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I Wednesday, January 13

1 ‘ Wednesday, January 13

Reference:

o The course text is Weibel [1].

o See the many corrections/errata: http://www.math.rutgers.edu/~weibel/Hbook-corrections.
html

e Sections we’ll cover:

1.1-1.5,
~ 92227,
— 3.4,

— 3.6,

- 6.1,

~ 5.1-5.2,
— 5.4-5.8,
— 6.8,

- 6.7,

- 6.3,
7175,
- 7.7-7.8,
Appendix A (when needed)

o Course Website: https://uga.view.usg.edu/d21/1le/content/2218619/viewContent/33763436/
View

- 1.1 Overview ~

Definition 1.1.1 (Exact complexes)
A complex is given by

di— d; d;
'——1—1—>M1;1 ——)Mi——ztl—>Mi+1—>“- 5

where M; € R-Mod and d; o d;_1 = 0, which happens if and only if imd; 1 C kerd;. If
im d;_1 = ker d;, this complex is exact.

Example 1.1.2(%): We can apply a functor such as ® g N to get a new complex

d;1®1 d;®1 di1®1
N M @R N EEL My @ N = My, 2255

Wednesday, January 13 6
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Wednesday, January 13

Example 1.1.3(?): Applying Hom(N, —) similarly yields
dr
H%m(N, Ml) l—_1> H%m(N7 Mi—‘rl)a

where d; = d; o (—) is given by composition.
Example 1.1.4(%): Applying Hom(—, N) yields

dr

H%m(Mi, N) = H%m(MiH, N)

where d; = (=) o d;.

Remark 1.1.5: Note that we can also take complexes with arrows in the other direction. For F' a
functor, we can rewrite these examples as

d;k o d:—l = F(dz) o F(dlfl) = F(dz 9} difl) = F(O) == 0,

provided F' is nice enough and sends zero to zero. This follows from the fact that functors preserve
composition. Even if the original complex is exact, the new one may not be, so we can define the
following:

Definition 1.1.6 (Cohomology)

HY(M*) =kerd}/imd; ;.

Remark 1.1.7: These will lead to ith derived functors, and category theory will be useful here.

See appendix in Weibel. For a category C we’ll define

o Obj(C) as the objects

. H(C)m(A,B) a set of morphisms between them, where a more modern notation might be
Mor(A, B).

e Morphisms compose: A i> B % C means that go f € H(gm(A, )

o Associativity
e Identity morphisms

See the appendix for diagrams defining zero objects and the zero map, which we’ll need to make
sense of exactness. We’ll also needs notions of kernels and images, or potentially cokernels instead
of images since they’re closely related.

Remark 1.1.8: In the examples, we had kerd; C M;, but this need not be true since the objects
in the category may not be sets. Such an example is the category of complexes of R-modules:
Cx(R-Mod). In this setting, kernels will be subcomplexes but not subsets.

Definition 1.1.9 (Functors)
Recall that functors are “functions” between categories F': C — D such that

1.1 Overview 7
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Wednesday, January 13

e Objects are sent to objects,

o Morphisms are sent to morphisms, so A i 75 o F(A) EilCAN F(B),

e F respects composition and identities

Example 1.1.10(Hom): H%m(N, —) : R-Mod — Ab, noting that the hom set may not have an

R-module structure.

Remark 1.1.11: Taking cohomology yields the ith derived functors of F, for example Ext’, Tor;.

Recall that functors can be covariant or contravariant. See section 1 for formulating simplicial and

singular homology (from topology) in this language.

— 1.2 Chapter 1: Chain Complexes ~

1.2.1 Complexes of R-modules

Definition 1.2.1 (Exactness)

Let R be a ring with 1 and define R-Mod to be the category of right R-modules. A i> B4 ¢
is exact if and only if ker g = im f, and in particular g o f = 0.

Definition 1.2.2 (Chain Complex)
A chain complex is

C_=(C_,d_) = ( S Cp I 0, B0 )
for n € Z such that d,, o d,+1 = 0. We drop the n from the notation and write d®>=dod=0.

Definition 1.2.3 (Cycles and boundaries)

o Zy, = Zn(C_) = kerd, are referred to as n-cycles.
e B, = B,(C-) =imd, 41 are the n-boundaries.

Definition 1.2.4 (Homology of a chain complex)
Note that if > = 0 then B,, < Z, < C,,. In this case, it makes sense to define the quotient
module H"(C_) := Z,,/ By, the nth homology of C_.

Definition 1.2.5 (Maps of chain complexes)
A map u : C_ — D_ of chain complexes is a sequence of maps u,, : C;, — D,, such that all of
the following squares commute:

1.2 Chapter 1: Chain Complexes 8



I Friday, January 15

 —— Cos Ca Coig —— -
Un+1 Un, Un—1
R Dn+l D, Dy —— -

Link to Diagram

Remark 1.2.6: We can thus define a category Ch(R-Mod) where

e The objects are chain complexes,
e The morphisms are chain maps.

Exercise 1.2.7 (Weibel 1.1.2)
A chain complex map u : C_ — D_ restricts to

Un © Zn(C_) = Zn(D_)
Up : Bp(D_) = B,(D_)

and thus induces a well-defined map wuy, x : H,(C-) — H,(D-).

Remark 1.2.8: Each H,, thus becomes a functor Ch(R-Mod) — R-Mod where H,,(u) := s p.

2 ‘ Friday, January 15
" 2.1 Review ~

See assignment posted on ELC, due Wed Jan 27

Remark 2.1.1: Recall that a chain complex is C_ where d* = 0, and a map of chain complex is a
ladder of commuting squares

- —— Cp1 Crnyr — -+

Unp—1 hun Un+1

Dn+1 - ...

Friday, January 15 9
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I Friday, January 15

Link to diagram

Recall that u, : Z,(C) — Z,(D) and u, : B,(C) — By,(D) preserves these submodules, so there
are induced maps u_ ,, : H,(D) — Hy (D) where H,(C) = Z,(C)/Byn — 1(C). Moreover, taking
H,(—) is a functor from Ch(R-Mod) — R-Mod for any fixed n and on objects C' — H,(C) and
chain maps u, — Hp(u) = u,. Note the lower indices denote maps going down in degree.

— 2.2 Cohomology ~

Definition 2.2.1 (Quasi-isomorphism)
A chain map v : €' — D is a quasi-isomorphism if and only if the induced map uyp :
H"(C) — H™(D) is an isomorphism of R-modules.

Remark 2.2.2: Note that the usual notion of an isomorphism in the categorical sense might be
too strong here.

Definition 2.2.3 (Cohomology)
A cochain complex is a complex of the form
LA om-1 AT om AN el

where d" o d"~! = 0. We similarly write Z"(C) := ker d" and B"(C) = imd"~! and write the
R-module H"(C) := Z"/B" for the nth cohomology of C.

Remark 2.2.4: There is a way to go back and forth bw chain complexes and cochain complexes:
set Cp, := C™ " and d,, := d~". This yields

cEL o e 0, D 0,
and the notions of d?> = 0 coincide.
Definition 2.2.5 (Bounded complexes)
A cochain complex C' is bounded if and only if there exists an a < b € Z such that C,, #

0 <= a <n <b. Similarly C" is bounded above if there is just a b, and bounded below
for just an a. All of the same definitions are made for cochain complexes.

Remark 2.2.6: See the book for classical applications:

e 1.1.3: Simplicial homology
e 1.1.5: Singular homology

— 2.3 Operations on Chain Complexes ~

2.2 Cohomology 10
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Friday, January 15

Remark 2.3.1: Write Ch for Ch(R-Mod), then if f,g: C' — D are chain maps then f+g¢:C — D
can be defined as (f + ¢)(z) = f(z) + g(z), since D has an addition coming from its R-module
structure. Thus the hom sets Hg{n(C’, D) becomes an abelian group. There is a distinguished zero

object! 0, defined as the chain complex with all zero objects and all zero maps. Note that we also
have a zero map given by the composition (C' — 0) o (0 — D).

Definition 2.3.2 (Products and Coproducts)
If {A,} is a family of complexes, we can form two new complexes:

e The product (H Aa>

= H Aqn with the differential
(6%

n

(T da) : TT Aan 2o, T Aans-

e The coproduct (H Aa> = @ Aqn, i.e. there are only finitely many nonzero entries,
« n @
with exactly the same definition as above for the differential.

Remark 2.3.3: Note that if the index set is finite, these notions coincide. By convention, finite
direct products are written as direct sums.

These structures make Ch into an additive category. See appendix for definition: the homs are
abelian groups where composition distributes over addition, existence of a zero object, and existence
of finite products. Note that here we have arbitrary products.

Definition 2.3.4 (Subcomplexes)
We say B is a subcomplex of C if and only if

e B, < (), € R-Mod for all n,
e The differentials of B,, are the restrictions of the differentials of C,.

Remark 2.3.5: This can be alternatively stated as saying the inclusion ¢ : B — C given by
in : B, — C, is a morphism of chain complexes. Recall that some squares need to commute, and
this forces the condition on restrictions.

Definition 2.3.6 (Quotient Complexes)
When B < C, we can form the quotient complex C'/B where

Cn/Bn i Cnfl/anl-

Moreover there is a natural projection 7 : C'— C'/B which is a chain map.

!See appendix A 1.6 for initial and terminal objects. Note that () is an initial but non-terminal object in Set, whereas
zero objects are both.

2.3 Operations on Chain Complexes 11



I 1.2: Chain Complex of Chain Complexes (Wednesday, January 20)

Remark 2.3.7: Suppose f : B — C is a chain map, then there exist induced maps on the levelwise
kernels and cokernels, so we can form the kernel and cokernel complex:

——  ker f), - - » ker fpg ———

.\ |

in in—1

T I

B, = B,y —mm -
| |

Jn fn—1

I |

Cn = Chog ——— -
Tn Tn—1

- ———  coker f, ------ M5 coker fnog —— -

Link to Diagram

Here ker f < B is a subcomplex, and coker f is a quotient complex of C. The chain map i : ker f — B
is a categorical kernel of f in Ch, and 7 is similarly a cokernel. See appendix A 1.6. These
constructions make Ch into an abelian category: roughly an additive category where every
morphism has a kernel and a cokernel.

3 1.2: Chain Complex of Chain Complexes
(Wednesday, January 20)

See phone pic for missed first 10m

) 3.1 Double Complexes ~

Remark 3.1.1: Consider a double complex:

1.2: Chain Complex of Chain Complexes (Wednesday, January 20) 12
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1.2: Chain Complex of Chain Complexes (Wednesday, January 20)

Cp, :

)

h h
- < Cp14+1 +dp g1 — Cpgr1 < dpiigr1— Cprigrt <

dzfl,qul dz,q+1 d;)7+17q+1
. PR <— _ % .<7 <— PR
C'#]‘ Cp 1,9 i Cp7q i Cp+1,q
p,q p+1,q9
v v
dp—lyq d;;,q dp+1,q

e Cpfl,qﬂ AT — Cp,qH <—dh Cp+1,q+1 -
p+1,q+1

Link to Diagram

All of the individual rows and columns are chain complexes, where (d")? = 0 and (d”)? = 0, and
the square anticommute: d'd" + d"d" — 0, so d'd" = —d"d". This is almost a chain complex of
chain complexes, i.e. an element of Ch(ChR-Mod)). It’s useful here to consider lines parallel to the
line y = x.

Definition 3.1.2 (Bounded Complexes)
A double complex C_ _ is bounded if and only if there are only finitely many nonzero terms
along each constant diagonal p + ¢ = n.

Example 3.1.3(?): A first quadrant double complex {Cpq}, .~ is bounded: note that this can
still have infinitely many terms, but each diagonal is finite because each will hit a coordinate axis.

Remark 3.1.4(The sign trick): The squares anticommute, since the d” are not chain maps
between the horizontal chain complexes. This can be fixed by changing every one out of four signs,
defining

f*7q : C*7q % C*yqil
frg = (—1)pd;,q : Cpg = Cpg—1.

This yields a new double complex where the signs of each column alternate:

3.1 Double Complexes 13
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1.2: Chain Complex of Chain Complexes (Wednesday, January 20)

Coaq — dh

Clzq A— dh

027q

dav —dv dv

Cog—1 <—d" Crg—1 «—ad" Cog-1

Now the squares commute and f_ , are chain maps, so this object is an element of Ch(ChR-Mod).

— 3.2 Total Complexes ~

Remark 3.2.1: Recall that products and coproducts of R-modules coincide when the indexing set
is finite.

Definition 3.2.2 (Total Complexes)
Given a double complex C_ _, there are two ordinary chain complexes associated to it referred
to as total complexes:

(TotHC)n = H Cpq

ptq=n

(Tot® C),, = @ O

p+g=n
Writing Tot(C') usually refers to the former. The differentials are given by
dpg=d"+d° : Cpg = Cp14® Cpg-1,

where C,, C Tot®(C), and Cp_14 ® Cpy-1 C Tot®(C),_1. Then you extend this to a
differential on the entire diagonal by defining d = @ s, e
P,

Exercise 3.2.3 (7)
Check that d? = 0, using d*d" + d"d” = 0.

Remark 3.2.4: Some notes:

e Tot?(C) = Tot'(C) when C is bounded.

e The total complexes need not exist if C' is unbounded: one needs infinite direct products
and infinite coproducts to exist in C. A category admitting these is called complete or
cocomplete.?

2Recall that abelian categories are additive and only require finite products /coproducts. A counterexample: cate-
gories of finite abelian groups, where e.g. you can’t take infinite sums and stay within the category.

3.2 Total Complexes 14



I 1.2: Chain Complex of Chain Complexes (Wednesday, January 20)

— 3.3 More Operations

Definition 3.3.1 (Truncation below)
Fix n € Z, and define the nth truncation 7>,(C) by

0 i<n
>n(C)=(Z, i=n .
C; 1>n.
Pictorially:
dn dn+1

dn+2
Zn Cn+1 < Cn+2 — -

Link to diagram
This is sometimes call the good truncation of C' below n.

Remark 3.3.2: Note that

Definition 3.3.3 (Truncation above)
We define the quotient complex

T<nC = C/TZnC

which is C; below n, C,,/Z,, at n. Thus is has homology

0 i>n

Definition 3.3.4 (Translation)
If C is a chain complex and p € Z, define a new complex C[p] by

Clpln = n+p-
Degrees —p 0 D
@ @ G G
Clp) Co <~ o Cop

3.3 More Operations
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Link to Diagram
Similarly, if C'is a cochain complex, we set C[p]|" = C"P:

Degrees —p 0 P
C CP — C° — CP
Clpl ou 3 op =3 0

Link to Diagram

Mnemonic: Shift p positions in the same direction
as the arrows.
In both cases, the differentials are given by the shifted differential d[p] := (—1)Pd. Note that
these are not alternating: p is the fixed translation, so this is a constant that changes the signs
of all differentials. Thus H,,(C[p]) = Hp4+,(C) and H"(Clp]) = H"P.

Exercise 3.3.5
Check that if C" := C_,,, then C[p]" = C|p]_p.

Remark 3.3.6: We can make translation into a functor [p] : Ch — Ch: given f : C' — D, define
flp] : Clp] — DI[p] by flpln = fntp, and a similar definition for cochain complexes changing p to
—p.

4 ‘ Lecture 4 (Friday, January 22)

— 4.1 Long Exact Sequences ~

Remark 4.1.1: Some terminology: in an abelian category A an example of an exact complex in

Ch(A) is

0 ALBL O 0

where ezactness means ker = im at each position, i.e. ker f = 0,im f = kerg,img = C. We say f
is monic and g epic.

As a special case, if 0 > A — 0 is exact then A must be zero, since the image of the incoming map

must be 0. This also happens when every other term is zero. If 0 — A ENy ;3N 0, then A = B since
f is both injective and surjective (say for R-modules).
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Theorem 4.1.2(Long Ezxact Sequences).
Suppose 0 - A — B — C' — 0 is a SES in Ch(A) (note: this is a sequence of complexes), then
there are natural maps

§: Hy(C) — Hy_1(A)

called connecting morphisms which decrease degree such that the following sequence is
exact:

- ——— Hypy1(C)

Link to Diagram
This is referred to as the long exact sequence in homology. Similarly, replacing chain
complexes by cochain complexes yields a similar connecting morphism that increases degree.
Note on notation: some books use O for homology
and & for cohomology.

The proof that this sequence exists is a consequence of the snake lemma.

Lemma 4.1.3(The Snake Lemma).
The sequence highlighted in red in the following diagram is exact:

0 — ker(f) — ker(a) —— ker(8) —— ker(y)

0 A—7T B g C 0
a B o Y
0 A — B’ ) c’ 0
f g

» coker(a) — coker(8) —— coker(y) — coker(g’) — 0

Link to Diagram

4.1 Long Exact Sequences 17
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Proof (of the Snake Lemma: Ezxistence).

o Start with ¢ € ker(y) < C, so v(c) =0 € '
e Choose b € B by surjectivity

— We'll show it’s independent of this choice.

o Then v’ € B' goes to 0 € ', so V/ € ker(B' — ")

o By exactness, b’ € ker(B' — C') = im(A4’ — B’), and now produce a unique a’ € A’ by
injectivity

o Take the image [d'] € coker a

o Define 9(c) == [d].

