# Monday, March 08 :::{.remark} Recall that given a differential complex \( (\complex{ \bundle{E} }, d) \) we had a symbol complex \( ( \pi^* \complex{\bundle{E}}, \sigma(d) ) \) where $\pi: T\dual X\to X$ and \[ \sigma\qty{ \sum_{\abs{I} \leq N} f_I \bd_I } \da \sum_{\abs{I} = N} f_I y^I ,\] where we take the top-order differentials, $\dd{}{x_j} \mapsto y_j$ and \[ T\dual X &\to \RR \\ \alpha &\mapsto \alpha\qty{\dd{}{x_j} } .\] We say that \( ( \complex{\bundle{E} }, d ) \) is **elliptic** if the symbol complex is exact on $T\dual X \smz$ where we delete the zero section. The Atiyah-Singer index theorem stated \[ \chi( \complex{\bundle{E}}, d) = \int_X { \ch( \complex{ \bundle{E} }) \over \eul(X) } \td( TX\tensor_\RR \CC) .\] What's the connection to elliptic operators? Given a 2-term complex \[ 0 \to \bundle{E}^0 \mapsvia{D} \bundle{E}^1 \to 0 ,\] then $D$ is an **elliptic operator** if this is an elliptic complex. This means the symbol complex is an isomorphism, i.e. \[ 0 \to \pi^* \bundle{E}^0 \mapsvia{\sigma(D)} \pi^* \bundle{E}^1 \to 0 \] where $\sigma(D)$ is an isomorphism away from the zero section. ::: :::{.remark} Every elliptic complex can be converted into a 2-term complex using a hermitian metric. Given \[ \bundle{E}^0 \mapsvia{d^0} \bundle{E}^1 \mapsvia{d^1} \bundle{E}^2 \to \cdots ,\] we map this to \[ 0 \to \bundle{E}^{\text{even}} \da \bigoplus_{i \text{ even} } \bundle{E}^i \mapscorrespond{D^\text{even}}{D^{\text{odd} }} \bundle{E}^{\text{odd}} \da \bigoplus_{i \text{ odd}} \to 0 \] where \[ D \da ((d^{2i-1})^{\dagger} , d^{2i} ) : \bundle E^{2i} \to \bundle{E}^{2i-1} \oplus \bundle{E}^{2i+2} \\ \] and $(d^{2i-1})^{\dagger}$ is defined by the following property: for \( \alpha\in \bundle{E}^{2i-1} \) and \( \beta \in \bundle{E}^{2i}(X) \), \[ \inner{ d^{2i-1} \alpha}{\beta}_h = \inner{ \alpha } { ( (d^{2i-1})^{\dagger} \beta}_h .\] Here this pairing depends on a hermitian metric $h$, which is a hermitian form on each fiber: \[ h_i: \bundle{E}^i \tensor \conj{ \bundle{E}^i} \to \CC .\] Using this, we can fix a volume form $dV$ on $X$ and define \[ \inner{u}{v}_h \da \int_X h_i(u, \conj{v}) \, dV && u, v\in \bundle{E}^i(X) .\] This yields the desired two-term complex, and $( \complex{\bundle{E}}, d)$ is elliptic if and only if $D^e \circ D^o: \bundle{E}^o \selfmap$ and $D^o \circ D^e: \bundle{E}^e \selfmap$ are elliptic operators. ::: :::{.example title="?"} Taking the de Rham complex \[ 0 \to \OO \mapsvia{d} \Omega^1 \mapsvia{d} \Omega^2 \to \cdots ,\] one can define \[ \Omega^{\even} \mapscorrespond{d + d^\dagger}{ d + d^{\dagger}} \Omega^{\odd} .\] Then using adjoint properties, we have \[ \inner{\alpha}{ d^\dagger d^\dagger \beta} = \inner{ d \alpha}{ d^\dagger \beta} = \inner{ d^2 \alpha}{ \beta } = 0 ,\] using that $d^2 = 0$, and since this is true for all \( \alpha, \beta \) we have \( (d^\dagger)^2 \beta = 0 \) for all \( \beta \). Noting that $d d^\dagger + d^\dagger d: \Omega^i(X) \selfmap$, and this operator is **the Laplacian**. Moreover \( \ker (d d^\dagger + d^\dagger d ) \) is the space of **harmonic $i\dash$forms**. ::: :::{.remark} Note that this space of harmonic forms depended on the Hermitian metrics on $\bundle{E}^i$ and the volume form $dV$. In the case $\bundle{E}^i \da \Omega^i$, there is a natural metric determined by any Riemannian metric on $X$. Recall that this is given by a metric \[ g: TX \tensor TX \to \RR .