊗O(−1) is the trivial bundle since
the transition functions are given by reciprocals and multiplying them yields 1. We can classify
complex line bundles on CPn using the SES

0→ Z→ O exp−−→ O× → 1.

We know thatH1(X;O×) were precisely holomorphic line bundles, since they were functions agreeing
on double overlaps with a cocycle condition. We have a LES coming from sheaf cohomology:

· · ·

H1(X;O) H1(X;O) H1(X;O×)

H2(X;O) · · ·

c1

Link to Diagram

Applying this to X := CPn, we have H1(O) = H2(O) = 0. This can be computed directly using
that CPn = ∪n≥1Cn by taking charts xi 6= 0, and this yields an acyclic cover. Thus c1 is an
isomorphism above, and Pic(CPn) ∼= Z, where Pic denotes isomorphism classes of line bundles. We
can identify Pic(CPn) =

{
OCPn(k)

∣∣∣ k ∈ Z
}
.

20 Monday, March 01

Remark 20.0.1: Last time: we defined Pic(CPn) as the set of line bundles on CPn.
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Definition 20.0.2 (Picard Group of a Manifold)
Given any X ∈ MfdC, define Pic(X) as the set of isomorphism classes of holomorphic line
bundles on X. This is an abelian group given by L⊗ L′ and inversion L→ L−1.

Remark 20.0.3: We saw that Pic(X) ∼= H1(X;O×) as groups, noting that H1 has a natural group
structure here. We defined a tautological bundle on CPn and saw it was isomorphic to O(−1),
and moreover O(H) ∼= O(1) for H a hyperplane. The fiber was given by

Taut→ CPn{
λ(x0, · · · , xn)

∣∣∣ λ ∈ C
}
7→ [x0 : · · · : xn],

i.e. the entire line corresponding to the given projective point. We also have O(H)(U) is the sect of
rational homogeneous functions ϕ on U of degree 1 such that Divϕ+H ≥ 0 where H := {x0 = 0}.
We want ϕ/x0 to be a well-defined function, so ϕ should scale like x0 in the sense that

ϕ(λx0, · · · , λxn) = λϕ(x0, · · · , xn).

Note that there is a natural map

Taut⊗O(H) −→ O,

given by taking the line over a point and evaluating the homogeneous function on that line. Thus
Taut is the inverse of O(H).

Remark 20.0.4: We want to understand what Noether’s formula says for CP2, which requires
understanding the canonical bundle KCPn . We’ll do this by writing down a meromorphic section ω
(since it’s a meromorphic volume form) which will yield KCPn = O(Divω). So take

ω := x−1
1 dx1 ∧ · · · ∧ x−1

n dxn,

noting that we leave out the first coordinate x0 and divide by coordinates to make this scale-
invariant. Here we work in a Cn chart of points of the form [1 : x1 : · · · : xn]. Where does ω have
poles? Along xi = 0 for any 1 ≤ i ≤ n, and similarly in any other coordinate chart. We also have a
1st order pole along x0 = 0. We then get

KCPn = O(Divω) = O(−H0 −H1 − · · · −Hn) = O(−n− 1),

where Hi = {xi = 0}.

Note that CPn is like a simplex:
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x0 = 0

x1 = 0
Applying this to CP2, we obtain

KCP2 = O(−3).

What is the intersection form? We know H2(CP2;Z) ∼= Z and the intersection form is unimodular.
So write Z := Zα for α some generator. Then α ·α = ±1 since detG = ±1 for the Gram matrix for
this to be unimodular. Note that (−α) · (−α) = ±1 with the same sign.

Claim: O(1) = O(H) generates Pic(CP2) = H2(CP2;Z).

This is because c1O(H) · c1O(H) = H ·H = {x0 = 0} t {x1 = 0} = {[0 : 0 : 1]} here we note that
the two hyperplanes can be oriented transversely and intersected. This is an oriented intersection.
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Recall Noether’s formula, which was HRR applied to O and the Chern-Gauss-Bonet theorem:

χ(O) = 1
12(K2 + χTop)

= h0(O)− h1(O) + h2(O)
= 1− 1 + 1
= 1.

The right-hand side can be written as

1
12 ((−3H) · (−3H) + 3) = 1

12(9 + 3) = 1.

Proposition 20.0.5(The 4-sphere has no complex structure).
S4 has no complex structure.

Proof (?).
We know that χTop(S4) = 2. If S4 had a complex structure, then c1(KS4) ∈ H2(S4;Z) = 0.
Thus would make K2

S4 = 0, and so

χ(OS4) = 1
12(0 + 2) = 1

6 6∈ Z,

which is a contradiction. E
�

Example 20.0.6(?): Consider CP2, a 4-manifold diffeomorphic to CP2 with the opposite orienta-
tion. What is the intersection form? Taking H ·H = −1 since the orientations aren’t compatible,
and more generally the Gram matrix is negated when the orientation is reversed.

Proposition 20.0.7(Barred projective 2-space is not orientably diffeomorphic to a
complex surface).
CP2 is not diffeomorphic to a complex surface by an orientation-preserving diffeomorphism
(or any homeomorphism).

Proof (?).
We have χTop = 3, and KCP2 = −c1(TCP2) = ±3H. Then

χ(O) = 1
12
(
K2

CP2 + χTop
)

= 1
12(−9 + 3) 6∈ Z.

�

Remark 20.0.8: Consider OCPn(d), what are its global sections H0(CPn,OCPn(d)). Locally we
have OCPn(d)(U) given by holomorphic functions in (x0, · · · , xn) ∈ π−1(U) where π : Cn+1 → CPn
and the functions satisfy f(λx) = λdf(x). The global sections will be the homogeneous degree d
polynomials in the coordinates of x.
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Remark 20.0.9: Why does a holomorphic function f : Cn+1 → C such that f(λx) = λdf(x)
necessarily a polynomial? Use the result that any such function with at most polynomial growth
is itself a polynomial. If f |S2d+1 is bounded by C, we have ‖f‖L2 ≤ C|x|2d. Since (∂x1 · · · ∂xk)df is
globally bounded k ≥ 2d, applying Liouville’s theorem makes it constant, and so a finite number of
derivatives kill f and this forces it to be polynomial.

Remark 20.0.10: So how many homogeneous degree d functions are there? Here h0(CPn,O(d)) =
will be the number of linearly independent degree d polynomials in the variables x0, · · · , xn, which

is
((
n+ 1
d

))
=
(
n+ d

n

)
, using the fact that monomials span this space.

Exercise 20.0.11 (?)
Using that h0(CP2;O(k)) = h2(CP2;O(−3−k)) by Serre duality and Riemann-Roch, compute
hi(CP2;O(k)) for all i, k.

Fact 20.0.12
hi(CPn;O(k)) = 0 unless i = 0, n.

21 Wednesday, March 03

Find first 5m.

Remark 21.0.1: When we considered CP2, we implicitly assumed TCP2 was a complex rank 2
vector bundle with some purported complex structure.

Claim:
c1(TCP2) = ±3H,

although it’s not clear that c1(K) ∈ H2(CP2;Z) ∼= (Z, [−1]).

Remark 21.0.2: We had χ(O) = 1
12
(
K2 + χTop

)
= 1

12(3− n2), and since 3− n2 ∈ 12Z, we have
n2 ∈ 3 + 12Z ⊂ 3 + 4Z and this forces n2 ≡ 3 (mod 4).

Definition 21.0.3 (Differential Complex)
Let

0→ E0 d0−→ E1 d1−→ · · · → En → 0

be a complex (so d2 = 0) of smooth vector bundles on a smooth manifold X im MfdC∞R . Suppose
that the di are differential operators, i.e. in local trivializing charts over U we have

E i ∼= O⊕riO⊕ri+1 ∼= E i+1
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where in every matrix coordinate, di is of the form
∑
|I|<N

gI∂I where ∂I := ∂i1 · · · ∂iN is a partial

derived and the gI are smooth functions.

Example 21.0.4(?): For X ∈ MfdC∞R , we can take

0→ O d−→ Ω1 d−→ Ω2 d−→ · · · .

In local coordinates,

• Ω1 is spanned over O by dx1, · · · , dxn where n = dimR(X)
• Ω2 is spanned over O by dxi ∧ dxj for 1 ≤ i, j ≤ n.

Then the component of d sending dxi → dxi ∧ dxj is of the form

fdxi 7→ −
∂f

∂xj
dxi ∧ dxj .

Example 21.0.5(?): For X ∈ MfdC and E → X a holomorphic vector bundle, take

E ⊗A0,0 ∂−→ E ⊗A0,1 ∂−→ E ⊗A0,2 → · · · .

This is because for si local holomorphic sections and ω a smooth form we have

∂ ((s1, · · · , sr)⊗ ω) = (s1, · · · , sr)⊗ ∂ω.

Definition 21.0.6 (Order of an operator)
The maximal N that appears in

∑
|I|≤N

gI∂I is the order.

Definition 21.0.7 (Symbol Complex)
The symbol complex is a sequence of vector bundles on T∨X. Noting that we have π :
T∨X → X, and using pullbacks we can obtain bundles over the cotangent bundle:

0→ π∗E0
σ(d0)−−−→ π∗E1

σ(d1)−−−→ · · · → π∗En → 0.

The symbol of the differential operator di is σ(di). It is defined by replacing ∂i in
∑
|I|=N

gI∂I

with yi where

yi : T∨U → R

is the coordinate function on the second factor of T∨U = U × Rn associated to the local
coordinate i. Using that TU = (T∨)∨U , we can view ∂i as functions on the cotangent bundle,
σ(di) is given in local trivializations by multiplication by a smooth function

∑
|I|=N

gIy
I .
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Example 21.0.8(?): Consider O d−→ Ω1. In local coordinates, this is given by d = (∂1, · · · , ∂n),
i.e. coordinate-wise differentiation, since we can write a local trivialization Ω1 = Odz1⊕ · · · ⊕Odzn.
Then the symbol of d is given by

σ(d) : π∗O → π∗Ω1

1 7→ (y1, · · · , yn),

thought of as vector bundles over T∨X, and this is projection onto to cotangent factor. Locally,
the image of 1 is given by y1dx1 + · · · yndxn, which is a point in Tp∨X for all (p, α) ∈ T∨X which is
an assignment to every point (p, α) ∈ Tp∨X a point in (π∗Ω1)p,α ∼= Tp

∨X. There is a tautological
section (p, α)→ α ∈ Tp∨X ∈ (π∗Ω1)p,α, or really (p, α) 7→ ((p, α), α).

Remark 21.0.9: See similarly to the canonical symplectic structure of the cotangent bundle.

Remark 21.0.10: More generally, for d : Ωp → Ωp+1, σ(d) acts on the frame dxi1 ∧ · · · dxip in the
following way:

σ(d)(dxi1 ∧ · · · ∧ dxip) =
∑
y

yydxj ∧ dxi1 ∧ · · · dxip

where

d : fdxi1 ∧ · · · ∧ dxip 7→
∑
j

∂f

∂xj
dxj ∧

(
dxi1 ∧ · · · ∧ dxip

)
.

The symbol complex is

π∗O σ(d)−−→ π∗Ω1 σ(d)−−→ π∗Ω2 → · · · → π∗Ωn → 0

for n the dimension. In this case, σ(d) has the same formula everywhere, since it’s C∞-linear:

σ(d) =
∑
j

yjdxj ∧ (· · ·) .

Definition 21.0.11 (Elliptic Complex)
A differential complex (E∗, d) is elliptic if the symbol complex (π∗E∗, σ(d)) is an exact sequence
of sheaves (importantly) on T∨X \ {sz} for sz the zero section.

Claim: (Ω∗, d) is elliptic. To check exactness of a sequence of vector bundles, it suffices to check
exactness on every fiber. Fix (p, α) ∈ T∨X \ {sz}, then

0→ C ∧α−−→ T∨pX
∧α−−→

2∧
Tp
∨X

∧α−−→
3∧
Tp
∨X → · · · .

Moreover, if α ∧ β = 0 implies that β = α ∧ γ for some γ, which implies that this sequence is exact.
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Remark 22.0.1: Recall that we set up a differential complex, whose objects were vector bundles
and differentials were differential operators (i.e. linear combinations of partial derivatives) in local
trivializations. We pulled back to tangent bundles (?) and defined the symbol of an operator, and
saw that when taking the symbol complex of the deRham complex. the sequence of maps was given
by wedging against a tautological one-form. This was an elliptic complex because the maps became
wedging with a covector.

Example 22.0.2(of an elliptic complex): LetX ∈ MfdC and E → X ∈ BunGLrC be holomorphic.
There is a resolution

0→ E i−→ E ⊗A0,0 ∂−→ E ⊗A0,1 ∂−→ · · · .

What is the symbol complex? Consider the projection π : T∨X → X, and use pullbacks to get a
sequence

0→ π∗E ⊗A0,0 σ(∂)−−−→ π∗E ⊗A0,1 σ(∂)−−−→ · · · .

Here the symbol σ(∂) replace ∂

∂tzi
with the corresponding function on T∨X, say yi. Then σ(∂) =∑

i

yi dzi ∧ (−) = α ∧ (−). As before, at a point (p, α) where α 6= 0 in T∨X, we get

0→ Ep
α∧(−)−−−−→ Ep ⊗

0,1∧
p

X
α∧(−)−−−−→ Ep ⊗

0,2∧
X → · · · ,

which is an exact sequence of vector spaces. So (E ⊗A0,p, ∂) is an elliptic complex.

Slogan 22.0.3
The symbol being exact is approximately the top-order part being nowhere-vanishing.

Remark 22.0.4: The next theorem computes the cohomology of an elliptic complex using Chern
and Todd classes.

Theorem 22.0.5(Atiyah-Singer Index Theorem).
If (E∗, d) is an elliptic complex of smooth vector bundles on a compact oriented X ∈ MfdnR,
then

χ(E∗, d) =
∑

(−1)i dim
(

ker di

im di−1

)
= (−1)(

dim(X)
2 )

∫
X

ch
eul(E∗)td(TX ⊗R C).

Remark 22.0.6: Here we define ch(E∗) :=
∑
i

(−1)i ch(E i). What does it mean to divide by the

Euler class? Let {xi,−xi} be the Chern roots of the complexified tangent bundle TX ⊗ C, then
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eul(X) :=
∏

xi is the product where we pick one of each of the Chern roots from each of the pairs.

The preferred sign to choose is the one for which
∫
X

∏
xi = χTop(X). Dividing just means to take

the Chern character, then if it’s divisible by
∏

xi, we do so. We have

td(TX ⊗ C) =
∏
i

(
xi

1− e−xi

)( −xi
1− e−xi

)
.

Thus
td(TX ⊗ C)

eul(X) =
∏
i

1
xi

(
xi

1− e−xi

)( −xi
1− e−xi

)
,

but note that this doesn’t necessarily make sense. However, all all computations we’ll see, there
will be enough cancellation to make this well-defined.

Exercise 22.0.7 (Chern character of the de Rham complex)
ch(Ω∗X ⊗ C) =

∏
i

(1− exi)(1− e−xi) for X ∈ Mfd2n
R even dimensional.

Example 22.0.8(?): Supposing X ∈ Mfd2
R is a genus g surface, we have

O → Ω1 ⊗ C→ Ω2 ⊗ C,

and ch(Ω∗) = ch(O)− ch(Ω1 ⊗ C) + ch(Ω2 ⊗ C). The Chern roots of TX ⊗ C are {xi,−xi}, which
come in pairs. So

ch(Ω∗) = 1− exi − exi + e−xi+xi = (1− e−xi)(1− exi).

From the theorem, we’re supposed to have

χ(Ω∗, d) = (−1)
n(n−1)

2

∫
X

∏
i(1− e−xi)(1− exi)∏n

i=1 xi

∏
i

(
xi

1− e−xi

)( −xi
1− e−xi

)

= (−1)
n(n−1)

2

∫
X

n∏
i=1

(−xi)

=
∫
X

∏
i

xi

= χTop(X) C-G-B.

Letting d = dimX = 2n, we have

(−1)n(−1)
d(d−1)

2 = (−1)n(−1)n(2n−1) = (−1)2n = 1.

Example 22.0.9(?): We can prove HRR using this theorem: we have

χ(X, E) = χ(E ⊗A0,−, ∂) ASIT=
∫
X

ch(E ⊗A0,−)
eul(X) td(TX ⊗R C).

We have ch(E ⊗A0,−) = ch(E) ch(A0,−) where ch(A0,1) =
∑
I

(−1)i ch(
i∧
A0,1). The Chern roots of
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• TX are {xi}

• A1,0 = T∨X are {−xi}

• A0,1 are {−xi}

So we obtain

χ(E) = (−1)n
∫
X

∏
(1− exi)∏

xi

∏
i

(
xi

1− e−xi

)( −xi
1− e−xi

)
=
∫
X

ch(E)
∏
i

xi
1− e−xi

=
∫
X

ch(E)td(TX),

which is HRR.

23 Monday, March 08

Remark 23.0.1: Recall that given a differential complex (E∗, d) we had a symbol complex (π∗E∗, σ(d))
where π : T∨X → X and

σ

 ∑
|I|≤N

fI∂I

 :=
∑
|I|=N

fIy
I ,

where we take the top-order differentials, ∂

∂xj
7→ yj and

T∨X → R

α 7→ α

(
∂

∂xj

)
.

We say that (E∗, d) is elliptic if the symbol complex is exact on T∨X \ {0} where we delete the
zero section. The Atiyah-Singer index theorem stated

χ(E∗, d) =
∫
X

ch(E∗)
eul(X)td(TX ⊗R C).

What’s the connection to elliptic operators? Given a 2-term complex

0→ E0 D−→ E1 → 0,

then D is an elliptic operator if this is an elliptic complex. This means the symbol complex is
an isomorphism, i.e.

0→ π∗E0 σ(D)−−−→ π∗E1 → 0

where σ(D) is an isomorphism away from the zero section.
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Remark 23.0.2: Every elliptic complex can be converted into a 2-term complex using a hermitian
metric. Given

E0 d0
−→ E1 d1

−→ E2 → · · · ,

we map this to

0→ Eeven :=
⊕
i even

E i
Deven



Dodd

Eodd :=
⊕
i odd

→ 0

where

D := ((d2i−1)†, d2i) : E2i → E2i−1 ⊕ E2i+2

and (d2i−1)† is defined by the following property: for α ∈ E2i−1 and β ∈ E2i(X),〈
d2i−1α, β

〉
h

=
〈
α, ((d2i−1)†β

〉
h
.

Here this pairing depends on a hermitian metric h, which is a hermitian form on each fiber:

hi : E i ⊗ E i → C.

Using this, we can fix a volume form dV on X and define

〈u, v〉h :=
∫
X
hi(u, v) dV u, v ∈ E i(X).

This yields the desired two-term complex, and (E∗, d) is elliptic if and only if De ◦Do : Eo	 and
Do ◦De : Ee	 are elliptic operators.

Example 23.0.3(?): Taking the de Rham complex

0→ O d−→ Ω1 d−→ Ω2 → · · · ,

one can define

Ωeven d+d†


d+d†

Ωodd.

Then using adjoint properties, we have〈
α, d†d†β

〉
=
〈
dα, d†β

〉
=
〈
d2α, β

〉
= 0,

using that d2 = 0, and since this is true for all α, β we have (d†)2β = 0 for all β. Noting that
dd† + d†d : Ωi(X)	, and this operator is the Laplacian. Moreover ker(dd† + d†d) is the space of
harmonic i-forms.