Proof (of the Snake Lemma: Uniqueness).

o We chose b, suppose we chose a different b.

e Then b— b+ ¢ —c =0, so the difference is in ker g = im f.

e Produce an @ € A such that @ — b—b

e Then @ := a(a), so apply f'.

« Define (b) =t € B.

« Commutativity of the LHS square forces @ — b’ —b'.

o Thena+d —b -0 +b =0.

e So @ + d' is the desired pullback of &'

e Then take [@'] € coker a; are a’,@ in the same equivalence class?

o Use that fact that @ = a’+a, where @ € im «, so [a] = [a'+a] = [d'] € cokera := A"/ im a.

Proof (of the Snake Lemma: Exactness).

e Let’s show g : ker 8 — ker~y.
— Let b € ker 3, then consider v(g(3)) = ¢'(B(b)) = ¢’(0) = 0 and so g(b) € ker~.
o Now we’ll show im(gly, 5) C kerd

— Let b € ker 8, ¢ = g(b), then how is d(c) defined?
— Use this b, then apply 3 to get b’ = 3(b) = 0 since b € ker 3.
— So the unique thing mapping to it a’ is zero, and thus [a’] = 0 = §(c).

o kerd Cim(g|i, )

— Let ¢ € ker §, then d(c) = 0 = [d] € coker o which implies that a’ € im a.

— Write @’ = a(a), then B(b) = b = f'(a’) = f'(a(a)) by going one way around the
LHS square, and is equal to §(f(a)) going the other way.

— So b:=b— f(a) € ker 8, since B(b) = B(f(a)) implies their difference is zero.

4.1 Long Exact Sequences 18
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— Then g(b) = g(b) — g(f(a)) = g(b) = ¢, which puts ¢ € g(ker ) as desired.

Exercise 4.1.4 (?)

Show exactness at the remaining places — the most interesting place is at coker ae. Also check
that all of these maps make sense.

Remark 4.1.5: We assumed that A = R-Mod here, so we could chase elements, but this happens
to also be true in any abelian category A but by a different proof. The idea is to embed .4 — R-Mod
for some ring R, do the construction there, and pull the results back — but this doesn’t quite work!
A can be too big. Instead, do this for the smallest subcategory Ay containing all of the modules
and maps involved in the snake lemma. Then Ag is small enough to embed into R-Mod by the
Freyd-Mitchell Embedding Theorem.

5 ‘ Lecture 5 (Monday, January 25)

" 5.1 LES Associated to a SES ~

Theorem 5.1.1 (Every SES of chain complexes induces a LES in homology).
For every SES of chain complexes, there is a long exact sequence in homology.

Proof (?).
Suppose we have a SES of chain complexes

0o-aLBS o0,

which means that for every n there is a SES of R-modules. Recall the diagram for the snake
lemma, involving kernels across the top and cokernels across the bottom. Applying the snake
lemma, by hypothesis coker g = 0 and ker f = 0. There is a SES

Ap/dAn+1 — Bp/dBpi1 — Cp/dCpi1 — 0

Using the fact that B,, C Z,, we can use the 1st and 2nd isomorphism theorems to produce

Lecture 5 (Monday, January 25) 19
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Hn(A)

f«— H,(B)

9« — Hp(C) -

coker dy,
ey =Zn—l(A)(£;i)An T} anl(B) T) anl(C)
=1lin—1 *

Link to diagram
This yields an exact sequence relating H,, to H,_1, and these can all be spliced together.

o ker(A,/dAn—1 — Zn-1(A) = Z,(A)/dAn+1 = Hp(A) using the 2nd isomorphism theo-

rem

Remark 5.1.2: Note that d is natural, which means the following: there is a category S whose
objects are SESs of chain complexes and whose maps are chain maps:

0 A B C 0

0 A B’ C’ 0

There is another full subcategory £ of Ch whose objects are LESs of objects in the original abelian
category, i.e. exact chain complexes. The claim is that the LES construction in the theorem defines
a functor S — L. We’ve seen how this maps objects, so what is the map on morphisms? Given a
morphism as in the above diagram, there is an induced morphism:

5.1 LES Associated to a SES 20
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Link to Diagram
The first two squares commute, and naturality means that the third square commutes as well.

Exercise 5.1.3 (7)
Check the details!

Remark 5.1.4: It is sometimes useful to explicitly know how to compute snake lemma boundary
elements. See the book for a recipe for computing 9(§):

o Lift € to a cycle c € Z,(C) C C,,.

e Pull ¢ back to a preimage b € B,, by surjectivity.

o Apply the differential to get d(b) € Z,,_1(B), using that images are contained in kernels.

e Since this is in kernel of the outgoing map, it’s in the kernel of the incoming map and thus
there exists an a € Z,,_1(A) such that f(a) = db

o Soset §(§) = [a] € Hy—1(A).

Remark 5.1.5: Why is naturality useful? Suppose H,(B) = 0, you get isomorphisms, and this
allows inductive arguments up the LES. The LES in homology is sometimes abbreviated as an
exact triangle:

Here 0 : H,(C) — H.(A)[1] shifts degrees. Note that this motivates the idea of triangulated
categories, which is important in modern research. See Weibel Ch.10, and exercise 1.4.5 for how
to construct these as quotients of Ch.

— 5.2 1.4: Chain Homotopies ~

Remark 5.2.1: Assume for now that we're in the situation of R-modules where R is a field,
i.e. vector spaces. The main fact/advantage here that is not generally true for R-modules: every
subspace has a complement. Since B,, C Z,, C C,, we can write C,, = Z,, ® B;L for every n, and
Zy = B, ® H,. This notation is suggestive, since H,, = Z,/B, as a quotient of vector spaces.
Substituting, we get C,, = B, ® H,, ® B,,. Consider the projection C,, — B, by projecting onto
the first factor. Identifying B, := im(Cp+1 — Cy) = Cp4+1/Zn+1 by the 1st isomorphism theorem
in the reverse direction. But this image is equal to B, 11, and we can embed this in Cy, 41, so define
Sp : Cp, — Chy1 as the composition
—1

3 d ~
. proj . ntl >~
Sy = (Cn — B, = 1m(Cn+1 — Cn) — Cn+1/Zn+1 — Bn+1 — Cn+1.

5.2 1.4: Chain Homotopies 21
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Claim 1: d,y15,dp+1 = dny1 are equal as maps.
Proof (?).
o Check on the first factor B7/1+1 C Cp41 directly to get spdpt1(z) = dpyi(x) for z € B7/1+17
and then applying d, 11 to both sides is the desired equality.
e On the second factor 7,1, both sides give zero since this is exactly the kernel.
|

Claim 2: d,11s, + sn—1d, = idg,, if and only if H,, = 0, i.e. the complex C' is exact at C),. This
map is the sum of taking the two triangle paths in this diagram:

dn
Cp, ——— Ch—1
Sn id‘ Sn—1
dn+1
Chi1 —— Cy

Proof (?).
We again check this on both factors:

e Using the first claim, s, = 0 on B;L and thus s,—1d, = idp; .
e On H,, s, =0 and d,, =0, and so the LHS is 0 = idy,, if and only if H, = 0.

o On B, and tracing through the definition of s, yields d,,+15,(z) = = and this yields
idp,, .

Next time: summary of decompositions, start general section on chain homotopies.

6 ‘ Wednesday, January 27

See phone pic for missed first 10m.
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— 6.1 1.4: Chain Homotopies ~

Definition 6.1.1 (Split Exact)

A complex is called split if there are maps s, : C,, — Cj 41 such that d = dsd. In this case,
the maps s, are referred to as the splitting maps, and if C' is additionally acyclic, we say C
is split exact.

Remark 6.1.2: Note that when C' is split exact, we have

Cn -4 ” Cn—l

s'ﬂ/ i‘d 577.—1/
P

d
Cphy1 —— (),

Link to Diagram /

Example 6.1.3(Not all complexes split): Take
C'= (0 2Z/2Z % Z/AZ — /22— 0).
Then imd = {0,2} = kerd, but this does not split since Z/27Z* % 7Z/47: one has an element of

order 4 in the underlying additive group. Equivalently, there is no complement to the image. What
might be familiar from algebra is ds = id, but the more general notion is dsd = d. 7

Example 6.1.4(%): The following complex is not split exact for the same reason:
e 2747 B T)AT s - -

Question 6.1.5
Given f,g: C — D, when do we get equality f. = g« : H(C) — H.(D)?

Definition 6.1.6 (Homotopy Terminology for Chains)
A chain map f : C — D is nullhomotopic if and only if there exist maps s, : C;, = Dy11
such that f = ds + sd:

6.1 1.4: Chain Homotopies 23
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Cn -4 ” Cn—l

o b oRm
N e

d
Dypyy ——— D,

Link to Diagram
The map s is called a chain contraction. Two maps are chain homotopic (or initially: f
is chain homotopic to g, since we don’t yet know if this relation is symmetric) if and only if
f — g is nullhomotopic, i.e. f — g = ds + sd. The map s is called a chain homotopy from f
to g. A map f is a chain homotopy equivalence if both fg and gf are chain homotopic to
the identities on C' and D respectively.

Lemma 6.1.7(%9).

If map f : C — D is nullhomotopic then f, : H.(C) — H.(D) is the zero map. Thus if f,g
are chain homotopic, then they induce equal maps.

Proof (?).
An element in the quotient H,(C) is represented by an n-cycle x € Z,(C). By a previous
exercise, f(x) is a well-defined element of H, (D), and using that d(z) = 0 we have

f(@) = (ds + sd)(x) = d(s(z)),
and so f[z] = [f(x)] = [0].

Sn id Sn—1
/ . | /
Dn+1 . Dn

Link to Diagram
Now applying the first part to f — g to get the second part.

See Weibel for topological motivations.
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- 6.2 1.5 Mapping Cones ~

Remark 6.2.1: Note that we’ll skip mapping cylinders, since they don’t come up until the section
on triangulated categories. The goal is to see how any two maps between homologies can be fit
into a LES. This helps reduce questions about quasi-isomorphisms to questions about split exact
complexes.

Definition 6.2.2 (Mapping Cones)
Suppose we have a chain map f : B — C, then there is a chain complex cone(f), the mapping
cone of f, defined by

cone(f)n = Bn—1 @ Cy.

The maps are given by the following:

—dB
By ——— Bn2

& @

d¢
Cn — Cn—l

Link to Diagram
We can write this down: d(b,c) = (—d(b), —f(b) + d(c)), or as a matrix

—d” 0
—f d°|
Exercise 6.2.3 (7)

Check that the differential on cone(f) squares to zero.

Exercise 6.2.4 (Weibel 1.5.1)
When f =id: C — C, we write cone(C) instead of cone(id). Show that cone(C) is split exact,
with splitting map s(b,¢) = (—¢,0) for b € Cy,_1,c € Cy,.

Proposition 6.2.5(LES in homology of a single chain map using the cone).
Suppose f : B — C'is a chain map, then the induced maps f, : H(B) — H(C) fit into a LES.
There is a SES of chain complexes:
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0 » C cone(f) —— B[-1] ——— 0

¢c — (0,¢)

(b,c) ———  —b

Link to Diagram

Exercise 6.2.6(?)
Check that these are chain maps, i.e. they commute with the respective differentials d.

The corresponding LES is given by the following:
1)

«—————— Hyyicone(f) ———— H,1(B[-1]) = Hy(

H,(C) ———— Hycone(f) ——— H,(B[-1]) = Hy—1(

Link to Diagram

Lemma 6.2.7(?).
The map 9 = f.

Proof (?).
Letting b € B,, is an n-cycle.

Lift b to anything via d, say (—b,0).

Apply the differential d to get (db, fb) = (0, fb) since b was a cycle.

Pull back to C), by the map C' — cone(f) to get fb.

Then the connecting morphism is given by 9[b] = [fb]. But by definition of f., we
have [fb] = f«[b].

80P =
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7 ‘ Friday, January 29

— 7.1 Mapping Cones ~

Remark 7.1.1: Given f : B — C we defined cone(f),, := B,—1 ® C,, which fits into a SES

0 — C — cone(f) LN B[-1]—=0

and thus yields a LES in cohomology.

-+ ————— Hyq(cone(f)) ——— H,(B)

H,(C) ——— Hy,(cone(f)) ——— H,_1(B)

Link to Diagram

Corollary 7.1.2(?).
f: B — C'is a quasi-isomorphism if and only if cone(f) is exact.

Proof (?).
In the LES, all of the maps f, are isomorphisms, which forces Hy,(cone(f)) = 0 for all n.
|

Remark 7.1.3: So we can convert statements about quasi-isomorphisms of complexes into exactness
of a single complex.

We’ll skip the rest, e.g. mapping cylinders which
aren’t used until the section on triangulated categories.
We’ll also skip the section on d-functors, which is a
slightly abstract language.
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s 7.2 Ch. 2: Derived Functors ~

Remark 7.2.1: Setup: fix M € R-Mod, where R is a ring with unit. Note that by an upcoming
exercise, H%m(M ,—) : Mod-R — Ab is a left-exact functor, but not in general right-exact: given a
SES

0A4LB%C 50 € Ch(Mod-R),

there is an exact sequence:

fe=fo(-)
s

0 ———— Hom(M, 4) Hom (M, B) o=l , Hom (M, C)

Link to Diagram

However, this is not generally surjective: not every M — C is given by composition with a morphism
M — B (lifting). To create a LES here, one could use the cokernel construction, but we’d like to

do this functorially by defining a sequence functors F™ that extend this on on the right to form a
LES:

fe=fo(-)
s

0 ——— Hom(M, 4) Hom(M, B) _g=9eld) Hom (M, C)

Link to Diagram

It turns out such functors exist and are denoted F"(—) := Extz(M, —):
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fe=Fo(-)
_

0 > Hom(M, ) Hom (M, B) =50, Hom(M, C)

Link to Diagram

By convention, we set Ext%(—) = H%m(M ,—). This is an example of a general construction:
right-derived functors of H%m(M , —). More generally, if A is an abelian category (with a certain

additional property) and F': A — B is a left-exact functor (where B is another abelian category)
then we can define right-derived functors R"F : A — B. These send SESs in A to LESs in B:

0 A B c 0

Link to Diagram

Similarly, if F' is right-ezact instead, there are left-derived functors L™ F which form a LES ending
with 0 at the right:

7.2 Ch. 2: Derived Functors 29


https://q.uiver.app/?q=WzAsOSxbMiwwLCJcXEhvbV9SKE0sIEEpIl0sWzQsMCwiXFxIb21fUihNLCBBKSJdLFs2LDAsIlxcSG9tX1IoTSwgQSkiXSxbMCwwLCIwIl0sWzIsMiwiXFxFeHRfUl4xKEEpIl0sWzQsMiwiXFxFeHRfUl4xKEIpIl0sWzYsMiwiXFxFeHRfUl4xKEMpIl0sWzIsNCwiXFxFeHRfUl4yKEEpIl0sWzQsNCwiXFxjZG90cyJdLFswLDEsImZfKiA9IGZcXGNpcmMoXFx3YWl0KSJdLFsxLDIsImdfKiA9IGdcXGNpcmMoXFx3YWl0KSJdLFszLDBdLFsyLDRdLFs0LDVdLFs1LDZdLFs2LDddLFs3LDhdXQ==
https://q.uiver.app/?q=WzAsMTMsWzAsMCwiMCJdLFsyLDAsIkEiXSxbNCwwLCJCIl0sWzYsMCwiQyJdLFs4LDAsIjAiXSxbMCwyLCIwIl0sWzIsMiwiRkEiXSxbNCwyLCJGQiJdLFs2LDIsIkZDIl0sWzIsNCwiUl4xRkEiXSxbNCw0LCJSXjEgRkIiXSxbNiw0LCJSXjEgRkMiXSxbMiw2LCJcXGNkb3RzIl0sWzAsMV0sWzEsMl0sWzIsM10sWzMsNF0sWzUsNl0sWzYsN10sWzcsOF0sWzgsOV0sWzksMTBdLFsxMCwxMV0sWzExLDEyXV0=

I Friday, January 29

0 A B c 0

FA—— LFB —— LFC

FA FB FC 0

Link to Diagram

— 7.3 2.2: Projective Resolutions ~

Definition 7.3.1 (Projective Modules)
Let A = R-Mod, then P € R-Mod satisfies the following universal property:

P
3B
e,
v
g
B C 0

Link to Diagram

Remark 7.3.2: Free modules are projective. Let F' = R¥ be the free module on the set X. Then
consider y(x) € C, by surjectivity these can be pulled back to some elements in B:

X
35 _F
gt g C 0
b€ g7 (v(2)) = B(x) v(x)

Link to Diagram
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I Friday, January 29

This follows from the universal property of free modules:

3F(X)
JgeHomse (X,F(X)) i

A f'eHomp (F(X),X)

f€eHomsge (X, M) ]\\2 € R-Mod

Link to Diagram

Proposition 7.3.3 (Projective if and only if summand of free (for modules)).
An R-module is projective if and only if it is a direct summand of a free module.

Exercise 7.3.4 (7)
Prove the <= direction!