\] This determines an isomorphism \[ T_p X &\mapsvia{\sim} T_p\dual X\\ v &\mapsto g(v, \wait) ,\] which we can invert to get a metric on the cotangent bundle $T\dual X$. This induces a metric on $i\dash$forms using the identification \( \Omega^i \da \Wedge^i T\dual X \) and induces a volume form \[ dV \da \sqrt{ \det g}: \Wedge^{\text{top}} TX \to \RR .\] In this case, $d d^\dagger + d^\dagger d$ on \( \Omega^i(X) \) is called the **metric Laplacian**. ::: :::{.remark} Let $(X, g)$ be a Riemannian manifold. We thus have a symmetric bilinear form on \( \Omega^p(X) \) given by pairing sections: \[ \inner{ \alpha}{ \beta} \da \int_X g( \alpha, \beta) .\] Note that we have orthonormal frames on \( \Omega^p(X) \) of the form \( e_{i_1} \wedge \cdots \wedge e_{i_p} \) where the \( \ts{ e_i } \) are orthonormal frames on $T\dual X$. ::: :::{.definition title="Hodge Star Operator"} Let $n\da \dim(X)$. The **Hodge star** operator is a map \[ \hodgestar: \Omega^p \to \Omega^{n-p} .\] defined by the property \[ \alpha\wedge \hodgestar \beta= g( \alpha, \beta) dV .\] Concretely, we have \[ \hodgestar \qty{ \sum f_I dx_{i_1} \wedge \cdots \wedge dx_{i_p} } &= \hodgestar \qty{ \sum f_I e_{i_1} \wedge \cdots \wedge e_{i_p} } \\ &= (-1)^\ell \sum_{j_k \in \ts{ 1, \cdots, n } \sm I} f_I e_{j_1} \wedge \cdots \wedge e_{j_{n-p}} \] for some sign $\ell$. ::: :::{.example title="?"} Let $X\da \RR^4$ and $g$ the standard metric, i.e. $d = dx_1^2 + \cdots + dx_4^2$. Take an orthonormal basis of $T\dual \RR^4$, say \( \ts{ e_1, e_2, e_3, e_4 } \) where $e_i \da dx_i$. Then the induced volume form is $dV \da e_1 \wedge e_2 \wedge e_3 \wedge e_4$. We can then compute \( \hodgestar(e_1 \wedge e_2) \) which is defined by the property \[ \alpha\wedge \hodgestar( e_1 \wedge e_2) = g( \alpha, e_1 \wedge e_2) dV .\] On the right-hand side, $g( \alpha, e_1 \wedge e_2) = c_{12}(\alpha) e_1 \wedge e_2 \wedge e_3 \wedge e_4$ where $c_{12}$ is the coefficient of $e_1 \wedge e_2$. To extract that coefficient, we can take \( \alpha( e_3 \wedge e_4 \), writing \( \alpha = \sum c_{ij} e_i \wedge e_j \). Similarly, \( \hodgestar)e_1 \wedge e_3) = -e_2 \wedge e_4 \). This follows from writing \[ \alpha \wedge \hodgestar(e_1 \wedge e_3) = c_{13}(\alpha) {\color{blue} e_1} \wedge e_2 \wedge {\color{blue} e_3 } \wedge e_4 = (-1) c_{13}(\alpha) e_1 \wedge {\color{blue} e_3 \wedge e_2} \wedge e_4 .\] From this, $\hodgestar: \Omega^p \to \Omega^{n-p}$ is defined fiber-wise as \[ \inner{ \alpha}{ \beta} = \int_X \alpha\wedge \hodgestar \beta .\] ::: :::{.exercise title="?"} Show that \( \hodgestar^2 = (-1)^{p(n-p)} \). ::: :::{.proposition title="Formula for the adjoint of the Hodge star"} Let $d^\dagger \da (-1)^{n(p-1) +1} \hodgestar d \hodgestar$. Then \[ \inner{\alpha}{ d \beta} = \inner{d^\dagger \alpha}{ \beta} && \alpha\in \Omega^p(X), \beta\in \Omega^{p-1}(X) .\] ::: :::{.proof title="?"} A slick application of Stokes' theorem! Using that \( \hodgestar \) is an isometry, we have \[ \inner{ \alpha}{ d \beta} &= \int_X \alpha\wedge \hodgestar d \beta \\ &= \int_X \hodgestar \alpha \wedge d \beta (-1)^{p(n-p)} && \text{applying $\hodgestar$ to both} \\ &= -\int_X d( \hodgestar \alpha) \wedge \beta (-1)^{p(n-p)} && \text{Stokes/IBP} \\ &= (-1)^{p(n-p)+1} \int_X \hodgestar d \hodgestar \alpha \wedge \hodgestar \beta && \text{isometry}\\ &= (-1)^{p(n-p)+1} \inner{\hodgestar d \hodgestar \alpha}{ \beta} ,\] which shows that the term in the left-hand side of the inner product above is the adjoint of $d^\dagger$. :::