Remark 23.0.4: Note that this space of harmonic forms depended on the Hermitian metrics on
E i and the volume form dV . In the case E i := Ωi, there is a natural metric determined by any
Riemannian metric on X. Recall that this is given by a metric

g : TX ⊗ TX → R.
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This determines an isomorphism

TpX
∼−→ Tp

∨X

v 7→ g(v,−),

which we can invert to get a metric on the cotangent bundle T∨X. This induces a metric on i-forms

using the identification Ωi :=
i∧
T∨X and induces a volume form

dV :=
√

det g :
top∧
TX → R.

In this case, dd† + d†d on Ωi(X) is called the metric Laplacian.

Remark 23.0.5: Let (X, g) be a Riemannian manifold. We thus have a symmetric bilinear form
on Ωp(X) given by pairing sections:

〈α, β〉 :=
∫
X
g(α, β).

Note that we have orthonormal frames on Ωp(X) of the form ei1 ∧ · · · ∧ eip where the {ei} are
orthonormal frames on T∨X.

Definition 23.0.6 (Hodge Star Operator)
Let n := dim(X). The Hodge star operator is a map

? : Ωp → Ωn−p.

defined by the property

α ∧ ?β = g(α, β)dV.

Concretely, we have

?
(∑

fIdxi1 ∧ · · · ∧ dxip
)

= ?
(∑

fIei1 ∧ · · · ∧ eip
)

= (−1)`
∑

jk∈{1,··· ,n}\I
fIej1 ∧ · · · ∧ ejn−p

for some sign `.

Example 23.0.7(?): Let X := R4 and g the standard metric, i.e. d = dx2
1 + · · · + dx2

4. Take an
orthonormal basis of T∨R4, say {e1, e2, e3, e4} where ei := dxi. Then the induced volume form is
dV := e1 ∧ e2 ∧ e3 ∧ e4. We can then compute ?(e1 ∧ e2) which is defined by the property

α ∧ ?(e1 ∧ e2) = g(α, e1 ∧ e2)dV.

On the right-hand side, g(α, e1 ∧ e2) = c12(α)e1 ∧ e2 ∧ e3 ∧ e4 where c12 is the coefficient of
e1 ∧ e2. To extract that coefficient, we can take α(e3 ∧ e4, writing α =

∑
cijei ∧ ej . Similarly,

?)e1 ∧ e3) = −e2 ∧ e4. This follows from writing

α ∧ ?(e1 ∧ e3) = c13(α)e1 ∧ e2 ∧ e3 ∧ e4 = (−1)c13(α)e1 ∧ e3 ∧ e2 ∧ e4.
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From this, ? : Ωp → Ωn−p is defined fiber-wise as

〈α, β〉 =
∫
X
α ∧ ?β.

Exercise 23.0.8 (?)
Show that ?2 = (−1)p(n−p).

Proposition 23.0.9(Formula for the adjoint of the Hodge star).
Let d† := (−1)n(p−1)+1 ? d?. Then

〈α, dβ〉 =
〈
d†α, β

〉
α ∈ Ωp(X), β ∈ Ωp−1(X).

Proof (?).
A slick application of Stokes’ theorem! Using that ? is an isometry, we have

〈α, dβ〉 =
∫
X
α ∧ ?dβ

=
∫
X
?α ∧ dβ(−1)p(n−p) applying ? to both

= −
∫
X
d(?α) ∧ β(−1)p(n−p) Stokes/IBP

= (−1)p(n−p)+1
∫
X
?d ? α ∧ ?β isometry

= (−1)p(n−p)+1〈?d ? α, β〉,

which shows that the term in the left-hand side of the inner product above is the adjoint of d†.
�

24 Wednesday, March 10

4! Warning 24.0.1
Missing some stuff from the first few minutes here!

Remark 24.0.2: Can we always get a Hermitian metric? LetX ∈ MfdC∞(R) and E → X ∈ BunGLrC
a smooth complex vector bundle. Then any section h ∈ E∨ ⊗ E∨(X), we have

h : E ⊗ E → O
h(e⊗ f).

for e, f ∈ Ep is a Hermitian form for all p. In local trivializations, E|U ∼= O
⊕r
U , and one can take the

standard Hermitian form here. Then for (f1, · · · , fr) ∈ O⊕r(U), we have
∑

fif i ∈ O(U). This can
be extended to all of X using a partition of unity subordinate to the coordinate charts.
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The thing to check here is that on Cr, for any collection h1, · · · , hn, any positive linear combination∑
aihi is again a Hermitian metric for any ai ∈ R+. One can regard these as skew-symmetric

matrices, which are closed under addition, and the positive-definite property ensures it’s still a
metric since h(v, v) =

∑
aihi(v, v) > 0 for v 6= 0.

Remark 24.0.3: Recall that we start with a Riemannian manifold (X, g) where g : TX⊗2 → O
is a metric on the tangent bundle. Locally choose f1, · · · , fn an orthogonal frame of TX, then
setting ei := fi

∨ yields an orthogonal frame of T∨X and thus an orthogonal frame ei1 ∧ · · · eip of
p∧
T∨X := ΩpX. So we get a metric on the smooth p-forms ΩpX. We defined the Hodge star

operator

? : Ωp → Ωn−p

ei1 ∧ · · · eip 7→ ±ej1 ∧ · · · ∧ ejn−p .

where {i1, · · · , ip, j1, · · · , jn−p} = {e1, · · · , en}. We saw that

ei1 ∧ · · · ∧ eip ?
(
e1 ∧ · · · eip

)
= e1 ∧ · · · ∧ en

?

∑
|I|=p

fIeI

 =
∑
|I|=p

eIc(−1)sign(I).

Moreover,

〈α, β〉 =
∫
X
g(α, β)dV =

∫
X
α ∧ (?β) ,

and we showed that

〈α, dβ〉 = ±
〈
d†α, β

〉
d† := ?d?, β ∈ Ωp−1(X), α ∈ Ωp(X),

yielding an adjoint operator

d† : Ωp(X)→ Ωp−1(X).

Definition 24.0.4 (Laplacian)
The Laplacian is the differential operator

∆ := dd† + d†d : Ωp(X)→ Ωp(X).

Definition 24.0.5 (Harmonic Forms)
A p-form ω is harmonic if and only if ∆ω = 0. We define Hp(X) as the space of harmonic
p-forms.

Remark 24.0.6: This operator is R-linear, so Hp(X) ∈ VectR. Note that this whole construction
can be made to work over C by adding conjugates in appropriate places.
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Proposition 24.0.7(Characterization of when a smooth p-form is harmonic).
A smooth p-form ω is harmonic if and only if dω = d†ω = 0.

Proof (?).
⇐= : This direct is easy, since ∆ω := (dd† + d†d)ω = d(0) + d†0 = 0.
=⇒ : A nice trick! Using the adjunction d, d† we have

〈∆ω, ω〉 =
〈
dd†ω, ω

〉
+
〈
d†ω, ω

〉
=
〈
d†ω, d†ω

〉
+ 〈dω, dω〉.

We now use that since g is positive definite, it is a non-negative smooth function, and

〈α, α〉 :=
∫
X
g(α, α) dV ≥ 0 with equality ⇐⇒ α ≡ 0 on X.

So we can conclude that d†ω = dω = 0.
�

4! Warning 24.0.8
Note that we’ve used that the inner product is symmetric over R. Over C, there are bars introduced
from conjugation when swapping the variables.

Proposition 24.0.9(Orthogonal decomposition of p-forms).
The following three subspaces of Ωp(X) are mutually orthogonal:

dΩp−1(X),Hp(X), d†Ωp+1(X).

Proof (?).
We can write 〈

dα, d†
〉

=
〈
d2α, β

〉
= 〈0, β〉,

showing that the 1st and 3rd spaces are orthogonal. If α ∈ Hp(X) then by the above
proposition, dα = d†α = 0, and so

〈α, dβ〉 =
〈
d†α, β

〉
= 0〈

α, d†β
〉

= 〈dα, β〉 = 0.

Thus the 2nd space is orthogonal to the 1st and 3rd.
�

Observation 24.0.10
Suppose something false (4! ): that Ωp(X) is a complete vector space with respect to the inner
product. Remember that it is not! But if it were, there would be a decomposition

Ωp(X) = dΩp−1(X)⊕Hp(X)⊕ d†Ωp+1(X).
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Let α ∈
(
dΩp−1(X)⊕ d†Ωp+1(X)

)⊥
where we take the orthogonal complement with respect to the

inner product. Then

〈α, dβ〉 = 0∀β〈
α, d†γ

〉
= 0∀γ

=⇒
〈
d†α, β

〉
= 0∀β

=⇒ d†α ≡ 0 settingβ := d†α.

Similarly, dα = 0 and so α ∈ Hp(X).

The conclusion (which is true without the false assumption) is that(
dΩp−1(X)⊕ d†Ωp+1(X)

)⊥
= Hp.

However, this doesn’t yield the full direct sum decomposition: if W ⊆ V , then it’s not necessarily
true that V ∼= W ⊕W⊥, which only holds if

• V is complete,

• W is closed.

Fact 24.0.11
For smooth p-forms, this decomposition does hold despite the false assumption:

Ωp(X) = dΩp−1(X)⊕Hp(X)⊕ d†Ωp+1(X).

Corollary 24.0.12(p-forms have harmonic representatives).
Thus Hp(X) represents Hp(X;R).

Remark 24.0.13: We have

Hp(X;R) = ker d
im d

= dΩp−1(X)⊕Hp(X)
dΩp−1(X)

= Hp(X).

Note that there is a map

Hp(X)→ Hp(X;R)

since α ∈ Hp(X) satisfies dα = 0 in addition to d†α = 0.
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25 Review (Monday, March 15)

Remark 24.0.14: Note that one can complete these spaces using Sobolev spaces, but there are
issues. Take S1, then

L2(S1) :=
{∑

ane
2πinz

∣∣∣ ∑ |a|i <∞
}
,

but for f ∈ L2(S1) we have df =
∑

2πinane2πinz which may not converge.

25 Review (Monday, March 15)

Remark 25.0.1: Recall that a sheaf of rings F on X ∈ Top is an assignment of a ring F(U) to
each open set U ⊆ X and restriction maps F(U) ρUV−−→ F(V ) for V ⊆ U that is a presheaf, so

1. This diagram commutes:

U V W
ρUV ρVW

ρUW

Link to Diagram

2. ϕUU = 1F(U) and F(∅) = 0.

That additionally satisfies unique gluing on double overlaps.

Example 25.0.2(?): Any reasonable class of functions whose behavior is only locally restricted.
Examples are being smooth or continuous, but e.g. being constant is a global condition. Other
examples include X ∈ Mfdn(C∞(−,R)), denoting O the sheaf of smooth functions. This also carries
a sheaf of abelian groups Ωp. In the special case where U is a coordinate chart, we have functions
ϕU : U → Rn. Writing S := ϕU (U), we can define

Ωp(U) ∼= Ωp(S) :=
{∑

fI(x)dxI
∣∣∣ fI ∈ C∞(Rn,R)

}
.

:::{.remark} More generally, for an arbitrary open U , cover it by coordinate charts {Ui}⇒ U . Then
we want ωi ∈ Ωp(Ui) which are compatible on double overlaps, so such a collection defines a section{
ωi
∣∣∣ i ∈ I} ∈ Γ(Ωp(U)). The compatibility is given by taking coordinate charts ϕi : Ui → Rn with

ωi ∈ Ωp(Ui), we consider

tij : ϕi ◦ ϕ−1
2 : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj),
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25 Review (Monday, March 15)

and we require that the pullback satisfies t∗ij(ω1) = ω2 This pullback can be thought of as a
coordinate change for the forms. Writing xI as coordinates on Ui and yJ on Uj , we can write

x1 = h1(yJ)
x2 = h2(yJ)
...

xn = hn(yJ)

which expresses tij in coordinates. This allows us to give meaning to the formal symbols dxI :

dx1 :=
n∑
i=1

∂h1
∂yi

dyi

dx2 :=
n∑
i=1

∂h2
∂yi

dyi

...

dxk :=
n∑
i=1

∂hk
∂yi

dyi

,

and under these substitutions in the original expression we obtain

ω1 =
∑
|I|=p

fI(x)dxI 7→ ω2.

Remark 25.0.3: For X ∈ Mfd(Hol(−,C)) such that ϕV ◦ ϕ−1
U : ϕU (U ∩ V ) → ϕV (U ∩ V ) is

holomorphic, so ∂zi = 0. Then Ωp(U) =

∑
|I|=p

fI(z)dzI

, and the key difference is that the

fI be holomorphic. This matters since POUs exist in the smooth setting but not the complex
setting. Note that O,Ωp denote smooth/holomorphic functions and smooth/holomorphic p-forms
in the smooth/complex settings. So we need a new notation for smooth holomorphic p-forms in the
complex setting. We defined Ap,0 to be the smooth p-forms, and Ap,q the smooth (p, q)-forms. In
local coordinates, these look like

Ap,q(U) =

 ∑
|I|=p,|J |=q

fI,J(z)dzI ∧ dzJ

 .

Example 25.0.4(?):
• <(z) dz ∈ A1,0(C) is a smooth (1, 0)-form.
• z dw − w dz ∈ Ω1(C2) is a holomorphic 1-form.
• On C3, z1dz2 ∧ dz3 −<(z3)dz1dz1 ∈ A1,1(C3).
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Remark 25.0.5: Why are these Ap,q useful? They give a resolution of Ωp on a complex manifold.
There are maps of sheaves

0→ Ωp i−→ Ap,0,

where being a map of sheaves means there are maps Ωp(U) → Ap,0(U) for all opens U which are
compatible with restriction:

Ωp(U) Ap,0(U)

Ωp(V ) Ap,0(U)

iU

iV

ρ∗UV ρ∗UV

Link to Diagram

It’s clear that this works for i, since any holomorphic function simply is smooth. We could continue
this resolution:

0→ Ωp i−→ Ap,0
∂−→ Ap,1

where

∂

∑
I,J

fI,JdzI ∧ dzJ

 :=
∑
I,J,K

∂fI,J
∂zk

dzk ∧ dzI ∧ dzJ .

We then defined Dolbeaut cohomology, Hq(X,Ωp) = ker ∂p,q/ im ∂p,q−1.

26 Wednesday, March 17

E 26.1 Inverting Bundles e

Remark 26.1.1: Continuing review: let E → X ∈ Bun(Rn). A metric on E is a smoothly varying
positive definite inner product on the fibers.
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26 Wednesday, March 17

E

X

p

v

w

Fix this diagram! Need to remember what it was demonstrating.

For v, w ∈ Ep, we want a pairing gp(v, w) : E⊗2
p → R. To think about this globally, this should be a

map

g : E⊗2 → O.

where gp : E⊗2
p → R. Note that this map is O-linear, which follows from the fact that it’s R-linear on

each fiber, or equivalently it is a map of vector bundles. We should also have that g(s⊗ s) ∈ O(X)
is a smooth function, and we require g(s ⊗ s) ≥ 0. We also require g(s ⊗ s)(p) = 0 ⇐⇒ s0 = 0
and g(s⊗ t) = g(t⊗ s). This implies that g ∈ (E⊗2)∨ ⊗O = (E∨)⊗2(X). The symmetric condition
means that g ∈ Sym2 E∨(X).

Remark 26.1.2: For Hermitian forms, we take

h : (Cn)⊗2 → C

where h is conjugate linear, so h(cv, c′w) = cc′h(v, w). Note that we can write h(v, w) = vtHw

where H is Hermitian, so Ht = H. This implies that h(v, v) ∈ R≥0 and h(v, v) = 0 ⇐⇒ v = 0
with h(v, w) = h(v, w) The great thing about metrics: we can identify zero sections by self-pairing,
multiplying by a volume form, and integrating. For E → X ∈ Bun(C), there is another bundle
E → X ∈ Bun(C). Supposing that E|U

ϕU−−→ O⊕nU in a local trivialization, conjugating all of the
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transition functions gives the transition functions E
∣∣∣
U

conj◦ϕU−−−−−→ O⊕nU . This yields a map

h : E ⊗C E → O ∈ (E ⊗ E)∨.

In local trivializations we have E|U = O⊕nU = Cn×U , and h is described by hU ∈ (O⊕n⊗O⊕n)(U).

Remark 26.1.3: When rank E = 1 we abuse notation! For h ∈ (E∨⊗E∨)(X), this is locally a 1× 1
Hermitian matrix, thus of the form [a] for a ∈ R≥0. So we write

h(s, t) = hst := h⊗ s⊗ t ∈ (E∨ ⊗ E∨)⊗ E ⊗ E = O

if E is a line bundle. Why is V ⊗ V ∨ = O in this case? There is a pairing v ⊗ λ 7→ λ(v), or more
generally a trace pairing.

E 26.2 Serre Duality Revisited e

Remark 26.2.1: Let X be a Riemann surface, so X ∈ Mfd1(C). Let L→ X ∈ Bun1(Hol), then we
have a resolution

0→ L ↪→ L⊗A0,0 ∂−→ L⊗A0,1 → 0,

where the first map is inclusion of smooth holomorphic sections into smooth sections. What is this
cut out by? We had s 7→ ∂s and thus f 7→ ∂f

∂z
dz. Note that H1(L) = coker ∂.

Remark 26.2.2: Serre duality said that

h1(L) = dimH1(L) = h0(L∨ ⊗K) K = Ω1,

where Ω1 is the sheaf of holomorphic 1-forms. Choose a metric to identify H1(L) and H0(L∨ ⊗K).
Choose a hermitian metric on L and take s, t ∈ H0(L ⊗ A0,0) = C∞(L;C), then we get h(s, t) ∈
C∞(X;C) a smooth complex function. We abuse notation by writing this as h(s, t) = hst, viewing
h ∈ C∞(L∨ ⊗ L∨) locally. Note that we can’t integrate a function on a manifold without a form,
so choosing a volume for dV we can define a pairing on sections

〈s, t〉 :=
∫
X
hstdV.

Now for two sections α, β ∈ H0(L⊗A0,1) we can write∫
X
hαβ =

∫
X
ω,

where ω is a smooth (1, 1)-form since h ∈ L∨ ⊗ L∨, α ∈ L⊗A0,1, and β ∈ L⊗A1,0. We now have
metric on both the source and target spaces here:

H0(L⊗A0,0) ∂−→ H0(L⊗A0,1),

where on the left-hand side we take (s, t) 7→
∫
X
hstdV and on the right-hand side we have (α, β) 7→∫

X
hαβ.
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Remark 26.2.3: Given a map of metric vector spaces V ϕ−→W , the adjoint ϕ† satisfies

〈ϕ(v), w〉 =
〈
v, ϕ†(w)

〉
.

and coker(ϕ) = ker(ϕ†). So H1(L) = coker ∂ = ker ∂†, and after integrating by parts we have〈
α, ∂s

〉
:=
∫
X
α∂sh

=
∫
X
α∂(s)h

= −
∫
X
s∂(αh) IBP

= −
∫
X
s
∂(αh)
dV

dV

=
〈
−∂(αh)

dV
, s

〉
.

So we could define

∂
†
α = −∂(αh)

dV
.

Note that α 7→ αh, so α ∈ ker ∂† ⇐⇒ αh ∈ ker ∂. Then ker(∂†) = H0(L∨ ⊗K).

27 Friday, March 19

Remark 27.0.1: Recall Serre duality: let C ∈ MfdC(compact, oriented) and L → C ∈ Bun(Hol).
Then

h1(L) = h0(L∨ ⊗KC).