Proof (?).
— : Assume P is projective, and let F'(P) be the free R-module on the underlying set of P.
We can start with this diagram:

F(P)
P dr é
Link to Diagram
And rearranging, we get
P
/ EIL/ id
0 ——— kerm —— F(P) ——» P 0

- -

Link to Diagram
Since 7 o ¢, the SES splits and this F/(P) = P @ ker 7, making P a direct summand of a free
module.
|
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Monday, February 01

Example 7.3.5(%): Not every projective module is free. Let R = Ry X Ry a direct product of unital
rings. Then P := Ry x {0} and P’ := {0} x Ry are R-modules that are submodules of R. They’re
projective since R is free over itself as an R-module, and their direct sum is R. However they can not
be free, since e.g. P has a nonzero annihilator: taking (0,1) € R, we have (0,1)- P = {(0,0)} = Og.
No free module has a nonzero annihilator, since ix 0 # r € R then rR # 0 since r1g € rR, which

implies that r (@ R) #0. Vs

Example 7.3.6 (?): Taking R = Z/6Z = Z/27 & 7/3Z admits projective R-modules which are not
free. v

Example 7.3.7(7): Let I be a field, define the ring R .= Mat(nxn, F') withn > 2, and set V = F"
n

thought of as column vectors. This is left R-module, and decomposes as R = @ V' corresponding

i=1
to the columns of R, using that AB = [Aby,--- , Ab,|. Then V is a projective R-module as a direct
summand of a free module, but it is not free. We have vector spaces, so we can consider dimensions:
dimp R = n? and dimp V = n, so V can’t be a free R-module since this would force dimp V = kn?
for some k. P

Example 7.3.8(?): How many projective modules are there in a given category? Let C := Abf®
be the category of finite abelian groups, where we take the full subcategory of the category of all
abelian groups. This is an abelian category, although it is not closed under infinite direct sums or
products, which has no projective objects.

Proof (?).
Over a PID, every submodule of a free module is free, and so we have free <= projective in
this case. So equivalently, we can show there are no free Z-modules, which is true because Z

is infinite, and any such module would have to contain a copy of Z.
m -

Remark 7.3.9: The definition of projective objects extends to any abelian category, not just
R-modules. A~

8 ‘ Monday, February 01

Recall the universal of projective modules.

P
B
),
e
g
B C 0
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Definition 8.0.1 (Enough Projective)
If A is an abelian category, then A has enough projectives if and only if for all a € A there
exists a projective object P € A and a surjective morphism P — A.

Example 8.0.2(%): Mod-R has enough projectives: for all A € Mod-R, one can take F(A) - A.
Example 8.0.3(?): The category of finite abelian groups does not have enough projectives.

G e

Lemma 8.0.4(%).
P is projective if and only if Hgtm(P, —) is an exact functor.

Exercise 8.0.5 (7)
Prove this!

Definition 8.0.6 ((Key))
Let M € Mod-R, then a projective resolution of M is an exact complex

o p Ay p S M 0.

We write P_ S M.

Lemma 8.0.7((Key)).
Every object M € Mod-R has a projective resolution. This is true in any abelian category
with enough projectives.

()

Proof (?).

« Since there are enough projectives, choose Py <% M — 0.

« To extend this, set My := ker ¢, then find a projective cover P = M
e Use that di := 1g 0 €1 and imdy = My = ker ¢g

e Then dy = t1 0 €5 with imdy = M7, and ker d; = ker e; = M;.

e Continuing in this fashion makes the complex exact at every stage.

Monday, February 01 33



Monday, February 01

0 \ / 0
M,y
77777777777777777777 v Py 2 g Py M 0
/ h %
€0
>
M2 MO
0 0 0
Link to Diagram
]
— 8.1 Comparison Theorem ~

Theorem 8.1.1 (Comparison Theorem).
Suppose P < M is a projective resolution of an object in A and (M NN, ) € Mor(.A) and

Q_ 2 N a resolution of N. Then there exists a chain map P 2 Q lifting f which is unique
up to chain homotopy:

d¥ ar e=dl
> Pg > Pl > P() M 0
13f2 E 13 fo fo1=f
& & &
N 0
Q2 e Q@1 z Qo —e

Link to Diagram

Remark 8.1.2: The proof will only use that P < M is a chain complex of projective objects,
i.e. d> =0, and that € o d} = 0. To make the notation more consistent, we’ll write Z_;(P) = M
and Z_1(Q) := N. Toward an induction, suppose that the f; have been constructed for i < n, so

fi-iod=do f;.

Proof (Existence).

A fact about chain maps is that they induce maps on the kernels of the outgoing maps, so
there is a map f) : Z,(P) — Zn(Q). We get a diagram where the top row is not necessarily
exact:
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Py —4 5 Z.(P)
E} For
v d d
Qi1 ————— Zp(Q) ———— 0

Link to Diagram
Using the definition of projective, since P, is projective, the map fi4+1 : Phy1 — Qny1 exists
where do f,11 = f), od = f, od, since f, = f, on imd C Z,(P). This yields commutativity
of the above square.
|

Proof (Uniqueness).

Suppose g : P — @Q is another lift of f’, the consider h := f — g. This is a chain map P — Q
lifting of f" — f' = 0. We'll construct a chain contraction {s, :; P, — Qn+1} by induction on
n:

We have the following diagram:

Pp—= M

ho=fo—fg f=f'=0

Q1 y Qo 7 N

Link to Diagram
Setting P_1 :== 0 and s_1 : P_1 — Qg to be the zero map, we have nohg = e(f'— f') = 0. Using
projectivity of Py, there exists an sg as shown below which satisfies hg = d o sg = dsg + s_1d
where s_1d = 0:

POLP_lz()

ds1 -7
e ho
e s_1=0

-
-

Q1 S d(@Q) —— 0

Link to Diagram
Proceeding inductively, assume we have maps s; : P; — Q;+1 such that h,—1 = dsp—1 + sp—ad,
or equivalently ds,,_1 = h,—1 — sp_2d. We want to construct s, in the following diagram:

d d
P,—— P, ———— P,

| / /

| ) hn Sn—1 hn71 Sn—2
@n d

Qn—l
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Wednesday, February 03

Link to Diagram
So consider h,, — sp—1d : P, = Qn, which we want to equal d(s,). We want exactness, so we
need better control of the image! We have d(h,, — sp—1d) = dhy, — (hp—1 — Sp—2d)d. But this
is equal to dh,, — h,—1d = 0 since h is a chain map. Thus we get hy,, — s,—1d : P, — Z,(Q),
and thus using projectivity one last time, we obtain the following:

2
/,/’/Elsn hn—snfld
v d d
Qnt1 ——— Zp(Q) ———— 0

Link to Diagram
Since P, is projective, there exists an s, : P, — Qp41 such that ds, = h, — sp_1d.

9 ‘ Tuesday, February 02

]_O ‘ Wednesday, February 03

Remark 10.0.1: All rings have 1 in this course!

" 10.1 Horseshoe Lemma ~

Proposition 10.1.1 (Horseshoe Lemma).
Suppose we have a diagram like the following, where the columns are exact and the rows are
projective resolutions:

Tuesday, February 02 36


https://q.uiver.app/?q=WzAsNixbMiwwLCJQX24iXSxbNCwwLCJQX3tuLTF9Il0sWzYsMCwiUF97bi0yfSJdLFsyLDIsIlFfbiJdLFs0LDIsIlFfe24tMX0iXSxbMCwyLCJRX3tuKzF9Il0sWzAsMSwiZCJdLFsxLDIsImQiXSxbMSw0LCJoX3tuLTF9Il0sWzIsNCwic197bi0yfSIsMV0sWzEsMywic197bi0xfSIsMV0sWzMsNCwiZCIsMV0sWzUsMywiZCIsMV0sWzAsMywiaF97bn0iLDFdLFswLDUsIlxcZXhpc3RzIHNfbiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==
https://q.uiver.app/?q=WzAsNCxbMCwyLCJRX3tuKzF9Il0sWzIsMiwiWl9uKFEpIl0sWzIsMCwiUF9uIl0sWzQsMiwiMCJdLFsyLDAsIlxcZXhpc3RzIHNfbiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDEsImQiXSxbMiwxLCJoX24gLSBzX3tuLTF9ZCJdLFsxLDMsImQiXV0=

Wednesday, February 03

0
P} P P, = Al » 0
LA
A
TA
Py Py Ry A 0
0

Link to Diagram
Note that if the vertical sequence were split, one could sum together to two resolutions to get
a resolution of the middle. This still works: there is a projective resolution of P of A given by

P,:=P &P/
which lifts the vertical column in the above diagram to an exact sequence of complexes
0P HPL P >0,

where ¢, : P, < P, is the natural inclusion and 7; : P,, — P,/ the natural projection.

10.1.1 Proof of the Horseshoe Lemma

We can construct this inductively:
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0 0
ker(g) P} = A » 0

L U LA
ker(e) Py ! A » coker(e)

A

™ //;];: TA
ker(e”) Py . A" » 0

0 0

Link to Diagram

o P} projective and 74 surjective implies £” lifts to " : Py — A
« Composing yields ' :==140n": P} — A
o Gete:=n'®n":Py:=P,d P/ - A

Flipping the diagram, we can apply the snake lemma to the two columns:
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0 0 0
19}
ker (') P} = A » 0
JQ/_,-/I
L g tA
ker(e) Py ! A > coker(e)
A
A |
ker(g") PY & A" > 0
0 0

Link to Diagram

We can now conclude that

e cokere =0
¢ 0 =0 since it lands on the zero moduli

So append a zero onto the far left column:

10.1 Horseshoe Lemma
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0 0 0
19}
ker (') P} = A » 0
JQ/_,-/I
L g tA
ker(e) Py ! A > coker(e)
A
P
ker(g") PY e A" > 0
0 0 0

Link to Diagram

Thus the LHS column is a SES, and we have the first step of a resolution. Proceeding inductively,
at the next step we have

0
» P i ker(¢') ——— 0
kel\“’(s)
P/ i ker(g") ——— 0
0
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Link to Diagram

However, this is precisely the situation that appeared before, so the same procedure works.

Exercise 10.1.2 (?)
Check that the middle complex is exact! Follows by construction.

— 10.2 Injective Resolutions ~

Definition 10.2.1 (Injective Objects)

Let A be an abelian category, then I € A is injective if and only if it satisfies the following
universal property: A is projective if and only if for every monic oo : A — I, any map f : A — B
lifts to a map B — I:

Link to Diagram
We say A has enough injectives if and only if for all A, there exists A < I where [ is
injective.

Slogan 10.2.2
Maps on subobjects extend.

Proposition 10.2.3 (Products of Injectives are Injective).
If {I,} is a family of injectives and I := HIa € A, then I is again injective.
(0%

Proof (?).
Use the universal property of direct products.
|
" 10.3 Baer’s Criterion ~
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Proposition 10.3.1(Baer’s Criterion).
An object F € R-Mod is injective if and only if for every right ideal J < R, every map J — E
extends to a map R — E. Note that J is a right R-submodule.

Proof (?).
— : This is essentially by definition. Instead of taking arbitrary submodules, we're just
taking R itself and its submodules:

0 J R

Link to Diagram
<= : Suppose we have the following:

S

0 B

E

Link to Diagram
Let £ = {o/ A S Bl A< A< B}, i.e. all of the intermediate extensions:

0 A A B

Link to Diagram
Add a partial order to €& where o/ < o if and only if o extends o’. Applying Zorn’s lemma
(and abusing notation slightly), we can produce a maximal o’ : A’ — E. The claim is that
A" = B. Supposing not, then A’ is a proper submodule, so choose a b € B\ A’. Then define
the set J = {r ER ’ br € A/}, this is a right ideal of R since A’ was a right R-module. Now

applying the assumption of Baer’s condition on E, we can produce a map f: R — E:C
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Link to Diagram
Now let A” := A’ + bR < B, and provisionally define

A" E
a+br— d(a)+ f(r).

Remark 10.3.2: Is this well-defined? Consider overlapping terms, it’s enough to consider
elements of the form br € A’. In this case, r € J by definition, and so o/(br) = f(r) by
commutativity in the previous diagram, which shows that the two maps agree on anything in

the intersection. #~
Note that o/ now extends o/, but A" C A” since b € A” \ A’". But then A” strictly contains

A’ contradicting its maximality from Zorn’s lemma.

Remark 10.3.3: Big question: what are injective modules really? These are pretty nonintuitive
objects. Vs

1 1 ‘ Friday, February 05

See missing first 10m Recall the definition of injec-
tives.

Remark 11.0.1: Over a PID, divisible is equivalent (?) to injective as a module. s

Example 11.0.2(?): Q is divisible, and thus an injective Z-module. Similarly Q/Z = [0,1) N Q.

1 .
Example 11.0.3(?): Let p € Z be prime, then Z[—] C Q has elements of the form Z %, and is
p 3

1 1
not divisible. On the other hand, Zy~ = Z[-]/Z = Z[-] N0, 1) is divisible since p" (i) =a € Z,
p p p
which equals zero in Zpe~. To solve zr = a/p"™ with r,a € Z and r # 0, first assume ged(r,p) = 1
by just dividing through by any common powers of p. This amounts to solving 1 = srip”™ where
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s,te:
a a
o ()0 (2)
sa
= p—n T
=27 € Lipeo.
Fact 11.0.4

Every injective abelian group is isomorphic to a direct sum of copies of Q and Zy,~ for various
primes p.

Example 11.0.5(%2): Q/Z = @ Zp. To prove this, do induction on the number of prime
p prime
factors in the denominator.

Exercise 11.0.6 (2.3.2)
Ab = Z-Mod has enough injectives.

Remark 11.0.7: As a consequence, Mod-R has enough injectives for any ring R.

11.1 Transferring Injectives Between
Categories

Next we’ll use our background in projectives to deduce analogous facts for injectives.

Definition 11.1.1 (Opposite Category)
Let A be any category, then there is an opposite/dual category AP defined in the following
way:

Ob(A°P) = Ob(A)
A — B € Mor(A) = B — A € Mor(A°®), so

Hom(A, B) = Hom(B, A)
A Aop
f=por.

e We require that if A B O A, then f°P o g°? = (g o f)°® where C g 1% A
o ]l(;‘p =14 in A°P.

AWarning 11.1.2
Thinking of these as functions won’t quite work! For f : A — B, there may not be any map B — A
—you’d need it to be onto to even define such a thing, and if it’s not injective there are many choices.
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Note that initials and terminals are swapped, and since 0 is both. Counterintuitively, A — 0 — B
is 0, which maps to B — 0 — A = 0°P.

Remark 11.1.3: Note that (—)°P switches

e Monics and epis,
e Initial and terminal objects,
e Kernels and cokernels.

Moreover, A is abelian if and only if AP is abelian.

Definition 11.1.4 (Contravariant Functors)
A contravariant functor F : C — D is a covariant functor C°P — D.

I fop F(f)
01—>02 024>C1 F02—>FC1

C sy COP CP ~nnnns D

In particular, F/(1) =1 and F(gf) = F(f)F(9)
Link to Diagram

Example 11.1.5(%): H%m(—, A) : Mod-R — Ab is a contravariant functor in the first slot.

Definition 11.1.6 (Left-Exact Functors)

A contravariant functor F' : A — B between abelian categories is left exact if and only if
the corresponding covariant functor F' : A°® — B: That is, SESs in A get mapped to long
left-exact sequences in B :

0 A B c 0
i
F(-)
¢
0 FC FB FA

Lemma 11.1.7(?).
If A is abelian and A € A, then the following are equivalent:

e A is injective in A.
o A is projective in A°P.
o The contravariant functor H,(Z\m(_’ A) is exact.

Lemma 11.1.8(%).
If an abelian category A has enough injectives, then every M € A has an injective resolution:

0=-M—-1°=T1— ...,
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which is an exact cochain complex with each I™ injective. There is a version of the comparison
lemma that is proved in roughly the same way as for projective resolutions.

Next up: how to transport injective resolutions in Z-Mod to R-Mod.

Observation 11.1.9
If A€ Ab and N € R-Mod then Hg)gn(N, A) € Mod-R in the following way: taking f : N — A and

r € R, define a right action (f - r)(n) == f(rn).

Exercise 11.1.10 (?)

Check that this is a morphism of abelian groups, that this yields a module structure, along
with other details. For noncommutative rings, it’s crucial that the r is on the right in the
action and on the left in the definition.

Lemma 11.1.11(%).
If M € Mod-R, then the following natural map 7 is an isomorphism of abelian groups for each
A € Ab:

T: H/g)gn(Forget(M),A) — I\I/-IIO%I_%(M, H/g)gn(R, A))

[ 7(f)m)(r) = f(mr),

where m € M and r € R and Forget : Mod-R — Mod-Z is a forgetful functor. Note that R is
a left R-module, so the hom in the RHS is a right R-module and the hom makes sense.

Exercise 11.1.12(?)
Check the details here, particularly that the module structures all make sense.

There is a map p going the other way: u(g)(m) = g(m)(1g) for m € M.