We also have Riemann-Roch, a very important tool:

h0(L)− h1(L) = degL+ 1− g(C),

where degL =
∫
C
c1(L), which is also equal to deg[{s = 0}] = deg(Div s). Note that c1 is the most

important Chern class to know, thanks to the splitting principle. How was it defined? There are
several definitions:

1. L defines an element of

H1(C,O×) =
{
tUV : U ∩ V → C×

∣∣∣ tUV t−1
UW tVW = 1

}
/∂
{
hu : U → C×

}
= ker ∂1/ im ∂0

in Čech cohomology. By definition ∂
{
hU

∣∣∣ U ∈ U} =
{
huh

−1
v

∣∣∣ U, V ∈ U}, where ∂2 = 1
since

(hUhV )−1
(
hUh

−1
W

)−1
(hV h−1

W ) = 1 on U ∩ V ∩W.
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By assigning L to its transition functions, we get a map L→ H1. We have the exponential
exact sequence:

0→ Z→ O exp−−→ O× → 1,

which induces a map

H1(C,O×)→ H2(C,Z)
L 7→ c1(L).

2. L defines an element FrL ∈ Bunprin(C×) (which only works for line bundles), which is defined
by FrL = L \ s0 where s0 is the zero section of L. By topology, we get a classifying map

C
ϕL−−→ BC× = CP∞ = (C∞ \ {0})/C×.

There is a universal c1 ∈ H2(CP∞;Z), so we take the pullback to define c1(L) := ϕ∗L(c1). We
can use that there is a cell decomposition CP∞ = C0 ∪C1 ∪C2 ∪ · · ·, and so there is a unique
generator in its H2.

3. Consider a smooth section s ∈ C∞(L), then we can define c1(L) := [{s = 0}] by taking the
fundamental class, assuming that s is transverse to the zero section sz of L. Here we view the
zero set as an oriented submanifold. See picture: in this case [{s = 0}] = [p]− [q] + [r].

Add picture.

Remark 27.0.2: Applying Serre duality to the left-hand side in Riemann-Roch yields the dimension
of the space of holomorphic sections of some other bundle, L∨ ⊗K.

Example 27.0.3(The structure sheaf): Applying Riemann-Roch to L := O, we get

χ(O) = h0(O)− h1(O) = 0 + 1− g,

which is equal to h0(O) − h0(K). But the only holomorphic functions on C are constant, so
h0(O) = 1. In particular, h0(K) = g, so any Riemann surface of genus g has a g-dimensional space
of holomorphic 1-forms.

Example 27.0.4(The Canonical Bundle): Applying Riemann-Roch to L := K, we get

χ(K) = h0(K)− h0(K∨ ⊗K) = deg(K) + 1− g.

Since K∨ ⊗K = O, we obtain g − 1 = deg(K) + 1− g, so deg(K) = 2g − 2.

We also proved this using that K was the dual of holomorphic vector fields, i.e.
∫
C
c1(K) =

−
∫
C
c1(T ), which by Gauss-Bonnet equals −χTop(C) = −(2− 2g) = 2g − 2.
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Example 27.0.5(Genus 2 Riemann Surfaces): Taking C of genus 2, we have h0(KC) = g = 2,
so degKC = 2(2) − 2 = 2. Thus there exist linearly independent sections s, t ∈ H0(KC), i.e. two
linearly independent holomorphic 1-forms. We can take the ratio s/t, which defines a map

s

t
: C → P1.

Locally we have s = f(z) dz for z a local holomorphic coordinate on C and f ∈ Hol(C,C), and
similarly t = g(z) dz. So s/t = f(z)/g(z) is meromorphic in this chart. Choosing a new coordinate
chart w, this yields a transition function z(w) – not of L, but from the atlas on C. We can write
s = f(z(w)) d(z(w)) = f(z(w))z′(w) dw by the chain rule. Thus

s

t
(z) = f(z(w))z′(w) dw

g(z(w))z′(w) dw = s

t
(w).

So although s/t was only defined in a coordinate chart, it winds up being independent of coordinates.
This works in general for any holomorphic line bundle: for s, t ∈ H0(L), there is a map s

t
: C → P1

since writing sV = ϕUV sU , tV = ϕUV tU where ϕUV is the transition function for L.

Fact 27.0.6
Important fact: we can take these ratios to get maps to P1.

Slogan 27.0.7
The canonical bundle is the line bundle whose transition functions are the Jacobians of the change
of variables for the atlas.

Question 27.0.8
What is the degree of this map generically? I.e. given [x0 : x1] ∈ P1 fixed, what is the size of the

inverse image
(
s

t

)−1
([x0 : x1])?

Answer 27.0.9
Writing s/t = x1/x0, we have x0s − x1t = 0. This is in H0(KC), and we computed degKC = 2,
meaning there are two zeros of this function. Thus is g(C) = 2, there is a generically 2-to-1 map
C → P1, a degree 2 meromorphic function. Note that this section could have a double zero.

Example 27.0.10(?): Consider the curve y2 = (z−1)(z−2) · · · (z−5), where we think of z, y ∈ P1.
This has roots z = 1, · · · , 5, and is equal to ∞ if z =∞. These are the only points of P1 with just
one square root, all other points have two square roots.
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P1
∞

z
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28 Monday, March 22

1

2

3

4

z

5

∞

1

2

3

4

5

p

1

2

p
x1 x2

28 Monday, March 22

Remark 28.0.1: Last time: we reviewed Riemann-Roch, Serre duality, sheaves of p-forms. Recall
a theorem from a few weeks ago:
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Theorem 28.0.2(The Hodge Theorem).
If (X, g) is a compact oriented Riemannian manifold, then there is a decomposition of the
smooth p-forms on X:

Ωp(X) = dΩp−1(X)⊕Hp(X) + d†Ωp+1(X).

Remark 28.0.3: Note that H was the space of harmonic p-forms, and d† ::= (−1)? ? d? where

? : Ωp(X)→ Ωn−p(X)
ei1 ∧ · · · ∧ eip 7→ ±ej1 ∧ · · · ejn−p

where {ei} is an orthonormal basis of basis of T∨X. Note that this formula is replacing the ei
that do appear with the ei that don’t appear, up to a sign. The harmonic forms were defined as
Hp(X) = ker(dd† + d†d) = ker(d) ∩ ker(d†). We proved that assuming this decomposition, there is
an isomorphism

Hp(X) ∼= Hp
dR(X;R).

Example 28.0.4(The circle S1): There’s a standard flat metric gstd on S1 where gstd = dx2 with
x the coordinate on R which is the universal cover of S1. We can write

Ω1(S1) =
{
f(x) dx

∣∣∣ f ∈ C∞(S1,R)
}
,

since every 1-form ω looks like this. Then dω = 0 since this is a 2-form on S1. On the other
hand, what is d†? We know that ?ω is a 0-form, so a function. The volume form is given by√

det gstd =
√

[ dx2], and you can wedge 1 ∧ dx = dx, so ?ω = f(x). Then d ? ω = f ′(x) dx
and d†xω = f ′(x). If this is zero, f ′(x) = 0 and f is a constant function. So in this metric,
H1(S1) = R 〈 dx〉 ∼= H1(S1;R).

Remark 28.0.5(Important): The harmonic forms Hp(X) depend on the metric g, despite map-
ping isomorphically to de Rham cohomology.

Remark 28.0.6: This was just in the case of a real smooth Riemannian manifold. What extra
structure to we have for X ∈ Mfd(Hol(−,C))?

Definition 28.0.7 (Kähler Forms (Important!))
Let X ∈ Mfd(Hol(−,C)) be a complex manifold. A Kähler form ω ∈ Ω2(XR) is a closed
real (possibly needed: J-invariant) 2-form on the underlying real manifold of X for which
ω(v, Jw) := g(v, w) is a metric on TXR where J is an almost complex structure. The associated
hermitian metric is h := g + iω, which defines a hermitian form on TX ∈ VectC.

Example 28.0.8(?): Take X := Cn and J(v) := i ·v. Note that XR = R2n, so write its coordinates
as xk, yk for k = 1, · · · , n where zk = xk + iyk are the complex coordinates. Consider g = gstd on
R2n – does this come from a closed 2-form gstd =

∑
( dxk)2 + (dyk)2? Using ω(v, Jw) = g(v, w),

we have ω(v, J2w) = g(v, Jw). The left-hand side is equal to −ω(v, w) and the right-hand side is
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ω(v, w) = −g(v, Jw). What 2-form does this give? We have

ω

(
∂

∂xk
,
∂

∂x`

)
= −g

(
∂

∂xk
,
∂

∂y`

)
= 0

ω

(
∂

∂yk
,
∂

∂x`

)
= −g

(
∂

∂yk
,
∂

∂y`

)
= 0

ω

(
∂

∂xk
,
∂

∂y`

)
= −g

(
∂

∂xk
,
∂

∂y`

)
= 0 ∀k 6= `

ω

(
∂

∂xk
,
∂

∂yk

)
= −g

(
∂

∂xk
,
∂

∂yk

)
= (−1)2g

(
∂

∂xk
,
∂

∂xk

)
= 1

ω

(
∂

∂yk
,
∂

∂xk

)
= −1.

So we can write this in block form using blocks

M =
[

0 1
−1 0

]
ω =

M M
M

 ,
which is a closed (dω = 0) antisymmetric 2-form, i.e. a symplectic form, and

ωstd = dx1 ∧ dy1 + dx2 ∧ dy2 + · · ·+ dxn ∧ dyn,

Remark 28.0.9: So the Kähler geometry is determined by the data (Cn, gstd, J, ωstd), i.e. a metric,
an almost complex structure, and a symplectic form. Note that the relation ω(x, y) = g(x, Jy) can
be used to determine the 3rd piece of data from any 2. This is the fiberwise/local model, i.e. every
tangent space at a point looks like this.

4! Warning 28.0.10
But note that a form being closed is not a tensorial property! So this local data (looking at a single
fiber) is not quite enough to determine the global geometry.

Remark 28.0.11: Given g and J , ω is automatically a 2-form. That it’s antisymmetric follows
from

−ω(w, v) = −g(w, Jv)
= −g(Jv,w)
= −g(J2v, Jw)
= g(v, Jw)
= ω(v, w).

Conversely, we can always define g(v, w) := −ω(v, Jw), but a priori this may not be a metric. This
will be symmetric, but potentially not positive-definite.
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Definition 28.0.12 (ω-tame almost complex structures)
An almost complex structure J is ω-tame if g(v, w) = −ω(v, Jw) is positive definite.

Remark 28.0.13: Next time: we’ll see that if X is Kähler, then

Hk(X) =
⊕
p+q=k

Hp,q(X),

so this is compatible with the Hodge decomposition. This is what people usually call the Hodge
decomposition theorem, and gives some invariants of complex manifolds. By a miracle, this decom-
position only depends on g and the complex structure.

Remark 28.0.14: Note that there is a notion of hyperkähler manifolds, which have 3 complex
structures I, J,K such that I2 = J2 = K2 = IJK = −1, yielding 3 “parallel” 2-forms ωI , ωJ , ωK
such that the covariant derivative vanishes, i.e. ∇g {ωI , ωJ , ωK} = 0. With respect to the complex
structure I, ωJ+ωK is a holomorphic 2-form. There is a sphere’s worth of almost complex structures,
and there is an action SO(4, b2 − 4) y H∗(X). There’s no known example where the hyperkähler
metric has been explicitly written down.

29 Wednesday, March 24

Remark 29.0.1: Last time: we defined a Kähler manifold: X ∈ Mfd(C)compact and ω ∈ Ω2(XR)
a closed real 2-form such that g(x, y) := ω(x, Jy) is a metric. By the Hodge theorem, we have a
space Hk(X) of harmonic k-forms for (X, g) which represents Hk

dR(X;R). We can consider the
C-valued harmonic forms HkC := Hk(X)⊗R C, which represents Hk

dR(X;C)

Question 29.0.2
How does this interact with the decomposition of the smooth k-forms

Ωk(XR)⊗R C =
K⊕

p+q=k
Ap,q(X),

where HkC(X) is contained in this. Note that this is a small finite dimensional space in an infinite
dimensional space! The following miracle occurs:

Theorem 29.0.3(Kähler manifolds admit a Hodge decomposition?).
If X ∈ Mfd(Kähler),

HkC =
⊕
p+q=k

Hp,q(X),

where

Hp,q(X) :=
(
HK(X)⊗R C

)
∩Ap,q(X) ⊆ Ωk(XR).
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Example 29.0.4(?): Let X = C/Λ be an elliptic curve where Λ is a lattice. The standard metric
dx2 + dy2 on C descends to a metric on X since translation is an isometry on the metric space
(C, dx2 + dy2). Let z = x+ iy be a complex coordinate on C so dz = dx+ idy and dz = dx− idy,
then dx2 + dy2 = dzdz ∈ Sym2(TC). The symplectic form is given by

ω(v, w) = ±g(v, Jw) = i dz dz(v, w)

since J is given by i on C. Then ω(v, w) = i dz(v) dz(w), i.e. ω = i dz ∧ dz. So

ω = i dz ∧ dz = −i dz ∧ dz = i dz dz = ω,

and this determines the Kähler geometry on X. What are the harmonic 1-forms on X, H1(X)⊗RC?
Note that ω = dV is the volume form. The smooth 1-forms are given by

Ω1(XR)⊗R C = A1,0(X)⊕A0,1(X) = {f(z, z) dz} ⊕ {g(z, z) dz} ,

where f, g are smooth and Λ-periodic on C to make them well-defined. We can find the Hodge star:

? :?→?
dz 7→ i dz

dz 7→ −i dz.

Writing α := f(z, z) dz + g(z, z) dz, this is harmonic if dα = 0 and ?d? α = 0. The first implies
∂zf − ∂zg = 0. What does the second imply? We can compute

?α = if(z, z) dz − ig(z, z) dz
=⇒ ∂zf + ∂zg = 0,

and so ∂zf = ∂zg and ∂2
zf = ∂z∂zg = −∂2

zf , so(
∂2
z + ∂2

z

)
f = 0(

∂2
z + ∂2

z

)
g = 0.

Note that this recovers the usual notion of harmonic functions on C, i.e. being in the kernel of the
Laplacian. The only biperiodic functions that satisfy these equations are constants, since there is a
maximum modulus principle for harmonic functions. Thus

H1(X)⊗R C = {c1 dz + c2 dz} = C dz ⊕ C dz = H1,0(X)⊕H0,1(X).

Remark 29.0.5: There is a generalization to higher genus curves. Recall the following theorem:

Theorem 29.0.6(Uniformization).
Let C ∈ Mfd1(C)compact of genus g ≥ 2. Then the universal cover admits a biholomorphism

C̃ ∼= H :=
{
z ∈ C

∣∣∣ =(z) > 0
}
.

Remark 29.0.7: This essentially follows from the Riemann mapping principle.
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Corollary 29.0.8(Every curve of genus g>1 is the plane mod a subgroup of biholo-
morphisms).
Any curve C of genus g ≥ 2 is of the form C = H/Γ where Γ ≤ BiHol(H) is a subgroup that
acts freely. By covering space theory, Γ = π1(C), and it’s known that BiHol(H) ∼= PSL2(R)
by the map [

a b
c d

]
z 7→ az + b

cz + d
.

Proposition 29.0.9(The upper half-plane admits a PSL-invariant hyperbolic met-
ric).
The upper half plane H admits a hyperbolic metric which is invariant under PSL2(R) given
by

ghyp = dx2 + dy2

y2 = dz dz

=(z)2 .

Proof (?).
This follows from a computation:

d

(
az + b

cz + d

)
= a dz

cz + d
− c(az + b) dz

(dz + d)2

= a(cz + d)− c(az + b) dz
(cz + d)2

= (ad− bc) dz
(cz + d)2

= dz

(cz + d)2

=
d
(
az+b
cz+d

)
d
(
az+b
cz+d

)
=
(
az+b
cz+d

)2

= dz dz

(cz + d)2(cz + d)2=
(
az+b
cz+d

)
= dz dz

=(z)2 .

�

Remark 29.0.10: It’s miraculous! The biholomorphisms of H preserve a metric. So C has a
canonical metric, ghyp, which descends along the quotient map H→ H/Γ ∼= C.

Question 29.0.11
What are the harmonic 1-forms on (C, ghyp)?
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30 Friday, March 26th

Remark 29.0.12: By lifting we can write

Ω1(CR)⊗R C = A1,0(C)⊕A0,1(C) =
{
f(z, z) dz + g(z, z) dz

∣∣∣ z ∈ H, f, g ∈ C∞(C,R)
}

But dz is not invariant under the map z 7→ az + b

cz + d
, since dz 7→ dz

(cz + d)2 . In order to descend f(z)
to C, we need

f

(
az + b

cz + d

)
= (cz + d)2f(z) for all

[
a b
c d

]
∈ Γ

This says that f is a modular form of weight 2.

Exercise 29.0.13 (?)
Check that this implies that f must be holomorphic and g must be antiholomorphic.

Fact 29.0.14
There is a decomposition

H1(CR)⊗R C = H1,0(C)⊕H0,1(C),

and the first space will be the space of holomorphic 1-forms H0(KC), and the second term will be
H0(KC). This shows the power of the Hodge decomposition theorem!

30 Friday, March 26th

Remark 30.0.1: Recall the Hodge decomposition theorem. Let (M, g) ∈ MfdnR(Riem, compact),
then choosing an orthonormal basis {vj} for TpM yields a corresponding orthonormal basis in
Tp
∨M := Hom

R
(TpM,R) given by taking

{
ei
∣∣∣ ei(vj) = δij

}
.
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30 Friday, March 26th

M

TpM

p

v1

v2

There is a map

? :
k∧
Tp
∨M →

n−k∧
Tp
∨M

k∧
j=1

eij 7→ ±
n−k∧
`=1

ej`

where the ej are defined such that
k∧
j=1

eij ∧
n−k∧
`=1

ej` := dV , where dV is the volume form on M at p.

Thus we have a map

? : Ωk → Ωn−k

1 7→ dV.

We defined d† := ?d?, and said a form ω was harmonic iff ∆ω = 0, where ∆ := dd†+ d†d. The space
of such forms was denoted Hk(M) ⊆ Ωk(M).

Theorem 30.0.2(Hodge Theorem).

Hk(M) ∼= Hk
dR(M ;R).

Question 30.0.3
What kinds of extra structure can we put on a complex manifold?
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Definition 30.0.4 (Kähler Form)
A Kähler form is a closed 2-form ω ∈ Ω2

R such that the following equation defines a metric
on TpM :

g(u, v) := ω(u, iv).

I.e., this is a closed symplectic form that defines a metric.

Example 30.0.5(?): Consider M = Cn with holomorphic coordinates z1, z2, · · · , zn, where zj :=
xj + iyj . Then take

ω :=
n∑
j=1

dxj ∧ dyj .

Note that multiplication by i induces a map

·i : TpCn	
∂

∂xj
7→ ∂

∂yj
∂

∂yj
7→ − ∂

∂xj

.

Moreover, ω(u, iv) recovers the standard metric on Cn given by

gstd =
∑

( dxj)2 + ( dyj)2 ∈ Sym2 T∨Cn,

which is incidentally positive-definite, where ( dx)2(u, v) := ( ∂

∂xj
)u · ∗( ∂

∂yj
)v. Is this closed? We

need to check to see if dω = 0, but this is true: applying d to all of the coefficients yields the
constant 1.

Remark 30.0.6: So for M ∈ Mfd(C) a complex manifold, we have a decomposition

Ωk(M) =
⊕
p+q=k

Ap,q(M)

Ap,q :=


∑
|I|=p
|J |=q

(
dzi1 ∧ · · · dzip

)
∧
(
dzj1 ∧ · · · dzjq

)
 .

For M a Kähler manifold, we have

Hk(M) =
⊕
p+q=k

Hp,q(M)

Hp,q(M) = Hk(M) ∩Ap,q(M).
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30 Friday, March 26th

A0,2

A1,1

A2,0

A small subspace!

Remark 30.0.7: Why is this true? We have a map

d : Ap,q(M)→ Ap+1,q(M)⊕Ap,q+1(M),

where for example if f(z) := zz ∈ A0,0(C), we have df = z dz + z dz where the first is a (1, 0) form
and the latter is a (0, 1) form. Write d = ∂ + ∂ where ∂ :=

∑
dzj and ∂ =

∑
dzj , as well as

d† : Ap,q(M)→ Ap−1,q(M)⊕Ap,q−1(M).

Now ? of a (p, q) form is an (n− p, n− q) form, and so

? ( dzi1 ∧ · · · ∧ dzir ∧ dzj1 ∧ · · · ∧ dzq) := ?( dzI ∧ dzJ) = ± dzIc ∧ dzJc ,

and we have d† = ∂† + ∂
†. We can thus move around the bigraded group in several ways:

A2,0 A2,1 A2,2

A1,0 A1,1 A1,2

A0,0 A0,1 A0,2

∂

∂ ∂

∂

∂

∂ ∂

∂ ∂

∂ ∂

∂

∂
†

∂
†

∂†

∂†
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Link to Diagram

Theorem 30.0.8(Kähler Identities).
Let

∆∂
:= ∂∂

† + ∂
†
∂

∆∂ := ∂∂† + ∂†∂

∆d := dd† + d†d.

Then

1
2∆d = ∆∂ = ∆∂ .

Remark 30.0.9: See Griffiths-Harris for details. Note that this is a local statement, i.e. it can be
checked in coordinate charts.

Remark 30.0.10: The upshot:

Hk(M) = ker ∆d = ker ∆∂ ,

and moreover

∆∂ : Ap,q(M)	

which implies that on Ωk(M),

ker ∆∂ ◦
⊕
p+q=k

ker
(
Ap,q(M)

∆
∂−−→ Ap,q(M)

)
=

⊕
p+q=k

ker ∆d,

which yields the Hodge decomposition theorem

Hk(M) =
⊕
p+q=k

Hp,q(M).

Remark 30.0.11: This is a strong restriction on what manifolds can admit a Kähler structure.
Moreover, since ∆d is a real operator, we obtain Hp,q(M) ∼= Hp,q(M).

Remark 30.0.12: Some consequences:

For M a Kähler manifold, the odd Betti numbers β2i+1(M) := dimH2i+1
dR (M ;C) are even. This is

because ⊕
p+q=k

Hp,q ∼= H2i+1(M) ∼= H2i+1
dR (M).

If we define hp,q(M) := dimCHp,q(M), we clearly have

β2i+1 =
∑

p+q=2i+1
hp,q(M).
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Now using that H ∼= H, we can rewrite this as

β2i+1 =
∑

p+q=2i+1
hp,q(M)

= 2
∑

p+q=2i+1
p<q

hp,q(M).

Remark 30.0.13: Is this just some fact about arbitrary complex manifolds, with no extra structure?
The answer is no, and the counterexample is the Hopf surface

X :=
(
C2 \ {0}

)
/(x, y) ∼ (2x, 2y),

which we can roughly identify as R4 “modulo doubling”. We can take a fundamental domain
1 ≤ |r| ≤ 3, this yields an annulus-like sphere with the inner shell glued to the outer:
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This is homeomorphic to S1 × S3, but β1(M) = 1, so this won’t yield a Kähler structure.

31 Monday, March 29
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Remark 31.0.1: Last time: the Hodge decomposition theorem. Let (X, g) ∈ Mfdcompact
C (Kähler),

then the space of harmonic k-forms Hk(X) ⊗R C decomposes as
⊕
p+q=k

Hp,q(X). There is also a

symmetryHp,q(X) = Hq,p(X). We have an isomorphism to the de Rham cohomologyHk(X)⊗RC ∼=
Hk

dR(X;C). We know the constituent pieces as well, as well as several relationships:

Hp,q(X) = ker(∆d : Ap,q(X)	)

∆∂ = ∂∂
† + ∂

†
∂

∆d = 2∆∂ .

There was a proposition that ker(∆d) = ker(d)∩ ker(d†), and the same proposition holds for ∆∂ . In
this case we have ker(∆∂) = ker(∂) ∩ ker(∂†) on Ap,q(X), and this is isomorphic to ker(∂)/ im(∂).
Recall that we resolved the sheaf Ωp of holomorphic p-forms by taking the Dolbeault resolution

0→ Ωp → Ap,0
∂−→ Ap,1

∂−→ Ap,2 → · · · .

Thus we can identify ker(∂)/ im(∂) ∼= H(X; Ωp) as sheaf cohomology. We defined hp,q(X) :=
dimCH

p,q(X).

Corollary 31.0.2(Homology is independent of the choice of Kähler form).
hp,q(X) is independent of the Kähler form, noting that the isomorphism to sheaf cohomology
doesn’t involve taking adjoints, and dimCHq(X; Ωp) doesn’t depend on the complex structure.

Remark 31.0.3: A priori, one could vary the Kähler form and have some hp,q jump or drop
dimension. It also turns out that varying the complex structure will also not change these dimensions.

Remark 31.0.4: Whenever the Hodge-de Rham spectral sequence degenerates, one generally gets∑
p+q

hp,q = hk. Note that there is a resolution:

0→ C→ O d−→ Ω1 d−→ Ω2 d−→ · · · ,

which is not acyclic and thus has homology. In general, the spectral sequence is

E1
p,q = Hq(X; Ωp)⇒ Hp+q(X;C).

Fact 31.0.5
A fact about the cohomology of vector bundles: given a family of Kähler manifolds Xt, one can
consider Hq(Xt; Et where Et is a family of holomorphic vector bundles. This can only jump upward
in dimension, i.e. dimCH

q(Xt; Et) is lower semicontinuous.

Example 31.0.6(?): Consider

Xt :=
{
x3 + y3 + z3 + txyz = 0

}
⊆ CP2,
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where t varies in C. These all admit a line bundle Lt := O(1)|Xt , the anti-tautological line bundle
on P2.

t C

Xt

h0,1 could jump

The real points of this vanishing locus form an elliptic curve, and each Xt is a Riemann surface of
genus 1. Note that h0,1 can jump on closed sets, but H1 is constant since Riemann-Roch involves
genus and degree. What is deg O(1)|Xt? Take a section s ∈ H0(P2;O(1)) which vanishes on a line
in P2. How many points lie in a line intersected with Xt? Looking at fundamental classes, we have
[Xt] = 3`, and by Bezout 3` · ` = 3.
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The point is that Hq(Xt; Ωp) can only possibly increase at special values of t. Assuming the Xt are
all diffeomorphic, then hk(Xt) is constant and hp,q(Xt) can’t jump. So the hp,q are invariants of
families.

Definition 31.0.7 (Hodge Diamond)
The Hodge Diamond of X ∈ Mfd(Kähler) (which won’t depend on the choice of Kähler form)
is given by

hn,n

hn−1,n hn,n−1

. . .
. . .

. . .
...

. . .

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

?

z 7→zz 7→z

?

Link to Diagram
Note that there are symmetries, e.g. ? takes h1,0 = hn−1,n and hp,q = hq,p.

Proposition 31.0.8(CYs have extra Hodge diamond symmetry).
If X is Calabi-Yau, so KX = OX (i.e the canonical bundle is trivial), then the Hodge diamond
has an orientation preserving (Z/2)2 symmetry, i.e. there is a rotation by π/2.

Note: this isn’t extra symmetry! Just a proof of
the symmetry in this case.

Proof (?).
Let Ωk

X be the sheaf of holomorphic k-forms, then there is a map

Ωk
X ⊗ Ωn−k

X → Ωn
X := KX

α⊗ β 7→ α ∧ β.

Fiberwise, this is a perfect pairing. If one takes α := ei1 ∧ · · · eik ∈
k∧
Tx
∨X, there is a unique

basis wedge β := ej1 ∧ · · · ∧ ejn−k then α ∧ β is a basis wedge e1 ∧ · · · ∧ en. So Ωk
X
∼= (Ωn−k

X )∨
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if X is Calabi-Yau. By Serre duality,

Hp(X; Ωq
X)∨ ∼= Hn−p(X; (Ωq

X)∨ ⊗KX).

�

Example 31.0.9(?): In dimension 3, take

X :=
{
x5

0 + · · ·+ x5
4 = 0

}
⊆ P4 ∈ Mfd3(C).

See Hodge diamond.

Remark 31.0.10: Note that K3s are special CYs. An example is C2/Λ for Λ a rank 4 lattice. This
is diffeomorphic to (S1)4, for example E × E.

32 Wednesday, March 31

E 32.1 Polyvector Fields e

Remark 32.1.1: We have a perfect pairing

Ωk ⊗ Ωn−k → K,

and thus Ωn−k ∼= K ⊗ (Ωk)∨. So we have

Hp(Ωk)∨ ∼= Hn−p((Ωk)∨ ⊗K) = Hn−p(Ωn−k),

and thus hp,k = hn−p,n−k, which recovers what we knew about ? : Hp,q → Hn−p,n−q.

So we don’t get anything new from the Serre duality argument.

What is special when X ∈ CY is that

Ωn−k ∼= (Ωk)∨ =
k∧
TX

for TX the tangent bundle. Note that taking the cotangent bundle gives forms, and instead this
gives a bundle of polyvector fields. For k = 1, we get a holomorphic vector field, which one might
think of as an infinitesimal biholomorphism.
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1∧ T = T

Example 32.1.2(?): P1 has a holomorphic vector field in coordinate charts C ∼=
{

[z : 1] ∈ P1
}

which we’ll write as z ∂
∂z

. The coordinate chart is P1 \∞, so we obtain
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0

∞

P1/C

Does this vector field V extend over ∞? The local coordinate at ∞ is w = 1/z, so z = 1/w and we
can compute

1
w

∂

∂ 1
w

= 1
w

∂
−1
w2 ∂w

= −w ∂

∂w
.

We have Ord0V = 1 and Ord∞V = 1, and so deg TP1 = 2.

Example 32.1.3(?): For
2∧
T , the local sections are of the form

∑
fI

∂

∂xI
∧ ∂

∂xJ
instead of

e.g. d

dxI
. This yields a Poisson structure H0(X,

2∧
T ), which is a generalization of symplectic

structure, which would be a section ω ∈ H0(X,
2∧
T∨) which is nondegenerate. This would yield

an isomorphism ω : T ∼−→ T∨ which is alternating, in which case ω−1 : T∨ ∼−→ T which is also
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alternating, so ω−1 ∈ H0(X,
2∧
T ). However the Poisson structure need not be nondegenerate.

Remark 32.1.4: Polyvector fields show up in Hochschild homology!

E 32.2 Algebraic Surfaces e

Definition 32.2.1 (Algebraic Surface)
An algebraic surface is a compact complex 2-fold (so of complex dimension and real dimension
4, admitting local charts to C2) which admits a holomorphic embedding into CPN for some N .

Remark 32.2.2: This implies that S is a projective variety cut out by homogeneous polynomials
in N + 1 variables in CPN .

Example 32.2.3(?): A non-example would be C2 \ {(0, 0)} /(x, y) ∼ (2x, 2y), The Hopf surface.
This is a complex manifold of complex dimension 2. It is compact, but has no projective embedding!

Example 32.2.4(?): Another non-example is C2 \ {0} /(x, y) ∼ (2x, 2eiθy), a twisted Hopf surface.
This admits no nontrivial holomorphic line bundles.

Remark 32.2.5: What makes having a projective embedding special? If S ↪→ CPN , it admits a
line bundle: OS(1) := OCPN (1)

∣∣
S .

Proposition 32.2.6(Existence of the Fubini-Study form/metric).
CPN is a Kähler manifold, and admits a distinguished 2-form ω := ωFS the Fubini-Study
form which induces the Fubini-Study metric gFS.

Remark 32.2.7: This can be written down as i2∂∂ log(
N∑
i=1

zizi), which is well-defined since scaling

comes out as a constant. Being closed follows from ∂∂ = d∂ since ∂2 = 0, which implies d(∂∂ · · · ) =
d2∂(· · · ) = 0. This defines a metric: this follows from checking in local coordinate charts, say z0 = 1,
and checking that g(x, y) := ω(x, Jy) yields a metric. This involves taking a fussy derivative!

Remark 32.2.8: Thus given S
ϕ
↪−→ CPN , we can restrict or take the pullback of ωFS to S. Then

ω := ϕ∗ωFS is still Kähler:

1. ω is closed: this is true for any smooth map at the level of smooth manifolds because of the
chain rule.

2. ω defines a metric: this is true because S is a complex submanifold. Suppose v, w ∈ TpS, and
we want to check if g(v, w) := ω(v, Jw). This equals ωFS(v, JW ), viewing TpS ⊆ TpCPN , so
this is equal to gFS(v, w).
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Remark 32.2.9: Note that a submanifold of a symplectic manifold is not necessarily a symplectic
submanifold, since there are Lagrangian submanifolds for which the symplectic form restricts to 0
and isn’t nondegenerate. However, Kähler forms do restrict.

Remark 32.2.10: So we get a Hodge diamond:

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

Link to Diagram

Here h2,0 = h0(Ω2) = h0(K) = g is called the genus in analogy with curves. Similarly, h1,0 = h0(Ω1)
is the space of holomorphic 1-forms, sometimes referred to as the irregularity. There is some
symmetry:

1

q q

g h0,0 g

q q

1

Link to Diagram

Exercise 32.2.11 (?)
Solve for h1,1 in terms of q and g.
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E 33.1 When Line Bundles are O of a Divisor e

Remark 33.1.1: Last time: if we have such a Hodge diamond, can we solve for h1,1?

1

q q

p h1,1 p

q q

1

Link to Diagram

Recall Noether’s formula

χ(S,OS) =
∫

ch(OS)td(S)

=
∫
S

x1
1− e−x1

x2
1− e−x2

= K2 + χTop(S)
12 ,

where c1(TS) = −K and χTop is due to the Chern-Gauss-Bonet formula. We have

χ(OS) = h0(OS)− h1(OS) + h2(OS) = 1− q + p.

On the other hand,

χTop(S) = 1− 2q + (2p+ h1,1)− 4q = 1− 4q + 2p + h1,1,

so

12(1− q + p) = K2 + 2− 4g + 2p+ h1,1 =⇒ h1,1 = 110− 8q + 10p−K2.
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Remark 33.1.2: Recall the extraordinarily important exact sequence

0→ O(−p)→ O → Op → 0,

where the right-hand side is the sheaf of holomorphic functions vanishing at p and this is an inclusion
into the sheaf of holomorphic functions, and the right-hand term is the skyscraper sheaf. There is
a similar exact sequence for an embedded curve C ↪→ S in a surface:

0→ OS(−C)→ OS → OC → 0,

where the left term is the sheaf of holomorphic functions vanishing on C. Note that this has no
global sections! Any function vanishing along a compact subset (?) are constant (?). Locally on an
open set U , one can write C ∩ U = V (fu), since algebraically this ring is locally a PID. So this is a
line bundle, where we can map into the trivial bundle by ϕ 7→ ϕ/fu. Thus

OS(U)/OS(−C)(U) ∼= OC(C ∩ U).

We then get surjectivity since every holomorphic function on C extends to a holomorphic function
on S.

Now letting E ∈ Vect(Hol), we can tensor this exact sequence to get

0→ E(−C)→ E → E|C → 0,

which is also exact since locally we have the splitting principle.

Proposition 33.1.3(Every line bundle over a smooth projective complex manifold
is O of a divisor).
Let X be a smooth projective a complex manifold. Then every line bundle over X is of the
form L = OX(D) for some divisor D =

∑
niDi ∈ Z[SubMfds(codim1)].

aSo X admits an embedding into some CPN .

E 33.2 Proof e

Proof (?).
Let H be a hyperplane section, i.e. an intersection of X with a generic hyperplane in CPN .

Lemma 33.2.1(Serre Vanishing Theorem).
For any vector bundle E and all i > 0, for k � 0 we have

hi(X, E ⊗ O(kH)) = 0.

Remark 33.2.2: We’ll not prove this! It requires some heavy analysis and the Kähler identities,
see Huybrechts complex geometry Prop 5.27.

33.2 Proof 124



33 Friday, April 02

We can write

χ(L⊗O(kH)) =
∫
X

ch(L⊗O(kH))td(X)

=
∫
X

ch(L) ch(H)ktd(X)

=
∫
X

(
1 + c1(L) + c1(L)2

2 + · · ·
)
·
(

1 + kh+ (kh)2

2 + · · ·+ (kh)dimX

(dimX)!

)
· (1 + td1(X) + td2(X) + · · ·) .

where h is the restriction of the generator of H2(CPN ;Z) to X. Note that for k large, the
dominating term grows like (kh)dimX , so asymptotically we have

· · · ∼
∫
X

kdimXhdimX

(dimX)! .

What is this dim(X)-fold intersection?

We can slice X by multiple hyperplanes, each homologically perturbed, and so
∫
X
hdimX is the

number of points where dimX generic hyperplanes intersect X, which is called the degree
degX. This roughly follows from

∫
X
ωdimX

FS > 0. Alternatively, suppose X ∩ H = ∅, then
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X ↪→ Hc = AN . Then each holomorphic coordinate restricts to a constant on X by the
maximal principle.
Back to what we were proving: we have

χ(L⊗O(kH)) ∼ ckdimX ,

for c some constant. By Serre Vanishing, hi(L⊗O(kH)) = 0 for k � 0, and so we obtain

h0(L⊗O(kH)) ∼ ckdimX =⇒ ∃k s.t. h0(L⊗O(kH)) > 0.

We conclude that there is some nonzero section s ∈ H0(X;L⊗O(kH)) for which O(Div s) ∼=
L⊗O(kH). Thus L ∼= O(Div s− kH), where Div s− kH is some divisor.

�

Remark 33.2.3: With some more work, one can show L ∼= O(C −D) for C,D smooth divisors.

E 33.3 Aside e

Remark 33.3.1: Felix Klein has a “proof” of the existence of a meromorphic function on a Riemann
surface. The argument roughly goes as follows: take your Riemann surface and make it out of
metal. Attach it to a battery:
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+

-

This induces an electric potential function V : C → R, where V is the real part of the meromorphic
function. Here V is a harmonic function away from p and q.

34 Monday, April 05

Remark 34.0.1: Last time: line bundles are of the form O(D) for D a divisor, and the extremely
important SES

0→ OS(−D)→ OS → OD → 0.

We now want to discuss an alternative characterization of the intersection form on an algebraic
surface. The next result comes from Beauville’s “Complex Algebraic Surfaces”:

Proposition 34.0.2(Formula for computing intersection numbers between complex
curves).
Let S ∈ Mfd2(C)compact, then the intersection number between complex curves C,D can be
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computed in the following ways:

C ·D = degOS(C) |D =
∑

p∈C∩D
len
p

(C ∩D),

where we’ll define len
p

soon.