Remark 11.1.13: A quick look at why these maps are inverses:

Conversely,

— g(mr)(1)

=g(m-r) since g € Morr-mod
=g(m)(r-1) by observation earlier
= g(m)(r)
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Remark 11.1.14: The ? functor in the lemma will be the forgetful functor applied to M, yielding
an adjoint pair.

12 ‘ Monday, February 08

s 12.1 Transporting Injectives ~

Remark 12.1.1: Last time: we had a lemma that for any M € Mod-R and A € Ab there is an
isomorphism
Hom(EF(M),A) = Hom (M,H A
lom(F (M), A) = Hom (M, Hom(R, A)),
where F': Mod-R — Ab is the forgetful functor.

Definition 12.1.2 (Adjoints)
A pair of functors L : A — B and R : B — A are adjoint is there are natural bijections

TAB H%m(L(A),B) — H%m(A, R(B)) VA€ A, B € B,

where natural means that for all A & A’ and B % B’ there is a diagram

H%m(LA’,B) — (LH*—> H%m(LA, B)

Hgm(A’,RB) — H%m(A,RB) — (Rg)« —> H%m(A, RB')
Link to Diagram

L
In this case we say L is left adjoint to R and R is right adjoint to L and write A __ B.
R

Remark 12.1.3: The lemma thus says that H/i)gn(R, —) : Ab — Mod-R (using that R € R-Mod is
a left R-module) is right adjoint to the forgetful functor Mod-R — Ab.

Remark 12.1.4: Recall that F' is additive if H%m(B/, B) — H%m(FB’,FB) is a morphism of
abelian groups for all B, B’ € B.

Proposition 12.1.5(Right adjoints to exact functors preserve injectives, left ad-
joints preserve projectives).
If R: B — A is an additive functor and right adjoint to an exact functor L : A — B, then
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I € B injective implies R(I) € A is injective. Dually, if £: A — B is additive and left adjoint
to an exact functor R : B — A, then P € A projective implies L(P) € B is projective.

Corollary 12.1.6(7?).
If I € Ab is injective, then H,A(?thl(R’ I) € Mod-R is injective.

Proof (?).
This follows from the previous lemma: H’&)gn(R, —) is right adjoint to the forgetful functor

R-Mod — Ab which is certainly exact. This follows from the fact that kernels and images

don’t change, since these are given in terms of set maps and equalities of sets.
[ |

Exercise 12.1.7 (2.3.5, 2.3.2)
Show that Mod-R has enough injectives, using that Ab has enough injectives.

Proof (of proposition).
It suffices to show that the contravariant functor Ham(—, RI) is exact. We know it’s left exact,

so we’ll show surjectivity. Suppose we have a SES 0 — A Iy A" which is exact in A. Then
0— LA L—f> LA’ is exact, and we can apply hom to obtain the exact sequence

Hom(LA', 1) AZEY, Hom (LA, I) 0.

Applying 7 yields

Hom(LA', 1) 7N Hom(LA, I) ———

T~ T~

Ham(A',RI) —r Hg\m(A,RI) 77777777777 N

Link to Diagram

e The top sequence is exact since I is injective in B
o Therefore the bottom map is onto (diagram chase)

s 12.2 2.4: Left Derived Functors ~

Remark 12.2.1: Goal: define left derived functors of a right exact functor F', with applications the
bifunctor — ® g —, which is right exact and covariant in each variable. We're ultimately interested
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in Hom functors and Ext, but this is slightly more technical since it’s covariant in one slot and
contravariant in the other, so focusing on this functor makes the theory slightly easier to develop.
This can be fixed by switching C with C°? once in a while. Everything for left derived functors will
have a dual for right derived functors.

Remark 12.2.2: Let A, B be abelian categories where A has enough projectives and F' : A — B is
a right exact functor (which implicitly assumes F' is additive). We want to define L;F' : A — B for
1> 0.

Definition 12.2.3 (Left Derived Functors)

For A € A, fix once and for all a projective resolution P = A, where P-g = 0. Then define

FP=(---— F(P) L, F(Py) — 0, noting that A no longer appears in this complex. We

can write Hy(F'P) = FPy/(Fdy)(FPy), and define

Remark 12.2.4: Note that P» B, P 4, Py & A — 0 is exact, and since F is right exact,
it can be shown that the following is a SES: F P, L, FP 5 FA — 0. We can use this to
compute the original homology, despite it not having any homology itself! From this, we can extra
Lyo(A) == FPy/(Fdy)(FPy) = FPy/ ker F(e) using exactness at F'Py, and by the 1st isomorphism

theorem this is isomorphic to the image F'A using surjectivity. So LoF = F.

Theorem 12.2.5 (Left-derived functors are additive).
L;F : A — B are additive functors.

Proof (?).

First, 1p : P — P lifts 14 : A — A since it yields a commuting ladder, and F(1) = 1, so
(L;f)(1) = 1. Then in the following diagram, the outer rectangle commutes since the inner
squares do:

P— A

@
<

P// A//

Link to Diagram

So g o f lifts g o f and therefore g, f, = (9f)«. Thus L;F is a functor. That they are additive
comes from checking the following diagram:
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7 !

Qe
ov I I

_—
f g
_—

Link to Diagram
Then f + g lifts f + g, and H; is an additive functor: (F'f + F§)s = (Ff)s + (F§)«. Thus L;F
is additive.

13 ‘ Wednesday, February 10

Remark 13.0.1: Setup: Let A, B and F : A — B where A has enough projectives. Let P = A € A
be a projective resolution, we want to define the left derived functors L;F(A) := H;(FP).

Lemma 13.0.2(?).

L;F(A) is well-defined up to natural isomorphism, i.e. if  — A is a projective resolution,
then there are canonical isomorphism H;(FP) = H;(FQ). In particular, changing projective
resolutions yields a new functor L;F which are naturally isomorphic to F'.

Proof (?).
We can set up the following situation
P ep A 0
3f 14
Q €Q A 0

Link to Diagram

Here f exists by the comparison theorem, and thus there are induced maps fi : H.(FP) —
H,.(FQ) by abuse of notation — really, this is more like (f.); = Hy,(Ff). We're using that
both F' and H; are both additive functors. Note that the lift f of 14 is not unique, but any
other lift is chain homotopic to f, i.e. f — f' = ds + sd where s : P — Q[1]. So they induce
the same maps on homology, i.e. f. = f,. Thus the isomorphism is canonical in the sense that
it doesn’t depend on the choice of lift.

Similarly there exists a g : @) — P lifting 14, and so gf and 1p are both chain maps lifting 14,
since it’s the composition of two maps lifting 1 4. So they induce the same map on homology
by the same reasoning above. We can write

g fe = (9f)s = (Lrp)s = 1y, (Fp),

and similarly f.g. = 1, (rq), making f. an isomorphism.
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[ |
Corollary 13.0.3(?).
If A is projective, then L”°FA = 0.
Proof (?).
Use the projective resolution --- — 0 — A 144 50— .. In this case H-o(FP)=0.
|

Remark 13.0.4: This is an interesting result, since it doesn’t depend on the functor! Short aside
on F-acyclic objects — we don’t need something as strong as a projective resolution.

Definition 13.0.5 (F-acyclic objects)
An object QQ € A is F-acyclic if L-gF@Q = 0.

Remark 13.0.6: Note that projective implies F-acyclic for every F, but not conversely. For
example, flat R-modules are acyclic for — ® g —. In general, flat does not imply projective, although
projective implies flat.

Definition 13.0.7 (F-acyclic resolutions)
An F-acyclic resolution of A is a left resolution () — A for which every @; is F-acyclic.

Remark 13.0.8: One can compute L;F'(A) = H;(FQ) for any F-acyclic resolution. For the L;F
to be functors, we need to define them on maps!

Lemma 13.0.9(%).
If f: A— A, there is a natural associated morphism L;F(f) : L; F(A) — L;F(A").

Proof (?).
Again use the comparison theorem:
P A 0
=l f
P’ Al 0

Link to Diagram
Then there is an induced map f, : H,(FP) — H,(FP'), noting that one first needs to apply
F to the above diagram. As before, this is independent of the lift using the same argument
as before, using the additivity of F' and H, and the chain homotopy is pushed through F
appropriately. So set (LiF)(f) == (f+)i.
|

Remark 13.0.10: We can now pick up the theorem from the end of last time:
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Theorem 13.0.11 (Left-derived functors are additive).
L;F : A — B are additive functors.

Proof (?).
Done last time!

Theorem 13.0.12 (Existence of connecting maps for left-derived functors).
Using the same assumptions as before, given a SES

0—-A —-A—-A"=0

there are natural connecting maps ¢ yielding a LES

Link to Diagram

Proof (?).
Using the Horseshoe lemma, we can obtain the following map:

Wednesday, February 10
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0
P A
P d s A—— 0
P" A"

0

Link to Diagram

So we get a SES of complexes over A, 0 — P’ — P — P” — 0. One can use that P = P'® P’
or alternatively that each P is a projective R-module, to see that there are splittings

Link to Diagram

Note that this can be phrased in terms of ¢'g = 1, f'f = 1, or ¢'g + f'f = 1. Since F is
additive, it preserves all of these relations, particularly the ones that define being split exact.
So additive functors preserve split exact sequences. Thus 0 — FP' — FP — FP" — 0 is
still split exact, even though F is only right exact. Now take homology and use the LES in
homology to get the desired LES above, and § is the connecting morphism that comes from
the snake lemma.

Proving naturality: we start with the following setup.

0 A A A" 0
g/ g gl/
0 B B B" 0

Naturality of § will be showing that the following square commutes:

LipF(A") —— L,F(A")

| !

LinF(B") —— L;F(B)
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We now apply the horseshoe lemma several times:

0 P = 0
0 Al :’ A 0
Elel g HjG g
0 B’ i B 0
< v/
0 Q' Q Q" 0

It turns out (details omitted see Weibel p. 46) that G can be chosen such that we get a
commutative diagram of chain complexes with exact rows:

0 P P P! 0
: ! .
l l l

0 Q Q Q" 0

Link to Diagram
We proved naturality of the connecting maps 0 in the corresponding LES in homology in

general (see prop. 1.3.4). This translates to naturality of the maps §; : L;(A”) — L;_1(A").
|

Remark 13.0.13: See exercise 2.4.3 for “dimension shifting”. This is a useful tool for inductive

arguments.

]_4 ‘ Friday, February 12

Remark 14.0.1: Last time: right-exact functors have left-derived functors where a SES induces a
LES. The functors are natural with respect to the connecting morphisms in the sense that certain
squares commute. Weibel refers to {L;F'},~, as a homological /-functor, i.e. anything that takes
SESs to LESs which are natural with respect to connecting morphism.
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e 14.1 Aside: Natural Transformations ~

Definition 14.1.1 (Natural Transformation)
Given functors F,G,C — D, a natural transformation n: ' =— G is the following data:

« For all C € C there is a map F(C) 2% G(C) € Mor(D), sometimes referred to as 1(C).

.xclcoe Mor(C), there is a diagram

rc —%  , po
i 4
! |

cc —% , qo

Link to Diagram

e 7 is a natural isomorphism if all of the no are isomorphisms, and we write F' = C.

Definition 14.1.2 (Equivalence of Categories)
A functor F' : C — D is an equivalence of categories if and only if there existsa G : D — C
such that GF =2 1¢ and FG £ 1p.

Example 14.1.3(%): A category C is small if Ob(C) is a set, then take C := Cat whose objects
are categories and morphisms are functors. Note that in all categories, all collections of morphisms
should be sets, and the small condition guarantees it. In this case, natural transformationsn : I — G
is an additional structure yielding morphisms of morphisms. These are called 2-morphisms, and
in this entire structure is a 2-category, and our previous notion is referred to as a 1-category.

Theorem 14.1.4(Left-derived functors of a right-exact functor form a wuniversal
d-functor).

Assume A, B are abelian and F' : A — B is a right-exact additive functor where .4 has enough
projectives. Then the family {L;F'}, is a universal §-functor where LoF = F is a natural
isomorphism. -

Remark 14.1.5: Here universal means that if {T;},- is also a é-functor with a natural transforma-
tion (not necessarily an isomorphism) g : Ty — F', then there exist unique morphism of §-functors
{gi : T; = LiF},~, i.e. a family of natural transformations that commute with the respective §
maps coming from both the T} and the L; F, which extend ¢g. This will be important later on when
we try to show Ext and Tor are functors in either slot.
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Proof (?).
Assume {Ti}z‘zo and g are given, and assume inductively that n > 0 and we’ve defined

w; : T; = F for 0 < i < n which commute with the 6 maps. Step 1: given A € A, fix a
reference exact sequence: pick a projective mapping onto A and its kernel to obtain

0—-K—P—-A—0.

Applying the functors T; and L;F yields

T,A 5 Tyt K ——— T, P

3507171(14) Wn—l(K) Qon—l(P)

L,FA————— L, \FK — > L, 1FP

Link to Diagram
So define ¢, (A)(x) == y, which makes the LHS square commute by construction. Note that
L, F P vanishes (as do all its higher derived functors) since P is projective.

AWarning 14.1.6

The map ¢, (A) could depend on the choice of P!
We now want to show that ¢, is a natural transformation. Supposing f : A" — A, we need to

show ¢, commutes with f.

0 K’ b A 0
iﬂh %Hg f
0 K P A 0

Link to Diagram
Since P’ is projective, we can lift f to P’ — P, and then define h to be the restriction of g to
K' — K.
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Tnf

T, A’ T, A
Sy 5 ~
\ , Tn_1h /
Tn— 1 K Tn_ 1 K
on(A") $Pn—1 Pn—1 en(A)
L, FK' =M o FK
5 ~ ™~ 5
e .
LoFA’ Lol Lo F(A)

Link to Diagram
Note that all of the quadrilaterals here commute. The middle top and bottom come from
naturality of T}, L, F with respect to ¢, the RHS/LHS due to the construction of the ¢,, and
¢n_1 is natural by the inductive hypothesis. Now in order to traverse T, A" — T,,A — L,F(A),
we can pass the path through one commuting square at a time to make it equal to 7,4’ —
L,FA" — L,FA, so the outer square commutes. We have

0pn(A) T F = L, F fon(A),

and since 0 is monic (using the previous vanishing due to projectivity), so we can cancel on
the left and this yields the definition of naturality.

Corollary 14.1.7(?).

The definition of ¢, (A) does not depend on the choice of P. Taking A’ = A in the
previous argument with f = 1, suppose P’ # P. Then T, f = 1 = L,Ff and setting
¢! (A) to be the map coming from P, we get ¢, (A) = ¢, (A) using the following diagram:

0 K’ P A 0
EN 139 1
4 4

0 K P A 0

Link to Diagram

J

So the ¢, (A) are uniquely defined. We now want to show that ¢, commutes with the 4,
coming from an arbitrary SES instead of a fixed reference SES.
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T,A Th—1C
6(2) /
= T. a ¢ functor Th—1h
6(2) /
T,A T, 1K
reference (pp—1natural
Pn $n—1 Pn—1
5(1)
L,FA L, 1FA

T

= L.F a d functor Ln_1Fh

T

L,FA L, FC

91y

Link to Diagram
This diagram commutes for the reasons indicated, and commutativity of the outside square

implies that ¢, commutes with the § coming from any SES.
See section 2.4 in Weibel.
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— 15.1 2.5: Right-Derived Functors ~

Remark 15.1.1: Today: right-derived functors of a left-exact functor. Luckily we can use some
opposite category tricks which save us some work of re deriving everything.

Definition 15.1.2 (Right Derived Functors)
Let F : A — B be left-exact where A has enough injectives. Given A € A, fix an injective
resolution 0 — A = I and define

R'F = H'(FA) i >0.
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Remark 15.1.3: Then
0 FA TS pro I pp
is exact, and
R°FA =ker F(d°)/ (0) = im Fe = FA,

and so there is naturally an isomorphism R'F = F. Observe that F' yields a right-exact functor
FP: A% — B° where we note that FP(f°P) = F(f)°P. Note that taking the opposite category
sends injectives to projectives and so A°P has enough projectives. This means that L;F°P are
defined using the projective resolution I, so we have

R'F(A) = (L; F°P)°P.

Thus all results about left-derived functors translate to right-derived functors:

e R;F is independent of the choice of injective resolution, up to a natural isomorphism.
o If A is injective, then R”F(A) = 0.
e The collection {RiF o forms a universal cohomological J-functor for F'.
i>
« An object Q € Ais F-acyclic if R7YF(Q) = 0.
e R'F can be computed using F-acyclic objects instead of injective resolutions.

Definition 15.1.4 (7)
Fix a right R-module M € Mod-R, then F' := AEI%I%(M, —) : Mod-R — Ab is a left-exact functor.
od-

Its right-derived functors are ext functors and denoted Ext}; . (M, —).

Example 15.1.5(9):

Extigoq-r(M, 4) = (RIF)(4) = [ Hom (M, -)](A).