Remark 34.0.3: This will count intersection points after a small perturbation. Note that not every
two curves will intersect transversely: consider P2 with a line C and a tangent conic D:

P2
C

Dp

lenp(C ∩D) = 2
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Proof (?).
We have the first equality because

C ·D =
∫
S

[C] _ [D] =
∫
C
i∗[D],

where i : C ↪→ S is the inclusion. This equality holds because if α ∈ Ω2 is a 2-form,∫
S

[C] · α =
∫
α|C .

Using the pullback commutes with taking Chern classes, we can write the∫
C
i∗[D] =

∫
C
i∗(c1(O(D))) =

∫
C
c1(i∗O(D)) =

∫
C
O(D) |C = degO(D) |C .

Note that this formula was symmetric, so we could have done this the other way to obtain
degOS(C) |D = degOS(D) |C .
For the second equality, consider the following 4-term exact sequence:

0→ OS(−C −D)
[sD,sC ]
↪−−−−→

p1
OS(−C)⊕OS(−D) [sD,−sC ]t−−−−−−→

p2
OS →

p3
OC∩D → 0.

For the first map, we have

{Functions vanishing on C +D} ↪→ {Functions vanishing on C} ⊕ {Functions vanishing on D} .

Locally we can write C = V (f) and D = V (g) for some holomorphic functions f, g ∈ Hol(U,C).
We have the following picture:

U

S

C

D
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We have sC ∈ H0(S;OS(C)) and sD ∈ H0(S;OS(D)) as global sections where V (sc) =
C, V (sD) = D. In a local trivialization, we can assume sC |U = f and sD|U = g. So the first
map is (sD, sC). The next map is [sC ,−sD]t as a column vector, i.e. given a section we map
it in the following way:

(ϕ1, ϕ2) ∈ H0(U,OS(−C)⊕OS(−D)) 7→ ϕ1 · sD − ϕ2 · sC .

Why is this exact? Considering the composition, we have

ϕ
p1−→ (ϕsD, ϕsC) p2−→ (ϕsD)sC − (ϕsC)sD = 0.

So we get im p1 ⊆ ker p2. Why do we have the reverse containment for exactness? Looking
locally, given a pair ϕ1, ϕ2 ∈ Hol(U ;C) such that ϕ1ϕ− ϕ2g = 0 and locally (ϕ1, ϕ2) ∈ ker p2,
we want to show that ϕ1 = gϕ, ϕ2 = fϕ for some f, g ∈ Hol(U ;C). Equivalently, we want to
show that

ϕ1f = ϕ2g =⇒ g
∣∣ ϕ1.

If this is true, then we can set ϕ := ϕ1
g
, since this would yield gϕ = ϕ1 and fϕ = fϕ1

g
= ϕ2.

Note that we can divide here because the ring Hol(U ;C) is a domain (i.e. it has no zero
divisors) on small sets.
Question
Is Hol(U,C) a PID in general?

Answer
No! Take U ⊆ C2 a ball around z = 0, then 〈x, y〉 is not principal.

However, this will form a UFD, which is weaker but still enough here. This is not obvious,
but can be proved using the Weierstrass preparation theorem. This should be believable since
R a UFD implies R[x] is a UFD, and C[x, y] ( Hol(U ;C) ( C[[x, y]], and the latter is a UFD.
So we do get exactness at this position.
For exactness at the next position OS(−C) ⊕ OS(−D) → OS , locally we have (ϕ1, ϕ2) 7→
ϕ1f − ϕ2g where V (f) = C ∩ U and V (g) = D ∩ U . We can write ϕ1f − ϕ2g = 〈f, g〉 locally,
so the cokernel sheaf of p2 is given by

coker p2(U) := OS(U)
im p2

= OS(U)
〈f, g〉

.

By definition, this is equal to OV (f,g) = OC∩D, and if C ∩ D ∩ U = ∅ then OC∩D(U) = 0.
So let p ∈ OC∩D and let Up 3 p which contains no other points q ∈ C ∩ D, since the set
of intersection points is isolated (and thus finite). Note that compactness here prevents
accumulation of intersection points. In this case, OC∩D(Up) will be a finite-dimensional vector
space Cd, and we’ll define len

p
(C ∩D) := d.

�

Example 34.0.6(?): Let U = C2 and take f = y so C := V (f) is the x-axis, and set g = y − x2
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so D := V (g) is a parabola. We’re then considering
Hol(C2)

yHol(C2) + (y − x2) Hol(C2) = Hol(C2)
〈y, x2〉

.

Elements in the ideal can be expanded as power series of the form a0,1y + a2,0x
2 + a1,1xy + a2,2y

2,
where there is no a1,0 ∼ x1y0 coefficient, nor any a0,0 ∼ x0y0 coefficient. So this quotient is
isomorphic to C1⊕Cx, which is 2-dimensional, so len

(0,0)
V (y)∩V (x) = 2. Geometrically we have the

following, where this is picking up the multiplicity 2 intersection:

C2

C

D

Remark 34.0.7: What’s the payoff of this algebraic work? We can compute the Euler characteristic
as

χ(OC∩D) = h0(OC∩D) =
∑

p∈C∩D
len
p

(C ∩D).

But by additivity of χ over exact sequences, we also have

χ(OC∩D) = χ(OS)− χ(OS(−C))− χ(OS(−D)) + χ(OS(−C −D))
HRR=

∫
S

(ch(OS)− ch(OS(−C))− ch(OS(−D)) + ch(OS(−C −D))) td(S)

= c1(OS(−C)) · c1(OS(−D))
= (−[C]) · (−[D])
= C ·D.

Remark 34.0.8: Next time: adjunction formula that allows computing genus for surfaces.

Monday, April 05 131



35 Wednesday, April 07

35 Wednesday, April 07

Remark 35.0.1: Last time: let C,D ⊂ S be distinct curves, then the intersection number is given
by

C ·D = degOS(C) |D =
∑

p∈C∩D
len
p

(C ∩D)

where len
p

(C ∩D) := dimCO(U)/ 〈f, g〉 where V (f) = C ∩U and V (g) = D∩U with f, g ∈ O(U) =
Hol(U). Here we’re also assuming that C ∩D ∩ U = {p}.

E 35.1 Adjunction Formula e

Remark 35.1.1: We’ll now discuss a way to compute the genus of a curve in a surface.

Proposition 35.1.2(Adjunction Formula).
Let C ⊂ S be a smooth curve, then KC = (KS ⊗ OS(C)) |C , which is restriction of a line
bundle. Note that KC = Ω1

C is the sheaf of holomorphic 1-forms, but KS = Ω2
S since we take

the sheaf of top forms.

Proof (?).
Let s ∈ Ω2

S ⊗ O(C)(U) be a section, then sC is a section of OC vanishing along c and have
s/sC a meromorphic section of Ω2

S(U). Here dividing by sC is like tensoring with O(−C).
This can have poles along {sC = 0} = C up to first order.
There is a residue map: let p ∈ C be a point and γp(r) be an oriented loop in S \ C around
p ∈ C of radius r (a meridian):

γp C

p
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We can assemble a 1-form from the following contour integral:

Res
C

s

sC
:= lim

r→0

1
2πi

∮
γp(r)

s

sC
∈ Ω1(U ∩ C).

Locally C = V (x) in a coordinate chart of C2 where sC = x, so this is roughly of the form∮
|x|=r

f(x, y)
x

dx ∧ dy, which is a one form in the variable y. Note that if f were analytic,

writing f = a0,0 + a0,1y + a0,2y
2 + · · ·+ a1,0x+ · · ·, we would have

Res
C

s

sC
= (a0,0 + a0,1y + a0,2y

2 + · · · ) dy = f(0, y) dylocally,

which picks out all components not involving x. This defines an O-linear map

Ω2
S ⊗OC → Ω1

C

s 7→ Res
C

s

sC
,

since it doesn’t involve any derivatives of f . Note that this only depends on the restriction
of s to C. What is the kernel of Res

C
? We claim it is Ω2S , which follows from the fact that

the contour integral of any holomorphic form ω will integrate to zero. We thus get a SES of
sheaves

0→ Ω2
S
·sC−−→ Ω2

S ⊗O(C)→ Ω1(C)→ 0.

where we send holomorphic forms to meromorphic forms with at most order 1 poles along C
to holomorphic 1-forms on C. The residue map is surjective since we can take

Res
x=0

g(y)
x

dx ∧ dy = g(y) dy,

so locally an arbitrary 1-form is a residue of some 2-form with simple poles along C. We have
a SES

0→ O(−C) ·sC−−→ O → OC → 0,

and tensoring with the line bundle Ω2 ⊗O(C) we obtain

0→ Ω2
S → Ω2

S ⊗O(C)→ Ω2
S ⊗O(C) |C → 0.

Since cokernels are unique, we have Ω1
C
∼= Ω2

S ⊗O(C) |C , which yields the adjunction formula.
�

Corollary 35.1.3(The Genus Formula).
We have

deg Ω2
S ⊗O(C) |C = deg Ω1

C = 2g − 2

where g = g(C) is the genus of C. On the other hand, the left-hand side is equal to

(KS + C) · C = 2g(C)− 2.
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Example 35.1.4(?): We showed KPn = O(−n− 1) where O(−1) was the tautological line bundle
over Pn. So for example KP2 = O(−3) = −3L where L ∈ H2(P2,Z) is a hyperplane (here a line) in
P2.

Corollary 35.1.5(Formula for genus of a curve in terms of degree).
Let f be a degree d homogeneous polynomial in x, y, z, then V (f) ⊆ P2 = {[x : y : z]}. If
C := V (f) is a smooth complex curve, then applying the genus formula yields

2g(C)− 2 = (−3L+ dL) · dL.

Using that L2 = 1, this equals d(d− 3) and thus

g(C) = d2 − 3d+ 2
2 =

(
d− 1

2

)
.

Example 35.1.6(?): If d = 3 and say f(x, y, z) = x3 + y3 + z3, then V (f) ⊆ P2 has genus(
3− 1

2

)
= 1. So this is diffeomorphic to a torus.

Example 35.1.7(?): If d = 2 then g(C) = 0, so conics in P2 have genus zero, and we proved that
every genus zero curve is isomorphic to P1. So conics in P2 are isomorphic to P1 (as are lines of
course!).

Example 35.1.8(?): If d = 4 then g(C) = 3

Theorem 35.1.9(Harnack Curve Theorem).
Noting that RP2 ⊂ CP2 = P2, the number nC of connected components of a curve C ∩ RP2

satisfies

nC ≤ 1 + g(C).

Remark 35.1.10: See the Trott curve:

144(x4 + y4)− 225(x2 + y2) + 350x2y2 + 81 = 0,

whose plot looks like the following:

f(x,y) = 12^2*(x^4 + y^4) - 15^2*(x^2 + y^2) + 350*x^2*y^2 + 81
implicit_plot(f, (x,-1,1), (y,-1,1))
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Figure 4: image_2021-04-09-16-40-49

Example 35.1.11(?): Consider S := P1 × P1, which is homeomorphic to S2 × S2. The homology
is given by Z in degrees 0 and 4, Z⊕2 in degree 3, and 0 elsewhere. What is the intersection form
on Z⊕2 = H2(P1 × P1;Z)? The two generators are f1 = [S2 × pt], f2 = [pt× S2]. We can compute

• f1 · f1 = 0
• f1 · f2 = 1
• f2 · f2 = 0

This is because we can perturb these to be transverse:
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f2

f ′2

f1f ′1
S2

S2

Since f2 ∩ f ′2 = ∅, we have f2 · f ′2 = f2 · f2 = 0, and similarly with 1. So the Gram matrix is

G =
[
0 1
1 0

]
.

So setting C = P1×P1 = V (f2,3), a function of bidegree (2, 3), writing the coordinates as [x : y], [z :
w], we can write this as x2z3 + y2z2w + xyw3 = 0. We get

2g(C)− 2 = (KP1×P1 + 2f1 + 3f2) · (2f1 + 3f2) = f2 · (2f1 + 3f2) = 2,

since KP1◦ = −2f1 − 2f2 and so g(C) = 2.

36 Friday, April 09

Remark 36.0.1: Recall the adjunction formula: for D ⊂ X ∈ MfdC a codimension 1 complex
submanifold, we have

KD = (Kx +Ox(0)) |D.

We’ll apply this to curves C in a surface S. Recall the genus formula, which was given by 2g(C)−2 =
(C +KS) · C. For example, a degree 4 equation in P2 carves out a genus g(C) = 3 complex curve.
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Remark 36.0.2: Recall that line bundles on CPn were in bijection with Z, where send d to a bundle
O(d) := OCPN (d). We produced the tautological line bundle O(−1) whose fiber over x ⊆ CPn is
the line in Cn spanned by its coordinates. We have O(−1)∨ := O(1), and O(n) := O(1)⊗n.
Alternatively, it was characterized in terms of homogeneous functions, where the fiber O(n)x are
the linear functions L on lines {λx} → C such that L(λp) = λnL(p). Noting that these are linear
functions, such L form a 1-dimensional C-vector space.

Example 36.0.3(K3 Surfaces): The classic example is x0 ∈ O(1)x since x0(λp) = λx0(p).
Similarly, x2

0 + x1x2 ∈ O(2)x since

x2
0 + x1x2(λp) = λ2(x2

0 + x1x2(p)).

Remark 36.0.4: Note that the global sections were given by Γ0(Pn,O(d)) = H0(Pn;O(d)) was
the span of degree d monomials in x0, · · · , xn. For example x2

0 + x1x2 is a well-defined element of
O(2)p which varies holomorphically with p, yielding a section:

CPn

O(2)

P
x2

0 + x1x2

Example 36.0.5(?): For a K3 surface, consider S =
{ 4∑
i=0

x4
i = 0

}
⊂ CP3. By the adjunction

formula,

KS = (KCP3 ⊗OCP3(S))|S .

Note that if s ∈ H0(L), we can recover O(DivS) = L. Moreover, KCP3 = O(−4) and OCP3(S) =
O(4) since we can view the formula as a function on the tautological line, which yields a section.
So we get KS = O(−4)⊗O(4) = O(0) = O, i.e. these yield actual functions on CPn since they’re
products of functions that scale by λ−4 and functions that scale by λ4. We’re using the fact that
Op=[x0:···:xn] are functions L such that L(λp) = λ0L(p) = L(p), which yields a well-defined function
on CPn. So quartics in P3 have trivial canonical bundle, i.e. KS = OS for S = V (x4

0 +x4
1 +x4

2 +x4
3).
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Remark 36.0.6: We know that H0(S,KS) are the globally holomorphic 2-forms on S, and here
this is isomorphic to H0(S,OS) = CΩS for some single holomorphic 2-form. Moreover Div(ΩS) = 0
since O(Div(ΩS)) = KS = OS . So these are the analogs of elliptic curves in dimension 2, since for
example E := C/Λ has a nonvanishing section dz ∈ H0(E,KE), and we can write E = V (f) for f
a cubic in P3, and we computed the genus of cubics. Moreover, every genus 1 curve is C mod a
lattice.

Remark 36.0.7: Recall an exercise from the notes: computing the Hodge diamond of a genus 5
curve. We’ll compute the diamond for a K3 surface:

h2,2

h3,1 h1,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

Link to Diagram

We know h2,0 = H0(S,Ω2
S), which yields 1s:

1

h3,1 h1,3

1 h1,1 1

h1,0 h0,1

1

Link to Diagram

We’ll use the following theorem:
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Theorem 36.0.8(Lefschetz Hyperplane Theorem).
Let X ⊂ Pn with dimX > 3. Then π1(X) ∼= π1(X ∩H) for H a hypersurface intersection X
at a smooth codimension 1 complex manifold.

Remark 36.0.9: Applying this to X = P3, we have V (x4
0 + · · ·+ x4

3) = S, we have π1(P3) = π1(S).
We can write P3 = C ∪ C2 ∪ C4, which is a cell decomposition with cells only in degrees 0,2,4, and
so in fact π1(Pn) = 0.

Corollary 36.0.10(h1 of K3 surfaces).
K3 surfaces are simply connected, and h1(S;C) = 0.

Note that anything embedded in projective space as a complex submanifold is Kähler by restricting
the Fubini-Study form. Using simple connectedness and Serre duality, we have

1

0 0

1 h1,1 1

0 0

1

Link to Diagram

We know χ(OS) = (1/12)(K2 + χTop), and since KS = OS is trivial, we have c1(OS) = 0. Noting
that hp,q = H(Ωp), so we can sum the lower-right part of the diamond to get χ(OS) = 1− 0 + 1 = 2,
since we take p = 0 to get Ωp = O. Computing χTop, we get h1,1 = 20.

37 Monday, April 12

Remark 37.0.1: Last time: the Lefschetz hyperplane theorem. Intersecting a projective variety
of dimension d ≥ 3 with a hypersurface S, the map π1(P3) → π1(S) is an isomorphism. We saw
that K3 surfaces were thus simply connected, and h1(S;C) = 0, so we could compute the Hodge
diamond.

Example 37.0.2(?): What is the Hodge diamond for a cubic surface S ⊆ P3, such as
∑

x3
i = 0?

We first need to compute the canonical bundle K, for which we have a useful tool: the adjunction
formula. This say KS = (KP3 ⊗ PP3(S)) |S = (O(−4)⊗O(3)) |S = O(−1)|S .
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Proposition 37.0.3(If a holomorphic line bundle has a section, its inverse doesn’t).
Let L → X be a holomorphic line bundle. If h0(L−1) > 0, then either L = O or h0(L) = 0.

Slogan 37.0.4
If a line bundle has a section, its inverse does not.

Proof (?).
Suppose that both L,L−1 have a section, so h0(L), h0(L) > 0. Let s, t be sections of each,
then st ∈ H0(L ⊗ L−1) = H0(O) = C. So taking zero loci yields Div(s) + Div(t) = 0 Writing
these as Div(s) :=

∑
nDD,Div(t) :=

∑
nCC, we have nD, nC ≥ 0, which implies that

Div(s) = Div(t) = 0. So s, t are nowhere vanishing, making O ·s−→ L is an isomorphism.
�

Corollary 37.0.5(H0 of cubic surfaces).
For S a cubic surface, H0(S;KS) = 0.

Proof (?).
This follows because KS = OS(−1), so K−1

S = OS(1) which has a nontrivial section: namely
OCP1(1) which has sections vanishing along hyperplanes.
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P3

H

S

H2

H1

Letting H be a hyperplane containing S, there exists an f ∈ H0(P3;OCP3(1)). Since Div(f) =
H, the restriction f |S is a section of OS(−1) = K−1

S which is not identically zero and vanishes
along H ∩ S.

�

We now know h0(S;KS) = 0, and this equals h0(S,Ω2) = h2,0(S), so we have the following Hodge
diamond:
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1

0 0

0 h1,1 0

0 0

1

Link to Diagram

We have h0,1 + h1,0 = h1 = 0 since S is simply connected. We can now apply Noether’s formula
as before: χ(OS) = 1

12(K2
S + χTop(S)). We have KS = OS(−1), so K2

S = c1(O(−1))2, and

χ(OS) = 1−0+1 = 1. We now want to compute
∫
S

(−c1(OS(1)))2. We know c1(L) = [Div s] where

s ∈ H0(L) is a section of a line bundle. This equals [H ∩ S]. On the other hand,
∫
S
c1 (OS(1))2 is

the self-intersection number of H ∩ S.

Take H1 := {x0 = 0} and H2 := {x1 = 0}. Points in this intersection are of the form [0 : 0 : 1 : ζa6 ]
where a = 1, 3, 5 since this is in the triple intersection H1∩H2∩S. So there are exactly 3 points here,
and in fact degS = 3. This is the same as integrating

∫
P3
c1(S)c1(O(1))c1(O(2)), which contains 3

elements in H2 and lands in H6, so this yields a number.

We thus have KS = OS(−1) := OCP3(−1) |S . Thus χTop(S) = 9 and h1,1 = 7.

Example 37.0.6(Hypersurfaces): Note that a degree 5 surface (a quintic) such as x5
0 + x5

3 = 0
would be harder, since h2,0 6= 0. We would get KS = O(−4) ⊗ O(5) |S = OS(1), and there are
nontrivial sections so h0(KS) = spanx0, x1, x2, x3. This follows because there is a map given by
restriction which turns out to be an isomorphism

0→ H0(P3;O(1)) resS−−→ H0(S;O(1))→ 0
f 7→ f |S .

Injectivity isn’t difficult, surjectivity is harder. We have a SES

0→ OCP3(−S)→ OCP3 → OS → 0.
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Tensor all of these with O(1) to obtain

0→ O3
CP(−4)→ OCP3(1)→ OS(1)→ 0.

Taking the associated LES yields

H1(OCP3(−4)) =? 0

H0(OCP3(−4)) = 0 H0(OCP3(−1)) = C 〈x0, x1, x2, x3〉 H0(OS(1))

0

Link to Diagram

This gives us a way to relate things back to the cohomology of CP3. Showing that the indicated
term is zero involves computing Čech cohomology.

It turns out that h0(KS) = 4 here, and it turns out that the Hodge diamond is the following:

1

0 0

4 h1,1 = 45 4

0 0

1

Link to Diagram

Here K2
S = c1(OS(1))2 = 5 and χTop = 55.

Example 37.0.7(Products): Consider now a product of curves C ×D of genera g, h respectively.
Computing the Hodge diamond is easy here due to the Kunneth formula:

Hk(S;C) =
⊕
i+j=k

H i(C;C)⊗Hj(D;C).
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What is the actual map? Take cohomology classes [α], [β], closed i and j forms respectively. The
surface has two maps:

S C

D

πC

πD

Here we send [α]⊗ [β] 7→ [π∗Cα ∧ π∗Dβ] where we take pullbacks. Note that πD, πC are holomorphic
maps, and pullbacks of (p, q) forms are still (p, q) forms. Thus the Kunneth formula gives a
decomposition

Hp,q(S;C) =
∑

i1+j1=p
i2+j2=q

H i1,j1(C)⊕H i2,j2(D).

So we can “tensor” the Hodge diamonds:

1 1

g g h h

1 1

1

g + h g + h

gh 2 + 2gh gh

g + h g + h

1

Link to Diagram

Remark 37.0.8: Check out complete intersections.
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38 Blowups and Blowdowns (Wednesday,
April 14)

Definition 38.0.1 (Blowup)
Let S ∈ Mfd2

C be a complex surface and p ∈ S a point, and let (x, y) be local holomorphic
coordinates on a neighborhood of U containing p. Without loss of generality, p = (0, 0) in
these coordinates. Set U∗ := U \ {p}, and consider the holomorphic map

ϕ : U∗ → U × CP2

(x, y) 7→ ((x, y), [x : y]).

We’ll define the blowup at p to be Bl
p

(U)cl(ϕ(U∗)) to be the closure of the image of U∗.

Observation 38.0.2
There is a map Bl

p
(U) → U given by projection onto the first coordinate which is the identity on

U∗.

q = (x, y)

(0, 0)

U

S

Here q maps to the pair (q, s) where s is the slope of a line through q, and this will be continuous.

? Missed part

We claim that π−1
U (0, 0) ⊂ Bl

p
(U) = {p}×CP1, and for a fixed 9x0, y0) ∈ U∗, considering ϕ(x0t, y0t)
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as t→ 0, we can write

((x0t, y0t), [x0 : y0]) ∈ U × CP1

t→0
( (0, 0)[x0 : y0]) ⊂ cl(ϕ(U∗)).

So approaching (0, 0) along any slope s just yields the point (0, s) in the blowup.

Remark 38.0.3: We can thus write

Bl
p
SS \ {p}

∐
U∗ Bl

p
U.

Writing π : Bl
p
S → S, we have π−1(p) ∼= CP1 and π−1(q) is a point for all q 6= p. Then all limits

approaching p in S turn into distinct limit points in Bl
p

(S)

p

CP1

Blp(S)

S

Slogan 38.0.4
The blowup separates all tangent directions at p.

Example 38.0.5(?): Consider {
y2 = x3 − x2

}
⊆ C2.

This yields a nodal curve with a double-point:
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S

Here we’ll consider Bl
(0,0)

C2.

Definition 38.0.6(Strict Transform)
Letting C ⊂ S be a curve, define the strict transform

Ĉ := cl(π−1(C \ {p})).

Note that approaching by different sequences yields different limiting slopes

1
−1

[1 : 1]

[1 : −1]

The curve in the blowup is called the exceptional divisor.
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Example 38.0.7(?): Consider all lines in CP2 through [0 : 0 : 1], which we can model in the
following way:

Figure 5: image_2021-04-14-14-18-15

These are in bijection with CP1 since there is always a unique line through [0 : 0 : 1] and [s : t : 0],
where the latter is a copy of CP1 as s, t are allowed to vary. So consider Bl

p
CP2 for p = [0 : 0 : 1],

and consider the strict transforms of the lines L to obtain L̂ ⊂ Bl
p
CP2. Any two are disjoint since

they pass through different slopes of the exceptional divisor. Thus the red lines in the blowup go
through distinct slopes, yielding a fibration of CP1s:
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Figure 6: image_2021-04-14-14-24-31

So consider the map

σ : Bl
p
CP2 → CP2

p ∈ L̂ 7→ [0 : s : t].

which projects points to the boundary copy of CP1:

We can’t necessarily project from the blue point itself, but if we add in the data of a tangent vector
at that point, the map becomes well-defined. Thus the blowup makes projecting from a point in
CP2 to a line in CP2 a well-defined map on BlCP2.
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Remark 38.0.8: This is referred to as F1, the first Hirzebruch surface.

Proposition 38.0.9(Blowup for smooth manifolds is connect-sum with CP2).
For S ∈ MfdR(C∞) a smooth manifold, we can identify

Bl
p
S = S#CP2.

Proof (?).
It suffices to work in coordinate charts and prove this for p = 0.

Claim:

Bl
0
C2 = Tot(OCP1(−1)).

Recall that this was the tautological line bundle that whose fibers at a point p ∈ CP1 was the
line in C2 spanned by p. We can write this as

{
[x : y]

∣∣∣ (x, y) ∈ L[x:y]
}
:

Figure 7: image_2021-04-14-14-32-58

We have O(−1) ∼−→ O(1), where this map is a diffeomorphism that can be constructed using a
Hermitian metric. However we can identify O(1) with the set of lines in CP2 through [0 : 0 : 1],
leaving out the point [0 : 0 : 1] itself. This follows by checking that there exists a section that
vanishes at only one point. In fact TotO(1) is diffeomorphic to the complement of a ball in
CP2, which ends up precisely being taking a connect-sum. So we obtain Bl

0
C2 ∼= C2 #CP2.

�
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Proof (Alternative).
Cut out a ball B4 ⊆ C2, so ∂B4 = S3 =

{
|x|2 + |y|2 = ε

}
. Then Bl

0
C2 is the result of

collapsing S3 along an S1-foliation (eiθx, eiθy). This has an S2 quotient, yielding the Hopf
fibration

S1 ↪→ S3 → S2.

�

Exercise 38.0.10 (?)
Show that the blowup over R is gluing in a mobius strip.

See the Tate curve!

39 Friday, April 16

Remark 39.0.1: Last time: we defined the blowup Bl
0
C2 as the closure of

Bl
0
C2 := cl

{
(x, y), [x : y]

∣∣∣ (x, y) 6= 0
}
⊆ C2 × CP2.

This had the effect of adding in all limits of slopes as points approach (0, 0) ∈ C2. We defined this
using local holomorphic coordinate charts to C2. Why is this a complex manifold? We can cover it
with charts: given a point (x, µ) where µ = y

x
∈ P1 is a slope, we can form a first chart by sending

(x, µ) 7→ {(x, xµ), [1 : µ]} .

This yields the first chart, as long as the slope is not infinite, so this applies to all finite slopes. The
second chart will work for all nonzero slopes, where we take

(v, y) ∈ C2 7→ {(yv, y), [v : 1]} .

Note that restricting to (x, y) = (0, 0), these give the standard C-charts on CP2. How do these two
charts glue? When µ, ν 6= 0, we have well-defined transition functions µ = ν−1 and x = yν.

Remark 39.0.2: Recall that for a complex curve C ∈ Mfd2
C, we have the blowup morphism

π : Bl
p
S → S and we defined the strict transform Ĉ := clπ−1(C \ {pt}).

Friday, April 16 151



39 Friday, April 16

̂
C

E

̂
D

p

C

D

S

π

̂
S

Here E = CP1 is the exceptional curve of the blowup, and intersects the curve twice. This has the
effect of changing D into an embedded curve.

Note that here π∗D = D̂+2E, where we’ll define this
next.

Definition 39.0.3 (Pullback of a Curve)
The pullback of C, denoted π∗C, is constructed by writing C = V (f) locally. We then set
π∗C := V (π∗f).

Example 39.0.4(?): Take C := {y = x} ⊂ C2 and consider Bl
0
C2. Then

Ĉ := cl
{

((x, x), [x : x])
∣∣∣ x 6= 0

}
= cl

{
((x, x), [1 : 1])

∣∣∣ x 6= 0
}
⊂ Bl

0
C2.

By projecting onto the first component, π : Ĉ ∼−→ C is an isomorphism. We can compute the
pullback: we first have π∗C = π∗V (y − x) = V (π∗(y − x)), so consider π∗(y − x) in the coordinate
chart (x, µ). In this chart, y = xµ, and so π∗(y − x) = xµ− x = x(µ− 1), and so

V (π∗(y − x)) = V (x) + V (µ− 1) =⇒ π∗C = E + Ĉ as a divisor.

Example 39.0.5(A nodal curve): Take the nodal curve C =
{
y2 − x3 + x2

}
:

Friday, April 16 152



39 Friday, April 16

The pullback is then given by

π∗C = V (π∗(y2 − x3 + x2))
= V (µ2x2 − x3 + x2)
= V (x2) + V (µ2 − x+ 1)
= 2V (x) + V (µ2 − x+ 1).
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µ

x

x = µ2 + 1

µ = iµ = −i

2E
̂
C

In the second coordinate chart, we have

π∗C = V (y2 − y4ν3 + y2ν2) = 2V (y) + V (1− yν3 + ν2.
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ν

y

Gluing along µ, ν 6= 0 we get the following picture for π∗C:
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2E
̂
C

Writing C = {x = 0}, note that Ĉ doesn’t intersect the first coordinate chart. In the µ, x coordinate
chart, for example, we can’t get an infinite slop:
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· · ·

x

µ

E 39.1 Change in Canonical Bundle Formula e

Question 39.1.1
Given Ω2

S = KS → S the canonical line bundle, can we relate KBlp S to KS?

Proposition 39.1.2(Canonical of a blowup).

KBlp S = π∗KS ⊗OS(E).

Proof (?).
We’ll abbreviate Ŝ := Bl

p
(S). Let ω be a local section of KS near p, and in coordinate charts

(x, y), write ω = dx ∧ dy. In the first coordinate chart on the blowup, we can write

π∗ω = dx ∧ d(xµ) = dx ∧ (µdx+ xdµ) = x dx ∧ dµ.
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40 Monday, April 19

Note that V (x) = E, and that pulling back the canonical bundle yields something vanishing
to order 1 (?). So π∗KS is isomorphic to the subsheaf of K

Ŝ
whose sections vanish along E,

which is isomorphic to K
Ŝ
⊗O(−E), since the latter are the functions which vanish along E.

Tensoring both sides with O(E) yields

K
Ŝ

= π∗KS ⊗OŜ(E)

as a line bundle, or in divisor notation K
Ŝ

= π∗KS +E where we take the divisor representing
the line bundle instead.

�

Remark 39.1.3: Using π : Ŝ → S, we get pullback maps

π∗ : H2(S;Z)→ H2(Ŝ;Z)
π∗ : Div(S)→ Div(Ŝ).

These are compatible in the sense that

[π∗C] = π∗[C].

. This can be seen by expressing OS(C) ∼= OS(A− b) for A,B hyperplane section. We can assume
A,B avoid p in their projective embeddings, making [C] = [A] − [B] since c1(OS(c)) = [C] is the
fundamental class of C. So it suffices to prove the formula for curves not passing through p, but
this is obvious! It follows from the fact that π : Ŝ \ E ∼−→ S \ {p} is an isomorphism.

Remark 39.1.4: In fact,

H2(Ŝ;Z) ∼= π∗H2(S,Z)⊕ Z[E].

, which follows from Mayer-Vietoris. So this adds one to the rank.

40 Monday, April 19

Remark 40.0.1: Recall that we have the following:

H2(Ŝ;Z) = π∗H2(S;Z)⊕ Z[E]

where E is the exceptional curve, which follows from Mayer-Vietoris. We can write Ŝ = S#CP2,
and by excision H2(S \ B4) = H2(S). So we get a LES
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H3(S, S \B)

H2(S \ B4) H2(S) H2(S, S \B) = 0

H1(S) H1(S, S \B) = 0

∼

Link to Diagram

We have H i(S, S \ B4) = H i(T, T \ B4) = H i(B4, ∂), and by Poincaré-Lefschetz duality, this is
isomorphic to H4−i(B4). This is equal to 0 if i 6= 0 or 4. Writing Ŝ = (S \ B4)

∐
S3(CP2 \ B4) and

applying Mayer-Vietoris yields

H2(Ŝ) H2(S \ B4)⊕H2(CP2 \ B4) H2(S3) = 0

· · · H1(S3) = 0

∼

Link to Diagram

Combining this with the isomorphisms from earlier, we can write the direct sum as H2(S)⊕H2(CP2)
where the latter is equal to Z` = [E] for ` a line class.

Question 40.0.2
What is the intersection form on H2(Ŝ;Z)?

Remark 40.0.3: Using the proposition, along with the fact that

1. its an orthogonal decomposition,
2. π∗ is an isometry, and
3. [E]2 = −1,

we know that the Gram matrix for H2(Ŝ) is the same as that for H1(S)⊕ [−1], i.e. it is of the form[
A 0
0 −1

]
.

Monday, April 19 159

https://q.uiver.app/?q=WzAsNixbMiw0LCJIXjEoUykiXSxbNCw0LCJIXjEoUywgU1xcc20gQik9MCIsWzAsNjAsNjAsMV1dLFswLDIsIkheMihTXFxzbSBcXEJCXjQpIl0sWzIsMiwiSF4yKFMpIl0sWzQsMiwiSF4yKFMsIFNcXHNtIEIpPTAiLFswLDYwLDYwLDFdXSxbMCwwLCJIXjMoUywgU1xcc20gQikiXSxbMCwxXSxbMSwyXSxbMiwzLCJcXHNpbSJdLFszLDRdLFs0LDVdXQ==
https://q.uiver.app/?q=WzAsNSxbNCwyLCJIXjEoU14zKSA9MCAiLFswLDYwLDYwLDFdXSxbMCwwLCJIXjIoXFxoYXR7U30pIl0sWzIsMCwiSF4yKFNcXHNtIFxcQkJeNCkgXFxvcGx1cyBIXjIoXFxiYXJ7XFxDUF4yfSBcXHNtIFxcQkJeNCkiXSxbNCwwLCJIXjIoU14zKSA9MCIsWzAsNjAsNjAsMV1dLFsyLDIsIlxcY2RvdHMiXSxbMCwxXSxbMSwyLCJcXHNpbSJdLFsyLDNdLFs0LDBdXQ==


40 Monday, April 19

Proof (of 2).
Consider [Σ1], [Σ2] ∈ H2(S;Z) where the Σi are real surfaces, and suppose Σ1 t Σ2 and
p 6∈ Σ1,Σ2. We then have

[π−1(Σi)] = π∗[Σi].

S

Σ1

Σ2

p0

π−1Σ1

π−1Σ2

E

π

̂
S

The intersection number is preserved because π is generically injective.
�

Proof (of 1).
It also follows that if p 6∈ Σ, π∗[Σ] = [π−1Σ] where the latter is disjoint from E. So π∗[Σ]·E = 0.

�

Proof (of 3).
Since [E] ∼ [line] ∈ CP2 \ B4, and E2 = [E] · [E] = −1 since the orientations disagree in CP2.

�

Proposition 40.0.4(Computing the pullback of a curve).
Let C ⊂ S be a curve on a surface and suppose C is locally cut out by

f(x, y) = am,0x
m + an−1,1x

m−1y + · · ·+ a0,my
m +O(xm+1, ym+1),

near p ∈ S, so the lowest order terms in the Taylor expansion are degree m. Then

π∗C = Ĉ +mE.
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Proof (?).
On the blowup, take local coordinates (x, µ) where y = xµ and write

V (π∗f) = V (xm
(
am,0 + am−1,1µ+ · · ·+ a0,mµ

m +O(xm+1, µm+1)
)
)

= mV (x) + V (am,0 + · · · )
= E + Ĉ.

�

Example 40.0.5(?): Take

C =
{
y2 = x3 − x2

}
⊆ C2,

where Bl
0
C2 → C. Then π∗C = Ĉ + 2E, so

C = V (x2 + y2 +O(deg(3)).

.

Corollary 40.0.6(Computing the square of the strict transform).
Ĉ2 = C2 −m2.

Proof (?).
Write π∗C = Ĉ +mE, then Ĉ = π∗C −mE implies that Ĉ2 = (π∗C −mE)2. This equals

(π∗C)2 − 2mπ∗C · E +m2E2 = C2 − 0−m2

= C2 −m2,

where we’ve used (2), (1), and (3) respectively to identity these terms.
�

Example 40.0.7(?): Let

C :=
{
zy2 = x3 − x2z

}
⊂ CP2,

then C2 = (3`)2 = 9. The multiplicity of C at the point [0 : 0 : 1] is 2. Taking the coordinate
chart {z = 1} ∼= C2, we recover the curve y2 = x3 − x2 which has multiplicity 2 at (0, 0). We can
conclude Ĉ = Bl

[0:0:1]
CP2 has self-intersection number Ĉ2 = 9− 22 = 5.

Theorem 40.0.8(Castelnuovo Contractibility Criterion).
Let S be a complex surface and let E ⊂ S be a holomorphically embedded CP2 such that
E2 = −1 Then there exists a smooth surface S and p ∈ S such that S = Bl

p
S with E as the

exceptional curve.

Definition 40.0.9 (Blowdown)
This S is called the blowdown of S along E.
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Remark 40.0.10: Note that this is the exact situation when we blow things up. This is a converse:
if we have something that looks like a blowup, we can find something that blows up to it.

Exercise 40.0.11 (?)
Show that the category MfdC is not closed under blowdowns, i.e. there is no blowdown of a
holomorphically embedded CP1, say E, with E2 = 1.

Hint: think about CP2.

Remark 40.0.12: This is interesting because there does exist a blowdown in the smooth category
Mfd(C∞(R)). This is because S → S#CP2 and S → S#CP2 are indistinguishable here. One can
just reverse orientations.