Remark 15.1.6: Exercises 2.5.1, 2.5.2 are important extensions of our existing characterizations
of injectives and projectives in Mod-R. These upgrade the characterization involving Hom to one
involving Ext. 3

Remark 15.1.7: Fix B € Mod-R and consider G = '\I/JIIoanl{(—,B) : Mod-R — Ab. Then G is still

left-exact, but is now contravariant. We can regard it as a covariant functor left-exact functor
G : Mod-R°? — Ab. So we define R'G(A) by an injective resolution of A in A°P, and this is the
same as a projective resolution of A in A. So apply G and take cohomology. It turns out that

R I\I/—IIO%I—Ill?(_7 B)=R '\I/—IIO%I_%(Av —)(B) = Extg-mod(4; B),

so we can use the same notation Ext%(—, B) for both cases.

*Note the typo in 2.5.1.3, it should say the following: “B is H%m(A, —) is acyclic for all A”
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15.2 2.6: Adjoint Functors and Left/Right
Exactness

Slogan 15.2.1
— adjoints are —°P exact, since — adjoints have —-derived functors.

Theorem 15.2.2 (Exactness of adjoint functors).
Let

be an adjoint pair of functors. Then there exists a natural isomorphism
TAB : H%m(LA, B) = Hgm(A, RB) VAe A, BeB.
Moreover,

e L is right exact, and
e B is left exact.

Proposition 15.2.3(1.6: Yoneda).
A sequence

aspho
is exact in A if and only if for all M € Ob(A), the sequence
Hom(M, 4) ol=aon, Hom(M, B) Fr=pen, Hom(M, C)
is exact.
Proof (?).

1. Take M = A, then 0 = *a*(14) = fal = Ba. Thus ima C ker 3.

2. Take M = ker 8 and consider the inclusion ¢ : ker M < B, then *(¢) = ¢ = 0 and thus
L € ker f* = ima*. So there exists 0 € Hom(ker 8, A) such that « = a*(0) = a0, and
thus ker  =im¢ C im a.

Thus ker § = im «, yielding exactness of the bottom sequence.

Proof (of theorem,).
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We'll first prove that R is left-exact. Take a SES in B, say
0—+B —-B—B"—0.

Apply the left-exact covariant functor H%m(LA, —) followed by 7:

0 ———— Hom(LA, B') ——— Hom(LA, B) ———— Hom(L4, B")

% % %

TEB TAB TEB
(| —— 5 H%m(A’RB,) _ H%m(A, RB) —_— H(B)m(A7 RBN)

Link to Diagram
The bottom sequence is exact by naturality of 7. Now applying the Yoneda lemma, we obtain
an exact sequence

0— HS‘m(A, RB') — Ham(A, RB) — Ham(A, RB").

So R is left exact. Now L°P : A — B is right adjoint to R°P, so L? is left exact and thus L is
right exact.
|

" 15.3 Tensor Product Functors and Tor ~

Remark 15.3.1: Let
e R,S € Ring,
e B € (R,S)-biMod,
e (' € S-Mod.
Then H%m(B, C) € Mod-R in a natural way: given f: B — C, define (f -7)(b) = f(rb).

Exercise 15.3.2 (?)
Check that this is a well-defined morphism of right S-modules.

Remark 15.3.3: We saw this structure earlier with S = Z, see p.41.

Proposition 15.3.4 (Tensor-Hom adjunction).
Fix R, S and rBg as above. Then for every A € Mod-R and C € --ModS there is a natural

15.3 Tensor Product Functors and Tor 61


https://q.uiver.app/?q=

I Friday, February 19

isomorphism
T Hgm(A ®r B,C) = H%m(A, Hgm(B, )

fr=9(a)(d) = fla®D)
fla®@b) =g(a)(b) < g.

Note that the tensor product is a right S-module, and the hom on the right is a right R-module,
so these expressions make sense. Here B is fixed, so A and C' are variables and this is a
statement about bifunctors

— ®g B : Mod-R — Mod-S,
which is left adjoint to

Hgm(B, —) : Mod-S — Mod-R.

So the former is a left adjoint and the latter is a right adjoint, so by the theorem, — ®gr B is
right exact.

Remark 15.3.5: If B is only a left R-module, we can always take S = 7Z, which makes this into a
functor

— @g B : Mod-R — Ab.

Since this is a right exact functor from a category with enough injectives, we can define left-derived
functors.

Definition 15.3.6 (?)
Let B € (R,S)-biMod and let

T(-) = —®g B : Mod-R — Mod-S.

Then define Tor%(A, B) = L, T(A).

Remark 15.3.7: Note that these are easier to work with, since they’re covariant in both variables.

16 ‘ Friday, February 19

Remark 16.0.1: We looked at B € (R,S)-biMod and showed — ®p B : R-Mod — S-Mod is left
adjoint to hom, and has left-derived functors Tor®(—, B) := L,(— ®p B).

—QrB
RMod —°  S-Mod.

—

Homg(B,—)

Note that Torf(A, B) 2 A®p B.
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Remark 16.0.2: A ®g — is also right exact, and it turns out that
Lo(A®Rr —)(B) = Ln(— ®@r B)(4).

So unambiguously denote either of this left derived functors as Tor, (A, B).

" 16.1 Limits and Colimits ~

Definition 16.1.1 (Functor Category)
Given categories Z, A, define a functor category A% by

« Ob(AT): functors A: T — A.

+ Mor(A%): natural transformations 7 : A — B between functors.

7 is thought of as an index category, and we’ll write A; .= A(i) € AforieZ. fa:i— jisa
morphism in I, then denote A(«) := a, which is the morphism defined by the following:

A, 2 A;
!
| |
B; e B;

Link to Diagram

Composition is defined by A 2 B S Cis given by ((,)i = ¢; o m;. We need the collection of
morphisms to be sets, so we’ll require Z to be a small category (i.e. the class of objects forms
a set).

Example 16.1.2 (Poset Category): Take (I, <) a poset (which is reflexive, antisymmetric, tran-
sitive, but not every two elements are comparable), define a category by

. OB(IT) =1

H%MgngMMi%j¢:i§j
Note that if 4 £ j, then H%m(z',j) = 0.

Remark 16.1.3: Both A, AZ are small, so we can consider functors between them.

Definition 16.1.4 (Diagonal Functor)
The diagonal functor is defined as A : A — A? where for B € A the functor A(B) is
the constant functor, i.e. A(B); = B for all ¢ € Z. All morphism are sent to the identity,
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A
I ie.i % 2P, plep

Definition 16.1.5 (Colimit)

The colimit of a functor A : Z — A is an object C' € A which we’ll denote colim;cz A4;, along
with a natural transformation 7 : A — A(C) which is universal among natural transformations
of the form 6 : A — A(B) for B € A. The unique map in the universal property is from
C — B, and we have the following situation:

A

i A ———— C
(0% Ol
j 4—" ¢

A; 6,
x -
o c---. 3B
0;

Link to Diagram

Example 16.1.6(?): Let (I, <) be a poset and take 7 its poset category. Then there are morphisms
1 — j <= 1< j, and we have a diagram

C --—-—-3y---3 D

>
k

Link to Diagram
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This is the direct limit. Note that for a poset of category of subsets, this ends up being the union. =~

Example 16.1.7(?): Let Ob(Z) = {1, 2}, and take two maps, one of which we’ll label by “0”:

—o—

Link to Diagram

Suppose now that A is an abelian category, and suppose we’re given a morphism A ER Ay in A.
Define A € A%, and define a functor

1 Al\el‘

0 fl |o B

/
2 Ao

Link to Diagram
By commutativity,
e f00=0 = 6; =0
e fhof=6=0.

So suppose there was a colimit C', then it’d fit into this diagram as follows:

1 Aq o,
\\
0 fl o C - B
p
/92
2 Ao
Link to Diagram
Note that C' is precisely the cokernel of f! o
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Remark 16.1.8: Think about this last diagram: what happens when you mod out by larger
modules? Vs

Suppose I is a discrete category, i.e. Hom(¢, j) = () unless ¢ = j, in which case Hom(z,7) = {1;}.
Supposing that A : I — A, show that colim;ez = HAi'

)

‘ Exercise 16.1.9 (Colimits always exist)
Definition 16.1.10 (?)
A category A is cocomplete if every colimit colim;c7 A; exists for every A € AT and all small
categories 7.
Exercise 16.1.11 (Taking colimits defines a functor for cocomplete categories)
Show that when A is cocomplete, colim : AZ — A defines a functor.

Exercise 16.1.12 (Weibel 2.6.4)
Show that the functor colim is left-adjoint to the diagonal functor A, so there is an adjunction

colim
—_\
T
—

A

AI

Thus when A is abelian and colim exists, it is right-exact (since left-adjoints are always
right-exact). Note that it’s not exact in general.

Proposition 16.1.13 (Cocomplete iff all coproducts exist).
For any abelian category A, the following are equivalent:

1. HAi exists in A for every set {A;} of objects in A (set-indezed coproducts).

2. A is cocomplete.

Remark 16.1.14: We’ll prove this next time, note that 2 = 1 since coproducts are special cases
of limits. e
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— 17.1 Colimits and Adjoints ~

Proposition 17.1.1 (Characterizations of cocomplete categories).
Assume A is abelian so we have cokernels for maps. TFAE:

1. @ A; exists in A for every set {A;} of objects in A.
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2. A is cocomplete, i.e. colim;c; A; exists for every functor Z — A with Z small.

Proof (?).
Note that (1) is a special case of (2), so it suffices to show 1 = 2. Given a functor A:7Z — A
and let f: @ A — @Ai where i,j € 7.

ai—j €T
P — 7
% é
A A A
i |
A,L' L) Aj A

Link to Diagram
Then the map f(aio) = ax(a;) —a; € Aj — A;, so this is o, — 1. Let C' = coker f =
@ A;/im(f), and we’ll denote elements in this quotient with a bar.
el
Claim: C = colim;e; A; with
a; = Eia

where we first embed A; into the direct sum and then take the quotient.

Exercise (?)

Use the universal property of cokernels in A. Check that the following diagram commutes:

This essentially follows from the fact that . (a;) = @;.

Remark 17.1.3: Mod-R satisfies (1), since direct sums of R-modules still have an R-module
structure. Thus Mod-R is cocomplete.

Definition 17.1.4 (Limits)
The limit of a functor A : Z — A is the colimit of the dual functor A°P : I°P — A°P.

Remark 17.1.5: Note that this amounts to reversing arrows in the conditions of a colimit. Many
of the results for colimits go through with arrows reversed. Examples: kernels, direct products. If
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I is a poset, then limits are referred to as inverse limits, using lim 4;.
el

Definition 17.1.6 (Complete Categories)
A is complete if and only if 1.i1111 A; exists whenever 7 is small and A : Z — A.
1€

Theorem 17.1.7(The Adjoint-Limit Theorem).

L

Let A __ B be an adjoint pair, where now A, B are now arbitrary categories (not necessarily
R

abelian). Then

o The left adjoint L preserves colimits (direct sums, cokernels, etc). I.e. if A:Z — A
has a colimit, then so does (Lo A) : Z — B, and L(colim A;) = colim(LA;).

o The right adjoint R preserves limits (direct products, kernels, etc).

Proof (?).
Not given in the book! See MacLane’s Categories for the Working Mathematician.

Remark 17.1.8: Recall left adjoints are right-exact and have left-derived functors.

Corollary 17.1.9(?).
F
If A is a cocomplete abelian category with enough projectives and A I B. Then for every

G
set-indexed collection of objects {4;},

(L.F) (EB AZ-) =P L.F(A)),
i€l el

so left-derived functors commute with direct sums.

Proof (?).
Let P; be the projective resolution of A;, so P, — A;, then @P,- — @Ai is a projective
resolution, and by definition

.0 (@4) - 1. (7 (@)
= H, (@ FB) by the theorem
= @ H,.(F P;)homology commutes with ¢ € Ch(A)
=P L.F(4A).
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Corollary 17.1.10(?).
For A; € R-Mod, B € Mod-R,

Torf (@ A B) =~ (P Torf(A;, B).

i€l i€l

Proof (of corollary).

Torf(—, B) = L.F, F :=(— Qg B),

and F' is a left-adjoint by the tensor-hom adjunction.

Remark 17.1.11: One can also show directly from the definition that

Torf (A, @ B;) = @ Torf (A, By).
el el

This uses the fact that P ®p (@ B;) = @(P ® Bj).
icl iel

Remark 17.1.12: We'll skip the rest of this section, we (hopefully) won’t need filtered colimits.

— 17.2 Balancing Tor and Ext ~

Remark 17.2.1: Idea: their derived functors with either variable fixed will essentially be the same.

We'll start by showing that the two left-derived functors of — ®p — give the same results, and
similarly for the two right-derived functors H%m(—7 —). We'll use double complexes!

17.2.1 Tensor Product Complexes

Remark 17.2.2: Suppose we have two chain complexes (P)r € Ch(Mod-R), r(Q) € Ch(R-Mod).

Then there is a double complex where 4, j indexes rows and columns: P ®g Q = {P; ®r Q;}, ., the

tensor product double complex of P and ). We use the sign trick from 1.2.5:

.5
e d"=d"®1
o d'=(-1)1®d°

Taking the direct sum totalization Tor® (P ®r Q) is the total tensor product chain complex
of P and (). Note that this has a single differential! The big theorem from this section:
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Theorem 17.2.3(Tor is balanced).

Lo(A®R —)(B) 2 L,(— ®r B)(A) = Tor¥(A, B).

Remark 17.2.4: Note that this makes the right-hand side notation unambiguous.

Proof (?).
Choose projective resolutions P — A € Mod-R and Q Iy B € R-Mod. We'll form 3 tensor
product double complexes.

e P®Q: A first quadrant double complex, since the projective resolutions have nonnegative
indices.

e A® (), embedding A — Ch(A) as a complex concentrated in degree 0 (so one column)

e« P® B (one row).

There are several maps of double complexes among these induced by ¢, n:

df®1 dP®1

A®Q2<TPO®Q — PR +———— PhR®Qy +——
1®d% 1®d9 1®d%

AR Q1 . Py ® @ T P ®Q <dp—1 P,®@Q ¢—
1®d% 1®d9 1®d%

A®Qo ———— F®Qo ol P®Qy 5 —— PB®Q) -

1®n 1®mn 1®n

Py® B P®B Po® B

Link to Diagram
We’ll show there are two maps:

A®Q=Tot(A® Q) 2L Tor(P ® Q) 2% Tor(P® B) = P® B,

using that totalizing a one-row or one-column complex is summing along diagonals where each
has one term, yielding actual equality of the first and last terms respectively above. Moreover,

17.2 Balancing Tor and Ext 70


https://q.uiver.app/?q=

I Wednesday, February 24

we’ll show these are quasi-isomorphisms, and so

L(A® =) £ H, (Tor(P ® Q) -2 L.(— ® B)(A).

WEe’ll continue with the proof of this next time.

]_8 ‘ Wednesday, February 24

— 18.1 Finishing the Proof of Balancing Tor ~

We were trying to prove that taking the left derived functors of the two slots in Tor yield the same
thing.

See the diagram from last time!

Proof (?).
We’ll need the following;:

Claim: This induces a quasi-isomorphism

PB & Tor(P® Q) 2% Tot(A® Q) = AR Q,

i.e. it is a morphism that induces an isomorphism on homology.

Recall that by Corollary 1.5, a chain complex is a quasi-isomorphism if and only if the cone
complex is acyclic/exact. In degree n of the total complex, the nth piece is the nth diagonal
and we have

(Pn®QD)@"'@(PO®Qn)'

AR®Qn .
where Py Mx Recall that for a map B, i> C,, the cone complex was given by

anl S Cn
—dB C

d _f d
Bn—2 S Cn—l

Link to Diagram
Writing one term out explicitly, we have
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(Pn—1®QO)@@(PO®Qn—1)@Qn @ A®Qn
—d® 1®d

—(e®1)
(Pn—1®QO)®"'@(PO®Qn—2)@Qn—1 © A®Qn—1

Link to Diagram
Call this complex (2).
On the other hand, consider the double complex obtained from P ® ) by adjoining the shifted
complex (A ® Q)[1,0]* in column ¢ = —1. This has the effect of keeping the same complex
but relabeling left-most column “in degree 0” into "degree —1. Note that this negatives the
leftmost vertical differentials A ® @@, > A ® Q,—1. Now call everything above the dotted line
C.
Consider Tot(C')[—1], which in degree n is (Tot(C)),—1 and since this was an odd shift, negates
all of the signs of differential. So in degree n, this explicitly looks like

n: (Po1®Qo)® @ (Po®Qn-1)® (A®Qn)

n: (Po1®Qo)® @ (Po®Qn-1)®(A®Qn)

and we have

(Pc1®Qo) @ -+ B(Py ® Qn-1) ) ARQ,
—d® (oD 1®d
(Pr—1®Q0)® -+ & (P ® Qn-2) ® A®Qn1

Link to Diagram
Calling this complex (3), we have (3) = (2), so it suffices to show (2) is exact, i.e. Tot(C)
is acyclic. This follow from the next result we’ll prove, the acyclic assembly lemma. Note
that if Q); is projective, then it’s an algebra fact that — ®g Q; is exact (not just right exact)
since projective implies flat. This implies that the rows of C' are exact, since this is taking a
project resolution (which is exact) and tensoring with a flat module. Using that C' is supported
on the upper half-plane and has exact rows, by this part (3) of the acyclic assembly lemma,
Tot®(C) will be acyclic. A similar argument will go through to show that 1 ® 7 is also a
quasi-isomorphism by adjoining (P ® B) as the —1st row and applying a version of the lemma

for right half-plane complexes with exact columns.
[ |

“The book may have the sign incorrect here.
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— 18.2 Acyclic Assembly Lemma ~

Proposition 18.2.1 (Acyclic Assembly Lemma).
Let C be a double complex in Mod-R, then

. TotH(C) is acyclic if either

1. C' is upper half-plane with exact columns, or
2. C is right half-plane with exact rows.

o Tot¥(C) is acyclic if either

3. C is upper half-plane with exact rows®, or
4. C is right half-plane with exact columns.

“This is the part we used previously, and (4) is the one used for the other half of the argument.