Example 40.0.13(?): A complex surface with a holomorphically embedded CP1 of self intersection
−1. Let p, q ∈ CP2 be distinct points, and let Bl

p,q
CP2 := Bl

p
Bl
q
CP2. Note that these two operations

commute since these are distinct points and blowing up is a purely local operation. Let ` ⊂ CP2 be
the unique line through p and q. Viewing p, q as lines in C3, they span a unique plane, which is a
line in projective space, so this makes sense and we can write ` ≈ span {p, q}. Since ` is defined by
a linear equation in local coordinates near p, q, we have multp` = multq` = 1. We hve

̂̀= π∗`− Ep − Eq̂̀2 = `2 − 12 − 12 = 1− 1− 1 = −1.

Under π : Bl
p,q

CP2 → CP2, we have ̂̀ ∼−→ `.
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p

q
π

Ep

Eq

CP2

Blp,qCP2

Here since all of the lower order terms have degree 1, there is a well-defined tangent line. Since
` ∼= CP2, we have ̂̀∼= CP2. Letting σ be the blowdown of ̂̀, we have

Bl
p,q

CP2

CP1 × CP2 CP2

σ π

Link to Diagram

Remark 40.0.14: There’s a way to do this with Kirby Calculus.

41 Wednesday, April 21
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Remark 41.0.1: Why can’t one blow down a curve E ∼= CP1 with E2 = 1 in a complex surface?
Disproof: consider S := CP2 and E a line, where E2 = 1. If there were a blowdown in the complex
analytic category

S → S

E 7→ pt.

But S ∼=Top S4, since S4#CP2 ∼= CP2, and this would yield a complex structure on S4 – a
contradiction. This also follows because S ∈ ZHS4, and Noether’s formula implies that every ZHS4

has no complex structure.

Remark 41.0.2: Recall that we were considering the following:

Bl
p,q

CP2

CP1 × CP2 CP2

σ π

Link to Diagram

Let ` ⊂ Bl
p,q

(CP2) the strict transform of a line through p, q with ̂̀2 = −1. Goal: we want to construct

the map σ sending ̂̀ to a single point. Let r ∈ Bl
p,q

CP2, then there are three possibilities:

1. r ∈ CP2 \ {p, q}
2. r ∈ Ep
3. r ∈ Eq

If a point r 6= p, q, we can take lines `pr.`qr. We can take slopes of these lines to get points in CP1,
and in fact it’s the exceptional divisor (since these are sets of slopes through a point).

So we can map

r 7→


(slopep`pr, slopeq`qr) ∈ CP2 × CP2 Case 1
(r, slopeq`qp) Case 2
(slopep`pq, r) Case 3.

This is clearly continuous, is this injective? The outputs will be the same for any point on the line
between p and q:
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p q

µq(r)

µp(r)

`pq

CP2

µp(r)
µq(r)

So this realizes the blowdown map, since Φ̂̀pq) = pt and restricting it to the complement of the
line is injective.

E 41.1 Spin and Spinc Groups e

Remark 41.1.1: Goal: show that 3[`] can’t be realized by a sphere, we’ll need Rohklin’s theorem
for this. Let (V, 〈−, −〉) be an inner product space, and assume the inner product is positive-definite.
Recall that the tensor algebra is defined as T (V ) :=

⊕
n≥0

V ⊗n.

Definition 41.1.2 (Clifford Algebra)
Define the Clifford Algebra of V as

Cl(V ) := T (V )/
〈
v ⊗ v + ‖v‖21

〉
.

Example 41.1.3(The reals): Take R with the standard inner product, so 〈x, y〉 := xy. Then
T (R) =

⊕
n≥0

R. Letting {e} be a basis of R, we have T (R) = R⊕Re⊕R(e2)⊕ · · · ∼= R[x] by sending
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en 7→ xn. Since ‖e‖ = 1, and we mod out by e2 + ‖e‖21 where e2 = −1 and thus

Cl(R, 〈−, −〉std) ∼= R[x]/
〈
x2 = −1

〉
∼= C.

The denominator is referred to as the Clifford relation.

Example 41.1.4(More reals): Take R2 with the standard inner product and an orthonormal
basis {e1, e2}. Then

T (R) = R⊕ R 〈e1, e2〉 ⊕ R
〈
e2

1, e1e2, e2e1, e
2
2

〉
⊕ · · · .

Note that there are 2k terms in the kth graded piece. It suffices to mod out only by the relations
on the orthonormal basis. This is of the form (v + w)2 = −‖v + w‖2 = −‖v‖2 − 2〈v, w〉 − ‖w‖2.
On the other hand, this equals v2 + vw + wv + w2. So we obtain

vw + wv = 2〈v, w〉,

and setting v = w and dividing by 2 yields the original Clifford relation.

For R2, we can explicitly check

1. e2
1 = −1,

2. e2
2 = −1,

3. e1e2 + e2e1 = −2e1e2 = 0,
4. e1e2 = −e2e1.

Here (1), (2), and (4) generate all of the relations, so

Cl(R2)− R 〈e1, e2〉 /
〈
e2

1 = −1, e2
2 = −1, e1e2 = −e2e1

〉
∼= HH.

We can form this map by

1 7→ 1
e1 7→ i

e2 7→ j

e1e2 7→ k,

and then checking that the appropriate relations hold. These hold since i2 = j2 = −1 and
ij = −ji = k. These suffice, but you can check the rest: for example, does jk = i hold? We can
write this as

e2(e1e2) = −e2(e2e1) = −e2
2e1 = −(−1)e1 = e1.

Exercise 41.1.5 (?)
Check that dimR Cl(V ) = 2dimV <∞.
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42 Friday, April 23

Remark 42.0.1: Given (V, ·) an inner product space, we defined

Cl(V ) :=
⊕
n≥0 V

⊗n

〈v ⊗ w + w ⊗ v = 2v · w〉 .

Example 42.0.2(?): We saw that

Cl(R, ·) ∼= R[e]/e2 = −1 ∼= C

Cl(R2, ·) = R 〈e1, e2〉 /
〈
e2

1 = e2
2 = −1, e1e2 = −e2e1−

〉
∼= H

where e1 7→ i, e2 7→ j, e3 = e1e2 7→ k. Can we describe Cl(Rn, ·) in general? Choose an orthonormal
basis {ei}, then

Cl(Rn, ·) = R 〈e1, · · · , en〉〈
e2
i = −1, eiej = −ejei

∣∣∣ i 6= j
〉 .

We saw that replacing 2 with ε in the defining relation recovers
∧∗

V .

Definition 42.0.3 (Degree Filtration)
Define the degree filtration on Cl(V, ·) as the filtration induced by the degree filtration on
T (V ) :=

⊕
n≥0

V ⊗n.

Example 42.0.4(?): Consider Cl(R2, ·). Then

• Degree 0: R.
• Degree 1: R⊕ Re1 ⊕ Re2
• Degree 2: R⊕ Re1 ⊕ Re2 ⊕ Re1e2

Definition 42.0.5 (Grading and Filtration)
Recall that there’s a distinction between gradings and filtration:

• Gradings: RiRj ⊂ Ri+j and R =
⊕
i

Ri.

• Filtrations: F 1 ⊂ F 2 ⊂ · · · with F iF j ⊆ F i+j

An algebra equipped with a grading is a graded algebra, and similarly an algebra equipped
with a filtration is a filtered algebra.

Remark 42.0.6: Note that

Friday, April 23 167



42 Friday, April 23

• k[x1, · · · , xn] is graded (by monomials of uniform degree) and filtered (by polynomials of a
bounded degree)

• T (V ) is graded and filtered, since multiplying a pure p tensor with a pure q tensor yields a
pure p+ q tensor

• Cl(V ) is a quotient of T (V ), but one can’t simply define Cl(V, ·)i = imT (V )i since the relations
have mixed degree: for example e2

1 = −1 So Cl(V ) isn’t graded, but is still filtered: take the
filtration F on T (V ) defined by F i :=

⊕
j≤i

V ⊗j and descend it through the quotient map. The

relations can only decrease degree, so this is well defined.

Definition 42.0.7 (Filtration on the Clifford Algebra)
Define a filtration F− on Cl(V ) by the following:

F iCl(V ) := span
{
ej1, ej2, · · · , ej i

}
.

Definition 42.0.8 (The associated graded)
The associated graded ring gr F−R is the graded ring defined by

(gr F−)i := F iR/F i−1R.

This induces a decomposition

gr F− ∼=
⊕
i≥0

F iR/F i−1R =
⊕
i≥0

(gr F−)i,

which has a multiplicative structure

F i/Fi−1 · F j/Fj−1 → F i+j/F i+j−1.

Remark 42.0.9: Note that if R ∈ gr Ring, then gr (R) = R, so taking the associated graded recovers
the ring itself. What’s happening: taking the smallest homogeneous ideal.

Fact 42.0.10
If one has relations of mixed degree, the associated graded also has the top degree part of each
relation.

Remark 42.0.11: In our case, the Clifford relation relates degree k pieces to degree k − 2 pieces,
so we obtain

gr F−Cl(V ) ∼= T (V )/ 〈v ⊗ w + w ⊗ v = 0〉 :=
∧∗

V.

There is an isomorphism of k-vector spaces

Cl(V ) ∼−→ gr Cl(V )
x ∈ F i 7→ x ∈ F i/F i−1.

This is because F 0 ⊆ · · · ⊆ · · · with ∪iF i = Cl(V ). We can conclude dimR Cl(V ) = dimR
∧∗

V =
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2dimk V and use this to construct a basis for Cl(V ). The relevant map is

ej1, ej2, · · · , ej i 7→ ej1 ∧ · · · ∧ eji .

Corollary 42.0.12(of the fact).
The following set forms an R-basis for Cl(Rn, ·):{

ej1, ej2, · · · , ej i
∣∣∣ j1 < j2 < · · · < ji, i ≤ n

}
.

Example 42.0.13(?): Consider

Cl(R3, ·) ∼= spanR {1, e1, e2, e3, e1e2, e1e3, e1e2e3} .

Then

e1e2 · e1e3 = −e1e1e3e3 e2e1 = −e1e2

= e2e3 e2
1 = −1.

Exercise 42.0.14 (?)
Show that Cl(R3) ∼= H⊕H.

Definition 42.0.15 (Even and odd parts of the Clifford algebra)
Cl(V ) has a Z/2 (“super”) grading, so

Cl(V ) ◦ Cl0(V )⊕ Cl1(V ) Cli(V ) · Clj(V ) ⊂ Cli+j (mod 2)(V ).

The even subalgebra is given by

Cl0(V ) = spank
{
ei1, ei2, · · · , ei2k

∣∣∣ 2k ≤ n
}
,

where we take an even number of basis elements, which makes sense because the Clifford relation
vw + 2v = −2v ·w preserves degree mod 2. This is still an algebra. The odd sub-vector space
(not an algebra) is given by

Cl1(V ) = spank
{
ei1, ei2, · · · , ei2k+1

∣∣∣ 2k + 1 ≤ n
}
.

Example 42.0.16(?):

Cl(R3) = spanR {1, e1e2, e1e3, e2e3} ,

and we saw e1e2 = e1e3 = e2e3. This product has degree 4, and when we applied the relation e2
1 = 1

we dropped the degree by 2. For the odd part, e3 ∈ Cl1(R3) and e1e2 ∈ Cl0(R3), and we have

e3 · (e1e2) = −e1e3e2 = e1e2e3 ∈ Cl1(R3).
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Proposition 42.0.17(Decomposing the Clifford algebra of V).

Cl(V ) ∼= Cl0(V ⊕ R).

Proof (?).
Let e ∈ R be a unit vector. Given x ∈ Cl(V ), decompose x = x0 + x1 ∈ Cl0(V ) ⊕ Cl1(V ).
Define an isomorphism

ϕ : Cl(V )→ Cl0(V ⊕ R)
x 7→ x0 + x1e,

which is well-defined since x0 was odd degree, and both x1, e were odd degree and thus x1e is
even. One checks that this preserves multiplication:

x · y = (x0 + x1) · (y0 + y1) = (x0y0 + x1y1) + (x0y1 + x1y0) ∈ Cl0(V )⊕ Cl1(V ),

and so

ϕ(x) · ϕ(y) = (x0 + x1e)(y0 + y1e)
= x0y0 + x0y1e+ x1ey0 + x1ey1e1.

The question is if this equals

ϕ(xy) := (x0y0 + x1y1) + (x0y1 + x1y0)e.

But for example, x1ey0 = (−1)|y0|x1y0e, and y0 is even. Similarly, x1ey1e = −x1y1e
2 = x1y1.

�

43 Wednesday, April 28

Remark 43.0.1: Last time: we defined Pin(n) ⊆ Cl(Rn) which was generated by S1(Rn). These
were units because v2 = −‖v‖2 = −1, so v−1 = −v, and formed a group contained in Cl(Rn)×.
There is a decomposition Cl(V ) = Cl0(V )⊕ Cl1(V ) with a Z/2-grading, and we defined

Spin(V ) := Pin(V ) ∩ Cl0(V ) =
〈
vw

∣∣∣ v, w ∈ S1(Rn)
〉
.

There is a map

Pin(n)� O(n)
v 7→ (u 7→ vuv−1) = −Rv⊥ ,

which preserves V ⊗1 ⊂ Cl(V ), and was reflection about the hyperplane v⊥. There is also a SES

0→ Z/2→ Spin(n) π−→ SO(n)→ 0,
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where we used the fact that kerπ ⊂ ZCl(Rn). It turns out that Spin(n) = SO(n), using that
π1(SO(n),pt) = Z/2 and checking that ±1 ∈ Spin(n), yielding a nontrivial kernel.

Remark 43.0.2: This is local, at a single vector space, so we’ll now try to globalise this to the
tangent space of a manifold.

Definition 43.0.3 (Clifford Bundle)
Let (V, g) be an oriented smooth Riemannian manifold where g is a metric on TX. Define the
Clifford bundle of X by

Cl(X) := Cl(T∨X, g∨),

where we’ve used the dual metric g∨ on the cotangent bundle.

Remark 43.0.4: We showed that gr Cl(Rn) =
∧

Rn, and so there is a bundle isomorphism

Cl(X) ∼−→
∧∗

T∨X,

but the ring structure is different. On the right, we have a way of multiplying sections, namely
ω1 ∧ ω2, but on the left we have the Clifford multiplication α1 · α2. Note that ω∧2 = 0, but α·2 ∈ R
is some scalar. We define ω · ω = g∗(ω, ω), so we use the metric fiberwise to define a Clifford
multiplication.

Definition 43.0.5 (The principal oriented frame bundle)
Given an oriented bundle with a metric, there is a principal SO(n) bundle P := OFrame, the
space of orthogonal oriented frames.

Remark 43.0.6: This is principal since any two elements are related by a unique element of
SO(n). Recall that we had an associated bundle construction, so taking the standard representation
ρ : SO(n) → (Rn, g) where elements act by their transformations (?), there is an oriented bundle
P×

ρ
Rn. If the bundle is TX with a metric g, this yields a distinguished SO(n) bundle P → X.

Definition 43.0.7 (Spin Structures)
A spin structure is a lift P̃ of P to a principal Spin(n) bundle.

Proposition 43.0.8(Spin iff nontrivial w2).
X admits a spin structure iff the second Stiefel–Whitney class w2(X) = 0 in H2(X;Z/2). If
w2(X) = 0, then the spin structures are torsors over H1(X;Z/2).

Remark 43.0.9: Recall that a G-torsor is a set with a free transitive G-action. For example, the
fibers of a principal bundle are torsors. Given any two torsors, we can compare them using elements
of G, but there is no distinguished element. For example, An is a torsor over the vector space kn.

Proof (?).
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Consider transitions for P → X:

tij : Ui ∩ Uj → SO(n)
,

where tij = t−1
ji and the cocycle condition tijtjktki = 1 is satisfied. We want a lift:

Z/2 ∈ ZSpin(n)

Ui ∩ Uj Spin(n)

Ui ∩ Uj SO(n)

1

tij

t̃ij

2:1

Link to Diagram
We can always lift to some t̃ij using the path-lifting property of covers if Ui∩Uj is contractible,
using that Z/2 is discrete. We can arrange t̃ij = t̃−1

ji since Ui ∩ Uj = Uj ∩ Ui, but we may not
have the cocycle condition on the lift. We have tijtjktki = 1, so

t̃ij t̃jk t̃ki ∈ ker(Spin(n)→ SO(n)) = {±1} ,

using that everything in sight needs to be a group morphism. So define

t̃ijk := (t̃ij t̃jk t̃ki)i,j,k ∈ Č
2
U (X,Z/2).

The claim is that ∂2(t̃ijk) = 0, but it turns out that regardless of choice of lift we obtain

∂2(t̃ijk) = t̃ijk t̃
−1
ikl t̃ijlt̃

−1
ijk = 0 =⇒ [t̃ijk] ∈ Ȟ

2(X,Z/2).

Is this class well-defined? Consider replacing t̃ij with −t̃ij . In general, we have

i, j ∈ {a, b, c} =⇒ t̃abc 7→ −t̃abc,

and so this is a Čech coboundary in ∂1(1, · · · , 1,−1, 1, · · · , 1) where the −1 occurs in the tij
coordinate. Thus t̃ijk is well-defined moduli ∂1C1

U (X,Z/2).

Note that w2(X) was produced from the pair (X, g), but the space of metrics is connected and
thus w2(X) depends only on X. Suppose w2(X) = 0, then [t̃ijk] = 0 which implies that there
is some (sij) with ∂1(sij) = (t̃ijk). So replace each t̃ij with ˜̃tij := sij t̃ij is a new lift which
satisfies the cocycle condition. Thus they define the transition functions of a principal Spin(n)
bundle lifting P → X.

To see the claim about torsors, given any `ij ∈ ker ∂1, note that any ˜̃tij`ij also satisfies the
cocycle condition. There is a map

{Spin structures} ← ker ∂1

˜̃tij`ij 7→̀ij ,

Wednesday, April 28 172

https://q.uiver.app/?q=WzAsNSxbMCwyLCJVX2kgXFxpbnRlcnNlY3QgVV9qIl0sWzIsMiwiXFxTcGluKG4pIl0sWzIsNCwiXFxTTyhuKSJdLFsyLDAsIlxcWlovMiBcXGluIFpcXFNwaW4obikiXSxbMCw0LCJVX2kgXFxpbnRlcnNlY3QgVV9qIl0sWzAsNCwiXFxvbmUiXSxbNCwyLCJ0X3tpan0iXSxbMCwxLCJcXHRpbGRlIHRfe2lqfSJdLFsxLDIsIjI6MSJdLFszLDEsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d


44 Friday, April 30

which is a torsor because we needed to start with a given lift ˜̃tij . Then P̃1 ∼= P̃2 iff there exists
an (mi) ∈ Č

0
U (X,Z/2) such that (`ij)1 = (`ij)2 + ∂0(mi), which are different trivializations of

the same bundle.
�

Remark 43.0.10: This is a nice example to get a hang of the use and importance of Čech
cohomology. We then use the isomorphism Ȟ → HSing.

Theorem 43.0.11(Existence of spin representation of Clifford algebras in even
dimension).
Assume n := dimV is even, then Cl(V ) has a unique nontrivial irreducible finite dimensional
complex representation S of dimension dimS = 2n/2, the spin representation.

Remark 43.0.12: It turns out that Cl(V )⊗RC ∼= End(S). The left-hand side contains Spin(n), so
given ρ : Cl(V )→ End(S) a representation (i.e. a ring homomorphism) in matrices, we can restrict
ρ to Spin(n) to get ρ |Spin(n) : Spin(n) → GL(S). Next time: spin representations. Spinor bundle
will be sections of associated bundle of the Clifford bundle.

44 Friday, April 30

Remark 44.0.1: Last time: we defined

Cl(V, ·) :=
⊕
n

V ⊗n/
〈
v ⊗ v = −‖v‖21

〉
Pin(V ) :=

〈
v
∣∣∣ ‖v‖ = 1

〉
⊆ Cl(V ).

There is a Z/2 grading Cl(V ) = Cl0(V ) ⊕ Cl1(V ) where Cl0(V ) is the image of even tensors and
Cl1(V ) is the image of odd tensors. We also had

Spin(V ) := Pin(V ) ∩ Cl0(V ) =
〈
v · w

∣∣∣ v, w ∈ V, ‖v‖ = ‖w‖ = 1
〉
.

There was a map

Pin(V )→ O(V )
v 7→ −Rv,

where Rv was reflection about v⊥, where we identified this as an action on V ⊗1 ⊂ Cl(V ) where
u → vuv−1. For any Riemannian manifold (X, g), we could define the Clifford bundle Cl(X) =
Cl(T∨X, g∨) to globalise this from vector spaces to bundles with metrics. We defined a spin
structure on X as any lift of the principal SO(n) bundle over (T∨X, g) (namely Frame(X)) to a
Spin(n) bundle.

4! Warning 44.0.2
Each fiber is a metric space, so what happens if you just try to define
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Y :=
∐
x∈X

〈
v
∣∣∣ ‖v‖2 = 1, v ∈ Tx∨X

〉
?

This seems to be isomorphic to a spin structure, but we do not have a distinguished action of any
fixed group Spin(n). We would have to choose isomorphisms to the standard spin group at each
fiber, but the isomorphisms are not unique – there is ambiguity up to the entire spin group. So this
does not define a spin structure.

Remark 44.0.3: We showed that there exists a spin structure iff some cohomology class w2(K) ∈
H2(X;Z/2) vanishes.

Theorem 44.0.4(Classification of complex representations of Clifford algebras).
If dimk V is even, there is a unique finite-dimensional complex irreducible Cl(V ) representation
of dimension 2n/2. If dimk V is odd, there are two complex conjugate representations of
dimension 2bn/2c.

Example 44.0.5(?): Consider Cl(R2) ∼= H. There is an irreducible complex representation of
dimension 2:

1 7→
[
1 0
0 1

]

i 7→ σ1 :=
[
0 i
i 0

]

j 7→ σ2 :=
[
i 0
0 −i

]

k 7→ σ3 :=
[

0 1
−1 0

]
.

Definition 44.0.6 (Pauli matrices)
The σi defined above are referred to as the Pauli matrices.

Example 44.0.7(?): Consider Cl(R4). By the theorem, there is a unique complex representation
of 24/2 = 22 = 4, although the 4 here matching the dimension of R4 is coincidental. We’d like to
find an isomorphism

Cl(R4) ∼−→ End((C2)⊗2) ∼= End(C4) = Mat(4× 4;C).

Note that Cl(R4) ∼−→ End((C2)⊗3), which is why the dimensions multiply. We can write

Cl(R4) = R 〈e1, e2, e3, e4〉
eiej + ejei = 2δij

.

So define a map

e1 7→ γ1 := 1⊗ σ1

e2 7→ γ2 := 1⊗ σ2

e3 7→ γ3 := σ1 ⊗ iσ3

e4 7→ γ4 := σ2 ⊗ iσ3.
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Definition 44.0.8(Dirac matrices)
The matrices appearing above are called the Dirac matrices.

Exercise 44.0.9(?)
Determine a similar map for Cl(R6) continuing this pattern.

We can check that this is a representation. Note that we can tensor matrices in a simple way:

e1 e2 f1 f2

e1 a b f1 e f

e2 c d f2 g h

Link to Diagram

Checking e2 · e2 = −1, we have

(1⊗ σ2) · (1⊗ σ2) =?
12 ⊗ σ2

2 = −I2 ⊕ I2

γ2γ3 = −γ3γ2.

Todo: messed up!

One can similarly check

(1⊗ σ2) · (σ1 ⊗ iσ3) = −(σ1 ⊗ iσ2)(1⊗ σ2).

Remark 44.0.10: We thus have Cl(R4) y C4 by sending ei 7→ δi, the Dirac matrices. Using
that Pin(4) ∩ Cl(R4) = Spin(4) ⊆ Cl(R4), we can a spin representation, but this may no longer be
irreducible. In fact, as a Spin(4) representation this splits into two irreducible representations. We
know that Spin(4) ⊆ Cl0(R4) = Cl(R3) which has two complex conjugate irreducible representations.
The key is to define an element ωC ∈ Cl(V ) ⊗R C with ω2

C = 1, which yields a decomposition of
S = S+ ⊕ S− as the ±1 eigenspaces of the action. Here ωC := −e1e2e3e4 7→ γ5. One can define

γ5 := im(ωC) = −γ1γ2γ3γ4 = −σ3 ⊗ σ3

and one obtains the matrix

−σ3 ⊗ σ3 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 .
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45 Spin Bundles and Dirac Operators (Monday, May 03)

One can check that γ5 anticommutes with the δi for 1 ≤ i ≤ 4, and thus commutes with Cl0(R4).
We can write S+, the positive 1 eigenspace of γ5, as C(s1 − s4)⊕C(s1 + s2). So we have Spin(4) =
Cl(R4) y C2 ⊕ C2 = S, which splits into γ5-eigenspaces S+ ⊕ S−, the positive and negative
spinors. This means that γ5 commutes with the image of Spin(4) ↪→ GL(C2 ⊕ C2).

Fact 44.0.11
If the action commutes with everything in the representation, the representation splits. (??? missed)

Remark 44.0.12: Let g ∈ Spin(4), and v+ ∈ S+ ⊆ S. Question: is it true that g · v+ ∈ S+? If so,
this yields a subrepresentation. If so, γ5v

+ = v+ since we’re in the +1 eigenspace, and on the other
hand, g · v+ = g · γ5v

+ = gωC · v+ where the last identification comes from the map γ5 7→ ωC, and
this is equal to ωCg · v+ using commutativity. So g · v+ is in the +1 eigenspace of γ5.

Remark 44.0.13: Now take γi. This actually switches spinors: by anticommutativity of the γi
with γ5, we have

γi · v+ = γiγ5v
+ = −γ5γiv

+,

which means γiv+ is in the −1 eigenspace for γ5, i.e. γiv+ ∈ S−.

Remark 44.0.14: Suppose one has a spin structure and P̃ → X is a principal Spin(n) bundle.
There are bundles over this of the form ρ : Spin(n)→ GL(S±), yielding the spinor bundle

P̃ ×
Spin(n)

S = S+
x ⊕ S−x .

Remark 44.0.15: Let G ρ−→ GL(V ) be any representation. If ϕ ∈ End(V ) commutes with ρ(G),

then the eigenspaces of ϕ are subrepresentations. In other words, Gy V =
n⊕
i=1

Vλi , then Gy Vλi

is a subrepresentation, using that

ϕ(v) = λv =⇒ gv = gϕ(λ−1v) = ϕρ(g)λ−1v,

which says ϕ(ρ(g) · v) = λ(ρ(g) · v) =⇒ ρ(g) · v ∈ Vλ. We used it here by This rephrases Schur’s
lemma!

45 Spin Bundles and Dirac Operators
(Monday, May 03)

Remark 45.0.1: Last time: we defined a Spin structure on an oriented manifold M as a lift of the
principal SO(n) bundle P → M (unassociated to TM) to a Spin(n) bundle P̃ . There was a spin
representation Spin(n) y S, which is irreducible for Cl(Rn) and splits as S = S+ ⊕ S−, which are
Spin(n) subrepresentations. We defined spinor bundles

P̃ ×
Spin(n)

S = SM = S+
M ⊕ S−M .
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Example 45.0.2(Dimension 4): If dimRM = 4, then S±M ∈ Vectrank=2
C , i.e. they are complex

vector bundles of rank 2. Consider the eigenspaces −e1e2e3e4 y S, then ei · (−) : S± → S∓.

Remark 45.0.3: Principal bundle: fibers are left G-torsors. In the fiber product, the group sits
in the middle and acts on each factor. So P̃ eats the right G-action, and S eats the left action.
Remarkably, for Spin bundles, there is an action leftover.

Proposition 45.0.4(The spin bundle is a Clifford module).
The spin bundle SM naturally has the structure of a Cl(M)-module.

Proof (?).
We have a Clifford action

Cl(Rn)⊗ S→ S
x⊗ s 7→ x · s.

Recall that we have a natural conjugation action Spin(n) y Cl(Rn) where g 7→ g(−)g−1, and
similarly Spin(n) y S by g 7→ g · (−). Given any V →W of G-modules, any P ∈ Bunprin(G)
yields an induced module

P×
G
V → P×

G
W,

and moreover P̃ ×
Spin(n)

Cl(Rn) = Cl(M). We then conclude that there is an action Cl(M)⊗SM →
SM , the Clifford multiplication.

�

Remark 45.0.5: We have an isomorphism of bundles (not of algebras) Cl(M) ∼=
∧
T∨M , and any

one form ω is an analogue of an element of V ⊗1, and ω · (S+,S−) ∈ S−M ⊕ S+
M .

Definition 45.0.6 (Clifford connection)
A connection ∇ on S is a Clifford connection if

∇(x · s) = x · ∇(s) + d(x) · s x ∈ H0Cl(M) = H0
(∧∗

T∨M
)
, s ∈ H0(SM ),

where d is the de Rham differential.

Remark 45.0.7: It is not obvious that a Clifford connection exists! We have SM = P̃ ×
Spin(n)

S, so

it suffices to give a connection on P̃ which is Spin(n) invariant, since any associated bundle will
inherit the connection. Idea: we need a notion of parallel transport. This is a principal Spin(n)
bundle, so the fibers look like Spin(n), and we want to lift paths in M to paths in P̃ :
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M

Spin(n)

It suffices to give a connection on P , and using that P̃ → P is a 2 to 1 covering map, we can take a
connecting on P coming from OFrame(T∨M, g∨). So it further suffices to produce a connection on
T∨M preserving orthogonality of frames under parallel transport, which is essentially the definition
of the Levi-Cevita connection ∇LC. Then the ∇ associated to ∇LC on P is a Clifford connection,
yielding existence.

Remark 45.0.8: The set of Clifford connections is a torsor over Ω1(M). The association is
∇ 7→ ∇−∇LC, and one can compute

(∇−∇LC)(x · s) = x · (∇−∇LC)(s),

which exactly says that this is a Cl(M)-linear map SM → SM⊗Ω1. We can write Cl(M) ∼= End(SM ),
and one can check that [End SM ,End SM ] consists only of scalars.

Definition 45.0.9 (Dirac Operator)
Let ∇ be a Clifford connection on SM and s ∈ H0(SM ), so ∇(s) ∈ SM ⊗ Ω1(M). Then the
Dirac operator is defined as

6 ∂ : H0(S)→ H0(S)
s 7→

∑
ei∈Fr(T∨M)

ei · ∇ei∨(s)

where

• ∇(s) = H0(SM ⊗ Ω1)
• ∇ei∨(s) = ∇(s)(ei∨) ∈ H0(SM )
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Remark 45.0.10: This makes sense locally, and is well-defined independent of choice of frame.
Henceforth, we’ll take ∇ = ∇LC – in this case, if s+ ∈ H0(S±) then ∇LC

v (s±) ∈ H0(S±). This is an
order 1 differential operator:

6 ∂∇LC =6 ∂ : H0(S±)→ Hp(S∓).

Proposition 45.0.11(Relation between Dirac operator and Laplacian).

6 ∂2 = −∆.

Proof (?).

Given ψ ∈ H0(S), write ψ =
4∑
i=1

ψisi with the si forming a local frame of S = S+ ⊕ S−. We

can write

6 ∂ψ =
∑

ei∂xiψ =
4∑
i=1

γiψxi .

where ψxi = [(ψ1)xi , (ψ2)xi , · · ·]. We then have

6 ∂2ψ =
∑
i,j

γiγjψxixj

= −
∑
ij

2(ei ·g ej)ψxixj

= −2
∑
ij

δijψxixj

= −2
∑
i

ψxixi

= −2
( 4∑
i=1

∂2
xi

)
ψ

= −2∆.

where we sum over all i, j and can pair terms, and we use that γiγj + γjγi = −2e1 · ej

Upshot: 6 ∂ ∈
√

∆, which is why the Dirac is an invariant in quantum mechanics. This reduces
the 2nd order Schrödinger operator a 1st order operator. Note that 6 ∂ψ = 0 is the equation
for a massless particle.

�

See maybe Lawson’s spin geometry? Or Salamon.
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46 Wednesday, May 05

E 46.1 Fun Physics Aside e

Remark 46.1.1: Last time: we showed Cl(X) := Cl(T ‹X, g ‹) acts on the spinor bundle SX :=
P̃ ×

Spin(n)
S by Clifford multiplication. For dimRX = 4, we have a splitting S+ ⊕ S− as complex rank

2 vector bundles. If ω ∈ H0Cl(X) is a one form, then ωS±X ⊂ S∓ .

Definition 46.1.2 (Clifford Connection)
A Clifford connection is a map

∇ : SX → SX ⊗ Ω1

.

where α · s 7→ α · ∇s+ dx · s.

Remark 46.1.3: There is a distinguished Clifford connection associated to ∇LC. Also recall that
we defined a Dirac operator 6 ∂ and showed 6 ∂2 = −2∆.

Definition 46.1.4 (The Dirac Equation)
The Dirac equation is defined on ψ ∈ H0(X,S) as

(i 6 ∂ +mω)ψ = 0.

Here m denotes a mass, ω = ωC =
4∏
i=1

γi.

Remark 46.1.5: This describes fermions in a vacuum, e.g. an electron where ψ is its wave function.
Applying this to R4 with g = (dt)2 − (dx)2 − (dy)2 − (dz)2, then this equation in ψ is invariant
under the Lorentz group O(R4, g).

E 46.2 Rohklin’s Theorem e

Theorem 46.2.1(Rohklin’s Theorem).
Let X be a smooth closed oriented spin 4-manifold. Then the signature σ(X) := b+2 (X)−b−2 (X)
(the dimensions of positive/negative definite subspaces of H2(X;R) is divisible by 16.

Remark 46.2.2: This restricts what topological manifolds can admit smooth structures. Freedman
constructed a topological manifold of dimension 4 with signature 8, which thus can not admit a
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smooth structure. Recall that having a spin structure was having a lift of a principal SO(n) bundle
over (T ‹X, g) (namely Frame(X)) to a Spin(n) bundle.

P̃SO(V ) := PSpin(V )

PSO(V )

X

π

p̃

∃

Link to Diagram

Diagram doesn’t match definition, check Phil’s notes!

46.2.1 Proof

Consider SX := P̃ ×
Spin(n)

S, then define

6 ∂± : H0(S±X)→ H0(S∓).

Note that we can write 6 ∂ =6 ∂++ 6 ∂−;

• Step 1: Show ind 6 ∂+ = −σ(X)/8,
• Step 2: Show ind 6 ∂+ is even.

46.2.2 Step 1

What is the symbol Symb(6 ∂)? By definition

Symb 6 ∂ : π∗S→ π∗S.

where π : T ‹X → X, and the symbol was defined by replacing ∂

∂xi
with a function yi : T ‹X → R.

We can write

6 ∂ϕ =
∑
ei∈Fr

ei · ∇ei∨ψ,

and so

Symb 6 ∂(ψ) =
∑
i

yiei = ψ.
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We have a tautological form α ∈ H0(T ‹X,π∗Ω1) where (p, α) 7→ α, and so Symb(6 ∂)(−) = α · (−).

Claim:

6 ∂ : H0(S)	 is an elliptic operator.

We need to check that the map α · (−) is exact if α 6= 0.

We have α · (−) : S→ S and

(−α)(−)α(−) = (−α · α) = ‖α‖2 6= 0,

which makes the operator invertible away from zero. Thus we can apply Atiyah-Singer.

Lemma 46.2.3(Formula for Chern characters).
There is a nice formula for Chern characters:

ch S+ − ch S− =
n∏
i=1

(exi/2 − e−xi/2).

where {±xi} are the Chern roots of T ‹X.

Proof (?).
Use the splitting principle to write

T ‹X ⊗R C =
n⊕
i=1

Li ⊗ L−1
i .

Then S+ is a sum of all tensor products of Li ⊗ L−1
i where the number of −1s appearing is

even.
�

Remark 46.2.4: Note there is ambiguity up to 2-torsion in the formula, but this gets moved into
the choice of spin structure, which amounts to choice of a square root of each of these line bundles.
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Setting 2n := dimX, we have

ind 6 ∂+ = (−1)n
∫
X

ch S+ − ch S−

eulX td(TX ⊗ C)

=
∫
X

∏
exi/2 − e−xi/2

(−1)n
∏
xi

∏ xi
1− exi

∏ xi
1− e−xi

=
∫
X

∏ (exi/2 − e−xi/2)xi
(1− exi)(1− e−xi)

= (−1)n
∫
X

∏
I

xi
exi/2 − e−xi/2

=
∫
X

(
1− x2

1
24

)(
1− x2

2
24

)

= − 1
24

∫
X
x2

1 + x2
2 + (x1 + x2)2 − 2x1x2

= − 1
24
(
c2

1 − 2c2
)
.

Remark 46.2.5: See the Â genus.

Claim:

c2
1 − 2c2 = 3 · σ(X).

This is another application of Atiyah-Singer, applied to a slightly different operator. Recall the
Hodge star operator,

? : Ωk(X)→ Ω4−k(X).

Defining τ := i
k(k−1)+4

2 , we get τ2 = 1, so define an operator τ?. This yields a splitting into ±1
eigenspaces:

Ω(X) = Ω+(X)⊕ Ω−(X).

Recalling that d† was the adjoint of d, one can check that d+ d† : Ω±(X)→ Ω∓(X) interchanges
these. It turns out that ind(d+ d†) = σ(X), which by Atiyah-Singer and Hermite forms will equal
c2

1 − 2c2
3 . This yields the desired formula for step 1.
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E 46.3 Step 2 e

We now want to show ind 6 ∂+ is divisible by 2. The key point is that ker 6 ∂+ and coker 6 ∂+ = ker 6 ∂−
admit a quaternionic vector space structure. This comes from the fact that

Spin(4) ∼= SU(2)× SU(2) ∼= S1(H)⊕ S1(H) := S+ ⊕ S−,

so we have a splitting into subspaces of unit quaternions. It turns out that 6 ∂ is H-linear. So we get
an equality

−σ(X)/8 = ind 6 ∂+ = 2λ

for some λ, yielding 8
∣∣ σ(X).

E 46.4 Remarks e

Remark 46.4.1: If H1(X;Z) has no 2-torsion, e.g. if π1X = 0, then w2(X) = 0 iff the intersection
form on H2 is even, where w2 is the obstruction to existence of spin structures. Note that this
makes sense for topological manifolds and not just smooth manifolds, and in this case σ(X) is
divisible by 8. This restriction comes from number theory: since we have a unimodular lattice, it
breaks into sums of E8,−E8, and H if indefinite, and any even unimodular lattice has signature
divisible by 8. So this can work as an obstruction to the existence of smooth structures.

Remark 46.4.2: Note that CP2 has no spin structure, and σ(CP2) = 1. There’s a way to modify
the invariant to set σ(X)/8 =? (mod 2).
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