Remark 18.2.2: It suffices to prove (1). Interchanging rows and columns by reflecting along the
line ¢ = j interchanges the types showing up in (1) and (2), and doesn’t change the total complex.
This similarly switches (3) and (4), so we have 1 = 2 and 4 = 3, so we’ll show that 1 = 4.
Let 7,,C be the double complex obtained taking a good truncation of C' at level n:

Cij i>n

(Tnc)ij = v . .
ker(d” : Ciyy = Cipn—1 j=n.

Up to translation 7,C' is a 1st quadrant complex, and since we'’re in case (4), we’re assuming the

columns are exact. Now using (1), Tot®(7,C) = TotH(TnC) since we now have a first quadrant
complex and all diagonals are finite, and we can conclude both are exact. This implies that Tot® C
is acyclic since every cycle in Tot®(C) is nonzero in only finitely many terms. Thus each such cycle
is a cycle in Tot(7,C') for some n < 0, and hence a boundary by the previous argument.

Remark 18.2.3: Note that this argument does not go through for the direct product, since then
there may be infinitely many nonzero terms on any diagonal, and not every cycle would be repre-
sented after some finite truncation and shift.

Proof (of proposition).
By translating C left or right, it’s enough to prove that H Totll ¢ = 0. We can write

(TOtH C)O = H C*j,j S ¢ = ( ©t,C—jiytt 3C—22,C—11, CO,O),
j=0

letting the latter element by a 0O-cycle. By inducting on j, we’ll construct an element b such
that b_j ;41 € C_jj41 C (Totll €)1 such that

d¥(b—j 1) + d"(b—jt15) = c—jj,

which will make ¢ a boundary.
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Today: trying to prove acyclic assembly lemma

Proof (Of acyclic assembly lemma,).

We reduced to proving one case, where C is a double complex upper half-plane with exact

columns — TotH(C) is acyclic. It’s enough to check in degree 0 by shifting. Fix a

O-cycle ¢ = (-+-,c—jj, - ,c—22,¢-1,1,C00). Find b € H C_jj+19 such that d(b) = ¢, so
<0

c—jj = @ (b—jjr1) + d"(b_j1)-

b—j j+1
Cjj b—j+1,5
2
0 = C—j+1,j-1 b_jt2,-1
€22 b_12
c_1,1 bo,1
€0,0
@ COooCoOooCcoOoCOO0COIC000ICO00OCO00OCO0OO0O0O0I000OCO0OCO00CO0d000d0000C000C0000030003C000CO000CO0d000I000dCc00pcoopcoIoogan
0

Link to Diagram
Construct by induction on j: set by g = 0 and need coo = d”(bp,1). Since d’cpo = 0 and the
columns are exact, we can lift this to some bg; such that d’bg1 = co. Inductively, we want
d* (b=, j+1) = ¢j,—j — d"(b—j+1,). Then
d*(cj—j — d"b_ji14) = d'cj—j + d"d"b_j 11,
= d’cj—j +d" (C—j+1,j—1 - dhb—j+2,j—1)
=d’cj—; + dhC_j+1,j—1

= (0 since dH =0.
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By exactness of column j, we can lift to b_; j+1, making ¢ a boundary.
|

Remark 19.0.1: This proves that — ® g — is balanced, i.e. taking the derived functors in either
variable with the same pair (A, B) results in the same thing. To prove a similar result for hom
and ext, we want to consider H%m(A, —) which requires injective resolutions, and H%m(—, B) is

contravariant and left-exact, so we take an injective resolution in C°P, i.e. a projective resolution
in C. So take a projective resolution P — A and an injective resolution B — I and make a first
quadrant double complex C; ; := Hom(F;, I J ) for i, j > 0. Define the differentials using the following
sign convention:

(=1) T £ (p) Hom(P;, ')
dﬁ
HOIH(_PZ,IJ) T HOm(PfL'Jr]_’Ij)
f(p) ‘ f(d"p)

Link to Diagram

Now applying a dual argument as the one for tor yields a “dual acyclic assembly lemma”.

Remark 19.0.2: We'll skip the first 3 sections of chapter 3. It’s worth looking at 3.2 on tor and
flatness. There’s a slightly circular statement that projective implies flat in the book, since we used
this to show that certain rows were exact, so refer to a good algebra book for alternative proofs.

— 19.1 Ext' and Extensions ~

Definition 19.1.1 (Module Extensions)
Let A, B € Mod-R, then an extension of A by B is a SES

E:0—-B—>X—>A—0.
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Figure 1: image 2021-02-26-09-41-27

We say two extensions &, & are equivalent and write & ~ & iff

0 >y B X s A 0
13
:

0 B s X/ A 0

Link to Diagram
An extension is split if and only if it is equivalent to

0BS5S AaB AT A 0.

AWarning 19.1.2
Note that a SES as above is related to Ext(A, B), which reverses the order!

Lemma 19.1.3(?).
If Ext!(A, B) = 0 then every extension of A by B is split.

AWarning 19.1.4
There are lots of corrections needed to this proof in Weibel!
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Proof (of lemma).

Given an extension ¢, look at the LES associated to Hom(—, B):

Hom(B, B) +——— Hom(X, B) «+——— Hom(A4, B)

Link to Diagram
However, this gives a splitting:

0 B X A 0
3
&

0 B X’ A 0

Link to Diagram
Todo: label (X, B) — (B, B) as fs.
This is one of the many equivalent criteria for a SES of modules to be split.

Remark 19.1.5: More generally, given &, let ©(€) :== d(1g) € Ext'(A, B). Thus TFAE:

o ¢ is split

o 1 — B lifts to some o € Hom(X, B)
e Ip €imf, =kerd

e O(£) =0, even if Ext'(A, B) # 0.

Then O(§) is an obstruction to & being split. A~

Remark 19.1.6: If ¢’ ~ ¢ then &' (1) = 9(1p) € Ext'(A, B) by naturality of the connecting
morphisms. So equivalent extensions have the same obstruction, i.e. ©® only depends only on the
equivalence class [¢] of the SES. /ﬁ’
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Theorem 19.1.7 (Module extensions correspond to Ext groups).
Given A, B € Mod-R (or an abelian category with enough projectives and injectives), there is
a correspondence

{o=Box—A-0} ) % Ext!(A, B)

Note that this is a bijection of sets, but we’ll upgrade it to a bijection of abelian groups.

20 ‘ Monday, March 01

Remark 20.0.1: Last time: we looked at group extensions. Given £ : 0 - B — X — A — 0, we
had a canonical element in Ext!(A, B), namely ©(¢) = §(1g). This only depends on the equivalence
class of €. Vs

Theorem 20.0.2 (Module extensions biject with Ext groups).
Given A, B € Mod-R, there is a bijection

{Extensions of A by B} % EX‘E}%(A, B)

Proof (?).

Claim: O is surjective.
Fix a SES

0sMLPIS A0

with P projective, and take the LES resulting from applying Hom(—, B):

0

|

Hom(A, B) — Hom(P, B) —— Hom(M, B)

Ext'(A4,B) —— Ext'(P,B) =0

Link to Diagram
Letting = € Ext!(A, B) and choose € Hom(M, B) with 8 = = using that P is projective
and thus Ext!(P, B) vanishes. Now let X be the pushout of j : M — P and § : M — B.
Note that we can apply the universal property of cokernels to get a map of the following form:
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M-E9P  peB X cokerg —— >0
TH0 ,/’/
0 o7 Alp
A A L

Link to Diagram
Taking the pushout yields a diagram:

0 M . P A 0
C
B o
-

0 B X ——— A 0

Link to Diagram

Exercise (?)
Check that this diagram commutes and that the new row is exact.

Taking the LES for Hom(—, B) yields

. Hom(P,B) — Hom(P, B) — Ext!(4, B)

\

\

T |

|

Ox B* |
I

| i

I

/

- —— Hom(X,B) —— Hom(B, B) —— Ext'(4, B)

Ip: 0 0(¢)

(*) Link to Diagram
So we

e Started with x

e Took a reference SES

e Produce the cokernel

e Took a pushout and found S.
e Showed that § — .

This shows surjectivity, but depended on choice of 5.

Claim: O is injective.

Monday, March 01 79


https://q.uiver.app/?q=WzAsNSxbMCwwLCJNIl0sWzIsMCwiUFxcb3BsdXMgQiJdLFs0LDAsIlggPSBcXGNva2VyIGciXSxbMiwyLCJBIl0sWzYsMCwiMCJdLFswLDEsImcgPSAoaiwgLVxcYmV0YSkiXSxbMSwyXSxbMSwzLCJcXHBpIFxcb3BsdXMgMCJdLFsyLDRdLFswLDMsIlxcdGhlcmVmb3JlIDAiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19XSxbMiwzLCJcXGV4aXN0cyAhIFxcbXUiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
https://q.uiver.app/?q=WzAsMTAsWzAsMCwiMCJdLFswLDIsIjAiXSxbMiwwLCJNIl0sWzIsMiwiQiJdLFs0LDIsIlgiXSxbNCwwLCJQIl0sWzYsMCwiQSJdLFs2LDIsIkEiXSxbOCwwLCIwIl0sWzgsMiwiMCJdLFswLDJdLFsyLDUsImoiLDJdLFs1LDYsIlxccGkiLDJdLFsxLDNdLFszLDQsIlxcaW90YSIsMl0sWzQsNywiXFxtdSIsMl0sWzAsMV0sWzIsMywiXFxiZXRhIiwyXSxbNSw0LCJcXHNpZ21hIiwxXSxbNiw3LCIiLDEseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzYsOF0sWzcsOV0sWzgsOV0sWzQsMiwiIiwyLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV1d
https://q.uiver.app/?q=

Monday, March 01

Note that the previous construction there is a way to associate to 2 € Ext!(A4, B) an extension
of A by B. To see that this gives a well-defined map ¥, so ¥(z) = [¢] as well, suppose
B € Hom(M, B) is another lift of 2. Note that although Ext!(P,B) = 0, the fact that
ker 0 = Hom(M, B) # 0, there are many such choices of lifts. Using exactness of diagram (x),
there exists an f € Hom(P, B) such that 8’ = 8+ fj, recalling that j : M — P. Now taking
the pushout X’ of j and 3, the maps i: B — X and o +if : P — X induce an isomorphism
X’ 5 X and thus an equivalence & = ¢,

Exercise (?)
Check this isomorphism.

Moreover, given any extension &, we can fit it into a diagram of the following form:

0 M P A 0
38 e
v v
¢ 0 B X A 0

Link to Diagram
First we use projectivity of P to get o : P — X. Then restricting o to the kernels of m, i
respectively makes 8 : M — B, so this diagram commutes

Exercise (?)
Check that X is the pushout of j and .

It follows that ¥(©(£)) = £ and thus O is injective, making it a bijection.

Remark 20.0.6: Note the importance of the reversed directions after taking the Hom!

Remark 20.0.7: How can we upgrade this to a group homomorphism? One way is to pull back the
group structure from the right-hand side to the left-hand side, but it turns out that Baer worked
out an intrinsic group structure around 1934. We can construct the “smallest” extension such that
A is a quotient and B is a submodule.

Definition 20.0.8 (Baer Sum (1934))
Suppose we have two extensions of A by B:
£0-BL5X 5 A0

/

g0-BLX ™A

Let X” be the pullback of 7, 7', defined by
X" = {(a:,:c') €EX xX

m(z) = '(2') € A},

which identifies the two copies of A. This fits into a cartesian square
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X// T2 X/
_

-

X —"—— A

Link to Diagram
Note that X” contains 3 copies of B:

e B x0,orreally i(B) x {0} C X" (using exactness).
e 0x B,ie. {0} x4 (B) C X" (using exactness).
« A= {(—b, b) ‘ be B}, the skew diagonal. One can check that mi(—b) = 0 = 7'’ (b).

Note that we're identifying B with i(B),i'(B). Set Y := X”/A, then (b,0) + (—b,b) = (0,b)
where (—b,b) € A, so B x 0 and 0 x B have the same image in Y, since

(Bx0)NA ={(0,0)} = (0x BynA.

In fact this image in Y is isomorphic to B, by construction of what we’re quotienting out by.
Denoting this subgroup of Y by B, we get a SES

¢:0-B—Y —>Y/B—0.
What is Y/B? We can write this as

Y/B - X"/N X' X"/0x B
 (0xB)/JA (0xB)+A (A+(0xB))/(0x B)

But the numerator is isomorphic to X by 71, and the denominator is isomorphic to B by ;.
So ¢ is an extension of A by B called the Baer sum of ¢, ¢’.

Corollary 20.0.9(%).

The equivalence classes of extensions of A by B is an abelian group under Baer sums, where
zero is the class of split extensions. Moreover, the map © from the previous theorem is an
isomorphism of abelian groups.

Remark 20.0.10: Next time we’ll check this by showing ©(p) = ©(&) + ©(¢).
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21 ‘ Wednesday, March 03

— 21.1 Baer Sum and Higher Exts ~

Last time: Baer sum.

Remark 21.1.1:

¢ . 0 B L X/ m A 0
B o’
Ref : 0 M J P m A 0

Link to Diagram

B 0(?3/> = (—”)(5/)

Link to Diagram

We want to define & @ ¢”, An important takeaway is that © can alternatively be defined as a map
induced by the original boundary map coming from the SES, i.e. 9(3') = ©(¢’). This fits into the
diagram as follows:
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¢ 0 B d X A 0
g o

Ref : 0 M 7 P ™ A 0
8" o

¢’ 0 B X' — A 0

Link to Diagram

We define

X = {(m’,x") e X' x X"

7T,($/) _ W’/(x//)} Y,
and note that we had a skew diagonal A C X. This yields a YES

p:0-B—-Y —=Y/B=A—0.

Corollary 21.1.2(?).
The set of equivalence classes of extensions of A by B is an abelian group under the Baer sum,
where

€] @ (€] = [#],

where the identity element 0 is the class of split extensions. The map © is an isomorphism of
abelian groups.

Remark 21.1.3: One should check that this is well-defined since we’re using equivalence classes.
There is a fast way to do both at once, i.e. showing © is well-defined and also a group morphism.

Proof (?).
We’ll show that

O(y) = O(¢) +O(¢”") € Exty(4, B),

which will make it a group isomorphism since © was already a set bijection. Considering
commutativity in the 3-row diagram, we can get a well-defined map

c=d ®c":P— X.
Solet : P — Y be the induced map. The restriction of @ to M is induced by the map
B +p" M- (Bx0)+(0xB)CX.

These both map to B in Y under the SES0 — B — Y — Y/B — 0. This gives a commutative
diagram
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0 M P A 0

/8/+5//

QI

0 B Y A 0

Link to Diagram
We then have O(p) = 9(8' + B”) = 9(B') + 9(B”) using that & € Mor(R-Mod). But this is
equal to O(¢') + O(¢”), which is what we wanted to show.
|

Remark 21.1.4: What about the 0 element for split SESs? Recall that additive functors preserve
split exact sequences, since these are just in terms of sums of maps composing to the identity. Then
applying the hom functor to the original SES produces another SES, which in particular has no
Ext correction term. yr

Remark 21.1.5: Similarly, Ext"(A, B) is identified with equivalence classes of longer sequences
with n 4+ 2 terms, and an equivalence is a sequence of maps that result in commuting squares:

§: 0 B X, X1 A 0

¢ 0 B X! X A 0

Link to Diagram

Note that if P, — A — 0 is a projective resolution, then the comparison theorem yields maps and
a commutative diagram

© 0 M Pnq . Py A 0
13/3 %3 i 33 Ta
i ¥ . ¥

¢ 0 B X, e X1 A 0

Link to Diagram
Then the dimension shifting theorem (Exc. 2.4.3) and its proof yields an exact sequence
Hom(P,_1, B) — Hom(M, B) & Ext™(A, B) — 0,

and the asserted bijection is then given by ©(§) := 9(5). Vet
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21.2 3.6: Kunneth and Universal
Coefficient Theorems

Observation 21.2.1
If R is a field F' then Tor’ (A, B) = 0 for all n > 0, i.e. every module over a field is a complex space,
hence free, hence projective, hence flat, and so A @ — is exact.

Question 21.2.2
If P, € Ch(Mod-R) is a complex of of right R-modules and M € R-Mod is a left R-module, how is
the homology of P, and that of P, ® g M related?

Lemma 21.2.3(?).
Given a 5-term exact sequence

A5 4,5 B 020,

there is a corresponding SES

B g C 0

0 A

Ao/ ker f=A>/ima
=coker «

img = ker f

Link to Diagram
In particular, we can always take A = coker @ and C' = ker~y in any abelian category.

Theorem 21.2.4(The Kunneth Formula).
Let P, € Ch(Mod-R) be a chain complex of flat right R-modules such that each boundary
module dP, is again flat. Then for every M € R-Mod and all N, there is an exact sequence

00— Hy(P)®r M ——— Hp(P, @ M) ——— Tork(Hn_1(P.),M) ——— 0

Link to Diagram

Remark 21.2.5: Note that the correction term vanishes if R is a field. y
Proof (?).
Let Z,, == Z,(Py), there there is a SES
O—>Zn—>Pni>dPn—>O.

Since P,,dP, are flat by assumption, by Exc. 3.2.2, Z, is also flat. Taking the LES from
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applying — ® p M, noting that M is arbitrary yields

0

|

Zn®@prM ——— P,Op M ———— dP, ®r M

S Tory(dP,, M)

Link to Diagram
Here Tory(dP,, M) = 0 since dP, is flat, noting that one could also apply Tor(dP,, —) to get
a similar LES. So this lifts to a SES of complexes

0—>Z, M > P, M — dP, ® M — 0,

where we can consider d ® 1 in the middle. We'll pick this up next time!

22 ‘ Friday, March 05

See first 10m

Observation 22.0.1
For a SES

A S AL BYS ooy,

one can obtain an exact sequence

0 — cokera 5 B I, kery — 0.

Observation 22.0.2
For a SES

: Z
O%Y@ZQ?%O

there is an induced exact sequence

Some missed stuff here.
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Proof (of Kunneth Formula (continued)).
Note that

022, M —>P,M — dP, @ M — 0,

where the differentials for the end terms are zero, and the homology will recover the original
complex.

Hn—l(Z ®M) = Zn—l QM

Link to Diagram

By using the explicit formula for 9, it turns out that 0 = (dP;4+1 & 7 ) ® 1M. By observation
one, we get a SES

Zn @M

By observation 1, the first term equals H,(Py) ® M. From this, we get a flat resolution of
H,_1(P):

deg : 2 1 0

0 0 P, Zny — Hp_1(P) —— 0

Link to Diagram
So we can use this to compute Tor(H,,_1(P), M) by taking homology:

deg 2 1 0

0 0 AP, oM 2L, 7z @M —— 0

Link to Diagram
Thus

ker(i ® 1as) = Tort(Hn_1(P), M) = ker(dPp 25 Zn_1 ® M).
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Theorem 22.0.3 (Universal Coefficient Theorem).
Let P, be a chain complex of free abelian groups. For every abelian groups M and every n,
the Kunneth sequence splits non-canonically as

H, (P, ® M) = (H,(P,) ® M) & Tor?(H,,_1(P), M).

Remark 22.0.4: In optimal situations the tor term vanishes, e.g. if either term is torsionfree (so
no elements of finite order).

Fact 22.0.5
Every subgroup of a free abelian group is free (hence projective, hence flat).

Proof (?).
Since dP,, < dP,,_1, we can conclude dP, is free. Thus the following SES splits:

0= Zn— P, % dP, — 0.

So any lift of the identity map on dP, gives an isomorphic copy of the last term in the middle
term, yielding P, = Z,, ® dP,,. Now tensoring with M and using that it distributes over direct
sums yields

P,®M=(Z,® M) & (dP, ® M).

The left-hand side contains a copy of ker(d, ® 1 : P, ® M — P,,_1 ® M), which itself contains
a copy of Z,, ® M. So by a linear algebra exercise, we have ker(d,, ® 1) = (Z, ® M) & A for
some unknown A, and since dP,+; ® M = im(d,+1 ® 1) is contained in the first term, we can
use the partial exactness of tensoring to preserve quotients and obtain

H,(PM)=(H,(P)@M)dC’

for some C’. Now applying the Kunneth formula we find that C' = Tor?(H,_1(P), M),
yielding the claimed direct sum.
|

Remark 22.0.6: The following is a generalization for both.

Theorem 22.0.7 (Kunneth formula for complexes).
Let P,Q € Ch(R-Mod) be complexes, then

PoQ=Tot*(PoQ)n= P B oQ,
pt+g=n

with differential®

da®b) = (da) ® b+ (—1)Pa ® (db).
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If P,,dP, are flat for all n, then there exists a SES

0= P Hy(P)®Hy(Q) = Hi(PRQ)— P Torf(Hy(P), Hy(Q)) — 0.
pt+q=n pt+g=n—1

“Recall that the squares would commute if we took the usual differentials, so we use a sign trick to get d?>=0.

Proof (?).
Omitted here, but uses same ideas as the previous proofs. Hint: take @ to have M in degree
0.

|

— 22.1 Applications to Topology ~

Definition 22.1.1 (Simplicial Homology)

See some applications in section 1 of Weibel, e.g. simplicial and singular homology. The setup:

X € Top, R € Ring unital, and for k£ > 0 let Sy = Sk(X) be the free R-module on Hl_om(Ak, X)
op

where Ay is the standard simplex By ordering the vertices, this induces an ordering on the
faces by taking lexicographic ordering. Then the restriction of a map A — X to the ith

face of Ay gives a map Agr_1 — X, which induces an R-module morphism 9; : Sy — Sp_1 By
k

summing these we can define d = Z(—l)i(?i : S — Sp_1 and it turns out that d*> = 0. So we
i=0
can define a complex

o 8 5 81 — Sy — 0 € Ch(R-Mod).

Taking it homology yields the simplicial homology of the complex H,(X; R) := H,(S«(X)).

Remark 22.1.2: Taking R = Z makes Si(X) a free abelian group. If M is any abelian group, we
can define H, (X; M) := H,(S«(X)®z M), the homology with coefficients in M. If no coefficients
are specified, we write H,(X) = H,(X;Z). There is then a universal coefficient theorem in
topology:

Hy(X; M) 2 (Hp(X) ®z M) & Torf (H,—1(X), M).

Remark 22.1.3: Next week: group cohomology, spectral sequences next week. This will give us
some objects to apply spectral sequences.

23 ‘ Monday, March 08

" 23.1 3.6: Universal Coefficients Theorem ~
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Remark 23.1.1: Let X € Top and Si(X) be the free Z-module on Hl_om(Ak, X), which assemble
op

into a chain complex S(X). For M € Ab, we defined H"(X; M) := H"(Hom(S(X), M)) and write
H"(X) = H"(X;Z). The universal coefficient theorem states

H™(X; M) = Hom(H,(X), M) & Exty,(H,_1(X), M).

/\'Warning 23.1.2
Note that this is homology on the RHS, not cohomology! A~

Theorem 23.1.3 (Universal Coefficients Theorem for Cohomology).
Let P, be a chain complex of projective R-modules. Assume dF, is also projective for all n.
For M € R-Mod, there is a split SES

0 — Exth(Ho1(P), M) = H"(Hom(P., M)) — Hom(H(P), M) = 0.

Proof (Sketch).

As in the last lecture with free abelian groups, since the dP, are projective we can split
P, =2 Z, & dP, since Z, = kerd. Applying homs, since it’s an additive functor this yields a
new split exact sequence

0 — Hom(dP,, M) — Hom(P,,, M) — Hom(Z,, M) — 0.

Now running the proof for the original Kunneth formula and replacing tensor products to
homs, these assemble into a split exact sequence of complexes and this yields the desired SES.
Using the strategy of the proof of the UCF for free abelian groups to see that the sequence
splits (although non-canonically).

|

Remark 23.1.4: Note that flat is weaker than projective for tensor products, but in an asymmetric
situation, there’s nothing weaker than projective for the hom functors to be exact (since this is an
iff). i

23.2 Ch. 6: Group Homology and
Cohomology
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23.2.1 Definitions and Properties

Definition 23.2.1 (Modules of Groups)

Let G € Grp be any group, finite or infinite, and let A € G-Mod be a left G-module, i.e. an
abelian group on which G acts by additive maps on the left, written g.a or ga for g €
G,a € A. Here additive means that g.(a1 + a2) = g.a1 + g.as. Note that this implies
9.0=0,—g.a = —(g.a),91(92.a) = (9192).a, 1g.a = a. Writing Egd(A) = H%m(A, A), we have

a group morphism
G — E%d(A)

g~ g-(—)

Definition 23.2.2 (Equivariant Maps)
If B € G-Mod is another left G-module, then

Hom(4, B) = {/ € Hom(A, B) | f(g.0) = g(f(a)) Va€ A Vg€ G},
which are G-equivariant maps.

Definition 23.2.3 (Integral Group Ring)
We define

N
7G = {Z migs

=1

mieZ,giEG,nEN}.
We can equip this with a ring structure using (mg)(m’g’) = mm’gg’ and extending Z-linearly.

Remark 23.2.4: There is an equality of categories G-Mod = ZG-Mod. This is also the same as the
functor category AbY (a category of the form A ) where G is the category with one object whose
morphisms are the elements of G. In other words, Ob(G) := {1} and Hgm(l, 1) = G. Note that

every morphism is invertible since G is a group.
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The right-hand side yields a G-module since F(g)(a) = g.a.

Definition 23.2.5 (Trivial modules)
An object A € G-Mod is a trivial module if and only if g.a = a for all g € G.

Remark 23.2.6: Any G € Ab can be viewed as a trivial G-module in this way. This yields a
functor Triv : Ab — G-Mod. There is a distinguished trivial G-module, namely A := Z with the
trivial G-action. There are two natural functors G-Mod — Ab:

o A = {a €A ‘ g.a =aVg € G}, the invariant subgroup of A.

o A=A/ <ga —a ‘ geG,ac A>, where we take the G-module generated by the relation in
the denominator, which are the coinvariants of A.

Exercise 23.2.7 (6.1.1)

1. A% is the maximal trivial submodule of A, so the functor (—)¢ is right-adjoint to Triv.
These should both be easy checks! So this is left-exact and has right-derived functors
(similar to ext).

2. Ag is the largest G-trivial quotient of A, and (—)¢ is left-adjoint to Triv. Thus it is
right-exact and has left-derived functors (similar to tor).

Lemma 23.2.8(?).
Let A € G-Mod and Z be the trivial G-module. Then

1. Ag 2 Z ®za A, and
2. AC Hgm(Z,A) (important!!)

\ J

AWarning 23.2.9
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Number 2 above is important to remember!

Proof (of 1).
Viewing Z =z Zz € (Z,7.G)-biMod with the trivial structure, recall® that we have a functor

Ho(m Z,—) : Z-Mod — ZG-Mod

where H%m(Z, A) has an action (g.f)(z) = f(x.g) for x € Zg € G. Since z.g = z for all z, g,
we have ¢g.f = f and thus H%m(Z, A) is a trivial G-module, and there is an isomorphism in
Ab:

Hom(Z, A) = A
Z Ab
f= fla).
Thus H%m(Z, —) = Triv(—). By prop 2.6.3, the functor Z ®zg (—) is left-adjoint to

H%m(ZZZ(;,—). Now applying exercise 6.1.1 part 2, (—)g = Triv(—). Since left-derived

functors are universal J-functors, we have a natural isomorphism (—)g = Z ®z¢c (—) since
they’re both left-adjoint to the same functor.
|

“See Weibel p. 41.

Proof (of 2 ).
Taking f(1), we have AC = H%m(Z7 AG). Using the adjoint property from exercise 6.1.1 part

1, this is isomorphic to Hgm(Triv(Z), A). Thus (—)¢ = H%m(Z, —).
|

Remark 23.2.10: The exts here will classify extensions in the category of left Z-modules. Note
the switched order on the hom functor however!

24 Ch. 6: Group Homology and Cohomology
(Wednesday, March 10)

Lemma 24.0.1(%).
Last time: started setting up group homology. For G a group and A € G-Mod, we think of Z
as a trivial G-module and

1. Ag 2 7Z Q¢ A, the G-coinvariants.

2. AY =~ HZocgn(Z, A). the G-invariants, this is the largest G-trivial submodule of A
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Definition 24.0.2 (7)
For A € G-Mod,

1. H.(G;A) = L.(—))G(A) are the homology groups of G with coefficients in A. It
is isomorphic to Tor?%(Z, A) by (1) in the lemma above. In particular, Hy(G; A) = Ag.

2. H*(G;A) = R*(-)Y(A) is the cohomology of G with coefficients in A. It is
isomorphic to Ext}q(Z, A) by (2) in the lemma. In particular, H(G; A) = A€,

Example 24.0.3(%): For G = {1}, for any A € G-Mod we have A% = A = Ag. Forgetful functors
are usually exact, and in this case (=), (=)g : G-Mod — Ab is really a forgetful functor and thus
exact. Here H,(G;A) = 0= H"(G; A) for n > 0.

Example 24.0.4(?): Let G be infinite cyclic, which we’ll write multiplicatively to prevent the
notation from conflicting with the addition on ZG, so G =T = (t) = {t” ‘ n e Z}. Then
G =7|t, t_l] are integral Laurent polynomials, since we’re taking integer linear combinations of
various t". Computing H,(T, A) = Tor?T(Z, A) and H*(T; A) = Ext}(Z, A) using a projective
resolution of Z as a ZT-module, since the first slot Ext requires an injective resolution in the
opposite category. It suffices to take a free resolution:

~1
P Pl Py 70— 02T N g g g,
Note that the resolution ends here because the multiplication x (¢t — 1) is injective on polynomials
rings. Thus Hs>o(T; A) = H=*(T; A) = 0. The zeroth terms are invariants/coinvariants. For Tor,
we apply — ®zr A to this resolution to obtain

(t-1)

0= FP,— FPy—0:=0—ZT ®zp A 2% 727 9,0 A = 0

(t—1)@1
R

=0—- A A — 0.

One can check that

e ker(t—1)® 1 = AT = H{(T; A) is equal to the invariants and
o coker(t—1)® 1 = Ap = Hy(T; A) is equal to the coinvariants.

The second fact had to be true, but the first is surprising!
For Ext*, we apply the contravariant HZQ%n(—, A) to obtain

—o(t—1)

0 — Hom(ZT, A) Hom(ZT,A) — 0.
ZT ZT

One checks
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o coker(—o (t—1)) = Ay = HY(T; A) (surprising!) and
o ker(—o(t—1)) = AT = HY(T; A)

Remark 24.0.5: See exercise 6.1.2 for kG-modules for k£ € Ring arbitrary.

Question 24.0.6
What can we say about Hy and H® for more general groups?

— 24.1 H, for Groups ~

Definition 24.1.1 (Augmentation Maps)
Define the augmentation map

€: 4G = Z
Znigi = Zni,

which is a ring morphism. Define Z := ker ¢ to be the augmentation ideal.

Observation 24.1.2
There is a basis of ZG as a Z-module given by

B::BluBQ::{l}U{g—l‘175966’}.

Note that €(g — 1) =0, so Z is a free Z-module with basis Bs. Here the kernel should be expected
to have codimension 1! We also have ZG/Z = 7 as rings, where the left-hand side is a G-module.
Letting — denote coset/equivalence class representatives, we have

gl=gl=g=1,
and so the action G ~ ZG/T is trivial.

Fact 24.1.3
For R a ring and Z < R a (left? right?) ideal and M € R-Mod,

R/I®pr M = M/IM.

So for any A € G-Mod we have

Hy(G; A) = Ag
= 7ZQzc A
= Tor}%(Z; A)
=72G/T @zc A
=~ A/TA.
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Example 24.1.4(?):
o Hy(G;Z) = Z/IZ = 7, where ZZ = 0 since Z is the trivial G-module and (¢—1)a = ga—la =
a—a=0.

e Hy(G,ZG) = ZG/I = 7.

o Ho(G;T)=1T/1°

Example 24.1.5(?): Noting that A = ZG is projective in ZG-Mod, so H,(G;ZG) = 0 for n > 0,
using that this was a version of Tor and projective implies flat.

" 24.2 H' for Groups ~

Definition 24.2.1 (Norm Element)
Let G be a finite group, then the norm element is defined by

N=> geZG.
geG

Remark 24.2.2: For h € G,
hN:Zhg: Zg’:N,
g qg'eG
and so N € (ZG)Y. Similarly Nh = N and so Z(ZG@) is in the center.

Note the two different Zs here!

Lemma 24.2.3(?).
Let G be finite, then

HY(G;ZG) = (ZG)€ = ZN,

which is a two-sided ideal of ZG that is isomorphic to Z.

Proof (?).
The inclusion ZN C (ZG)G is clear from the previous remark, so it remains to show the other
inclusion. Suppose

ae Z ngg € (ZG)C.
geG
Then for all h € G, we have

a=ha= Z nghg.
Now note that the g are a free Z-basis for ZG, so we can equate coefficients of h to find that
np = ni. Since h was arbitrary, we have a = ni N € ZN.
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Remark 24.2.4: Exercise 6.1.3 shows that H°(G;ZG) = 0 when G is infinite, in which case

I = {a € 7G ‘ Na = O} is the annihilator of the norm element. Next class we’ll start on spectral
sequences.

25 ‘ Spectral Sequences (Monday, March 15)
_ 25.1 Motivation )

Remark 25.1.1: Invented by John Leray, 1946 while a prisoner of war in Austria, as an algorith-

mic way to compute homology of chain complexes. Start with a first-quadrant double complex

{Ep,q ‘ p,q > 0}, say of R-modules. Let T;, := @ be the total complex (direct sum or product,
P

since the diagonals are finite) where d = d® + d". Suppose one could compute the homology of

each “piece” of the differential separately and independently. First forget d”, and let this complex

be Egg (where the 0 superscript denotes a “zeroth approximation”).

[\
O @0<—— @
O @0<—— @
O @0<—— @

Link to Diagram

Now let Elp, ¢ = Hq(EI?,q) be the homology obtained from the vertical complexes, i.e. E;’q =
kerd, ,/imd; , ;. Recall that by convention we require anticommutativity, so dvd" + d"d’ =0, so

this is not quite a complex of complexes. So these won’t quite give a chain map, but d’d" = —d"d"
is enough to induce well-defined maps on Ei* since they will preserve kernels and images. So E*

has horizontal differentials d” : Ei* — Ei—L*:
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pq : q

3 e — o +— @
2 e o — o
1 e o+— o
0 1 2 3 P

Link to Diagram

We can now write Ez’q for the horizontal homology Hp(Eiyq) at the p,q spot. We’ve done the

horizontal and vertical homology separately, how close is {Eg,q ‘ p+q= n} to giving us information
about the total homology? v

Exercise 25.1.2 (5.1.1)
If Eg* consists of only two columns p and p — 1, then there is a SES

0— Ef,_LqH — Hypo(T) — Ef,,q — 0.

p—1 p n

Link to Diagram
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«\rq )

Figure 3: image 2021-03-15-09-29-09
So in general, H,(T') is determined up to extensions.

Exercise 25.1.3 (5.1.2)

We view Ef* as a 2nd order approximation to H, (7). We've used both differentials, so how
do we continue? There are well-defined maps dg,q : E;q — E;%—Zq 11 such that dz’* o di* =0
(noting that these are superscripts, not squaring).

Remark 25.1.4: This yields differentials on E? on lines of slope —1/2 which move from the nth
diagonal to the n — 1st diagonal:
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q+1 °

* (p,q)

a0

Link to Diagram

So we let E* be the homology, and it turns out there are differentials d* : E;”q — Eg_&q 1o which
go from diagonal n to n — 1. v

) 25.2 Setup ~

Definition 25.2.1 (Homology Spectral Sequences)
A homology spectral sequence starting with E® for a € Z in an abelian category A consists
of the following data:

a. Pages: For all r > @ and all p,q € Z, a family {E;,q} of objects in A (some of which my
be zero), where typically a = 1, 2.

b. Differentials: A family of maps {d;q t By, E;_WM_I} with d" o d” = 0 of slope

in that lattice £} , the form chain complexes. We take the convention that the
/r: I
differentials go to the left:
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Link to Diagram
: . S .
c. Structure Maps: Isomorphisms F,7* = kerd, . /imdp . . ...

We denote £}, to be the rth page of the sequence, and the total degree of an entry E,, , is
p+q.

Remark 25.2.2: The term E;;Zl is a subquotient, i.e. a submodule of a quotient, of E;"’q, and hence
inductively a subquotient of EJ , by transitivity of “being a subquotient”. The terms of total degree
n lie on a line of slope —1, and each differential d;q decreases the total degree by 1.

Remark 25.2.3: There is a category of homology spectral sequences over a fixed abelian category
A. The objects consist of the above data of pages, differentials, and structure maps from the above
definition The morphisms f : E — E are families of maps

Foa B = Epg
for all 7 > max {a,a} with d"f" = f"d" such that f;jl'l is the map on homology induced by f; ..

Definition 25.2.4 (Cohomology Spectral Sequence)

A cohomology spectral sequence is defined dually: we’ll write this as EP'?, dP?, where the

differentials go down and to the right, and increase the total degree by 1:
q . ) I 1
dbd : EP9 — EPTTarHl
P
g—r+1 O

p p+r

Link to Diagram
There is similarly a category of these.

25.2 Setup 101


https://q.uiver.app/?q=WzAsMyxbNCw0LCJcXGJ1bGxldCJdLFsyLDIsIlxcYnVsbGV0Il0sWzAsMCwiXFxidWxsZXQiXSxbMCwxLCJkXnIiXSxbMSwyLCJkXnIiXV0=
https://q.uiver.app/?q=WzAsNixbMSwwLCJcXGJ1bGxldCJdLFs1LDIsIlxcYnVsbGV0Il0sWzEsMywicCJdLFs1LDMsInArciJdLFswLDAsInEiXSxbMCwyLCJxLXIrMSJdLFswLDEsImRfcl57cCwgcX0iXV0=

Wednesday, March 17

Lemma 25.2.5(Mapping Lemma).
Let f : E — E be a morphism of spectral sequences (homology or cohomology) such that
for some fixed r, the map f" : E} , — EN';vq is an isomorphism for all p,q. Then all f,; are
isomorphisms for all s > r and all p, q.

Proof (of the mapping lemma,).
There is a commutative diagram with exact rows:

N r P r+1 N N
0 > prq vaq Ep7q > 0 > 0
Ipa(™) fpa(™) ;,ng
. Dr 7T T N N
0 > prq Zp’q Ep7q > 0 > 0

Link to Diagram
Extending the right-hand side as indicate, we can apply the Five Lemma to conclude that

;;1 is an isomorphism. Now do induction on r.
|
2 6 ‘ Wednesday, March 17
= 26.1 5.2: Spectral Sequences —

Remark 26.1.1: Recall that we had

* {E;,q ‘ TZ>a,p,qE Z} for some a.
) o 2
* d;ﬂi E) o = Ep—rgtr—1 with d” = 0.
s ~ id . r
o Bq Skerdy /imdy g i

Example 26.1.2 (First quadrant spectral sequences): A first quadrant (homology) spectral
sequence is one with Ej . = 0 for p,q < 0. Note that for a fixed p, g, there is an 7 > 0 such that
the differential entering and leaving Fj, , will be zero. The domain will be in quadrant 2 and the
codomain in quadrant 4. In this case E, , = E;:gl and we call this “stable” module £,. Note that
r = r(p,q) can generally depend on p, q.

Definition 26.1.3 (Bounded)
We say a spectral sequence is bounded if there are only finitely many nonzero terms of total
degree n. If so, there exists some uniform rg such that for r > rg, we have E = E;;gl =V
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Remark 26.1.4: For the rest of this course, we’ll restrict our attention to bounded spectral
sequences.

Definition 26.1.5 (Convergence of a homology spectral sequences)
A bounded spectral sequences EF converges to H, if we are given

1. A family of objects {Hy}, 7
2. For each n, a finite (here increasing) filtration
0=F,H,C---CF,1H,CF,H, C--- CF,H, = H,
where each F;H, is a subobject of H,
3. Isomorphisms

00 ~v FpHp+q
P.q — ’
Fp-1Hp+q

or equivalently

o ~ FpHn
m—p ?
PP = F I H,

which are the ¢ — s successive quotients (or sections) of the filtration, which depend
on n. We refer to t — s as the length of the filtration

In this case we write
a
Ep,q = Hp-i-qv

thinking of a — oco.

Remark 26.1.6: We saw a case where the length of the filtration was 2, when we had 2 columns.
Recall that this only yields information up to extensions, since this only computes quotients.

Remark 26.1.7: We can form a similar definition for a cohomology spectral sequence. The
conditions change slightly:

(2’) We have a decreasing filtration
H"=F°H"D.-- D FPH" D FPT'H" D ... D F'H" = 0.

In this case we have

P [Fp+q
P,q ~ F H X
o0 Fp+1[pt+q

Then each H, will have a filtration of length n + 1 by explicitly counting terms on the diagonal, so
we obtain

O:F—lHnCFOHng"'an—lHnanHn:Hn-
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Then

EO,n = F()Hn — Hn
F,H,
Epnp™ =2—
p,;n—p Fp—IHn
H
H, »E o~ —"
" 0 Fn—lHn

Definition 26.1.8 (Edge maps)

Assume that @ > 1. Provided a > 1, note that Ejp, is a quotient of Ej,, for all r, since the

outgoing (?) differentials are all zero. Similarly, EJ, ; is a subobject of Ef o for all 7. We thus
have maps

E&n —» ng’n — H,

Hn — E’?L?O = EZ,O

These compositions are referred to as the edge maps.

TSSOSO

Figure 4: Edges of a spectral sequence
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Remark 26.1.9: For a first quadrant cohomological spectral sequence, the edge maps are

n,0 n,0 n
EM — EM0 s H
n 0,n 0,n
H" — E%" < EO".

Definition 26.1.10 (Collapsing of a spectral sequence)
A spectral sequence E collapses at E" if there is exactly one nonzero row (or column) in EY .

Remark 26.1.11: This implies that Ej , = E}% at this point. In this case, we can read off the
single nonzero section:

\ Lol QF\SJ na
N )
ol IR AVAY

Figure 5: image 2021-03-17-09-55-34

Here we’ll have
F,H, H,

o0 A ~ ~ H
= = Hy.

P~ F, o H, 0

Remark 26.1.12: A more common definition of a spectral sequence collapsing at r is that for
all p, g, the differentials d;q = 0. Note that this implies stabilization at r, but doesn’t allow for
such a simple statement about the diagonals since they may intersect multiple nonzero objects.

Remark 26.1.13: Some things we’re skipping from the book, around the last part of 5.2:
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e Definitions pertaining to unbounded spectral sequences.

o Weak convergence.

o Filtrations that are infinite in on or both filtrations.

e Filtrations that don’t limit to a union equal to H,, or intersection to O.
o Abutment, which is convergence when the filtration is not finite.

We'll skip 5.3 on the Leray spectral sequence and jump to 5.4, constructing a spectral sequence.

2 | Friday, March 19

— 27.1 Spectral Sequence of a Filtration ~

Definition 27.1.1 (7)
A filtration of a chain complex C is an ordered family of subcomplexes

F=...CF, . CCFCC-.-CC(C pEZ
such that there are commutative diagrams

FCp —— C,

Fan_l — ” Cn—l

Link to Diagram

A filtration is exhaustive if U F,C, = C, for all n.
PEL

Remark 27.1.2: The construction of the spectral sequence will show that C' and U F,C give rise

p
to the same spectral sequence. So we will assume that all filtrations are exhaustive.

Theorem 27.1.3 (Construction of the spectral sequence of a filtration).
A filtration F' of C' € Ch(R-Mod) determines a spectral sequence starting with

E,C,

0 P~'ptq 1 0
_—ppte El = H, (E°)).
y2u Fp—ICp+q Y21 pq D,

Since d preserves numerators and denominators, we get well-defined differentials d on the
quotients:
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0
Epfl.qul
0
Fp—lcp+q+1 ? FpCp-HH-l Ep,q+1
d d d -
0
9O — F, 1C,
Fp 2C1)+<1 Fp 1%~p+q FPOp+q Ep,q
d d d
0
_ g —> _
Fp 1Cp+q 1 chp+q 1 Ep,q—l

Link to Diagram

Taking vertical homology of the E° terms on the right yields E;q. Note that the blue terms
contribute to the same diagonal p 4+ g = n.

Definition 27.1.4 (Bounded Filtrations)
A filtration F' on a chain complex C is bounded if for each n there are s < t € Z such that
F,C, =0 and F,C, = C,.

Remark 27.1.5: Note that this implies that each diagonal of total degree n has only finitely many
nonzero terms, so the spectral sequence will again be bounded. We’ll next show that this spectral
sequence converges to H,(C). o

Definition 27.1.6 (Canonically Bounded Filtrations)
A filtration F' is canonically bounded if and only if F_1C,, = 0 and F;,,C,, = C), for all n. In
this case,

E,C 0 p<O
0 . PYPp+q
p,q‘__{

Fp—lcp—i-q 0 ¢g<0 (p>n,p—12n).

So E becomes a first quadrant spectral sequence.

Remark 27.1.7: Note that all elements on all pages are subquotients of E° elements, so they can
only get smaller, and terms that become 0 on some page stay 0 for all remaining pages. Ve

27.2 Construction of the Spectral
Sequence of a Filtration
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Remark 27.2.1: For ease of notation, we’ll suppress the subscript ¢ since it can always be recovered
as ¢ = n — p. Define the canonical quotients

p : FyC — F,C/F,1C = E).

Define

Al = {c € F,C ‘ d(c) € Fp—T(C)}a

P

which are elements of F,,C' which are cycles modulo F,_.C, the approximate cycles. Note that
any actual cycle is in all A". This differential takes things r columns to the left, so we’ll want to
define a differential that associates the following terms

Fp 1Chy1 —— F,Cha

d d
Fy, 1O, ———— F,C, c
d d
Fp ,C —— - Fp 1Choy ——— F,Ch dc

Link to Diagram

Similarly, define

Z} = ny(A, C E)
B; = np(dA;li—l) C np(FpC) € E;(;)-

Observation 27.2.2
Some key observations:
_ A0 _ 4—1 _ 42 _
LFEC=A=A"=A7"=-.
+1
2. AT C A

3. AANF,1C=A"].
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Exercise 27.2.3 (7)
Work through these facts using the diagram above.

Remark 27.2.4: Some consequences:
(1) = ZS = Eg (taking = = 0 in the quotient map 7).
(2) = Z;+q C Z,, since these are images of subgroups

(3) = A1 S AL,

r r+1
By C DIt

replacing p — p + r in the intersection formula. Then applying d yields

(1) = Bg = np(dA;_ll) C np(Fp—1C) = 0, since this occurs in the denominator for 7, and d
preserves filtration degree.

So the Z,, get smaller and the B, get bigger. What happens in the middle?

Proposition 27.2.5(All boundaries are contained in all cycles in a spectral se-
quence).
B; - Z; for all r,s > 0.

Proof (?).
A sequence of implications:

By 3 x = ny(de) for some ¢ = d(de) =0 € F,_sCVs
= dc € 4
= np(de) € Z.

Remark 27.2.6: Set B;O = Urle; C Zgo = ﬂ Z; , which follows from a set theory exercise.
s>1

Remark 27.2.7: Combining and summarizing these results: for every p > 0, we have a tower of
groups:

_Ro 1
0=R B By ByY 70 Z

Link to Diagram
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Remark 27.2.8: Note that using standard isomorphism theorems, we have

A} 3 A

12

ZT‘
PT ANF,CC A

So set

) O T i A A
PRI A+ FaC dA A
p+r—1 p—1 p+r—q p—1

making E, a quotient of Aj. Using a similar calculation, one can show

+1 r1 -1
Zy AT+ AT
= -1 -1
By dA  + AT

Remark 27.2.9: There will be an induced differential on this quotient, which will follow from
checking that the different preserves the numerator and denominator.

28 ‘ Monday, March 22

— 28.1 5.4: Spectral Sequence of a Filtration ~

Remark 28.1.1: We have an increasing filtration F,C' C F,;1C, where we defined

F,C
EO — P~'ptq El —H EO )
P4 B, 1 Cp P p+q=p,x
1. We have a map
FPC 0
Mp + FpC — F,1C =Ly,

where we’ve dropped the ¢ from notation.

Ay, ={cec,c|dee B0},

the eventual cycles. We defined Z, = n,A; and B}, = npdA;erl, and wrote A, N F, 1C =
Al
p—1

3. We had the chain of inclusions
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4. We also have E, = Z; /By = Ay JdAT L | + A7~}

+1 -1

5. 727t/ Byr & e i =
I ) e (e
p+r—1 p—1

6. dA) N Fp_yp1C = dAG.

Obviously we have

d: A, — AL,
d: Ay | —dA],
so d induces a well-defined map d;, : E;, — Ej_,, which of course squares to zero, which goes r
columns to the left and decreases the total degree n by 1 since the original d did on C,. This is

what we need to set up a spectral sequence, since we now have pages and differentials, and it just
remains to show that E™™! = H,(E" d").

Lemma 28.1.2(%).
d determines isomorphisms Z; /Z;;+1 — B;J_r,% /By

Proof (?).

Unwind definitions! Note that we have B;”_L% = np—rdA,, using that the lower index on B and
upper index on A should sum to the lower index on A. This is equal to dA},/dA; N Fy,——1C,
where the latter term is kern,—, and B,_, = np_,,ndA;j. This yields

Bt dA?
By,  dAIZ1+ (dAyNFpyiC)

Similarly,

—~
w
=

7N 4 A,

Zptt T ATt AT (AN Fa0) AT+ AT

12

Now applying the map induced by d : A} — F;,_.C to this quotient, we have ker d| 5, C A;;H.
P
These go down 7 steps, but everything in the kernel goes down as far as you’d like! So d
kills one of the denominator terms, and thus induces an injective map on the quotient. Thus
Zy o~ dA,
r+1 — r+1 r—17

so this is isomorphic to B;‘_Fi /By

which is exactly the previous expression with the order switched,

[ Proposition 28.1.3 (The r + 1st page is the homology of the rth page). ]
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ker dj, ~ gl Z;+1'
imdy,, P B!
Proof (?).
AT’
Recall that dj, : E;, — Ej_, and by (4), Ej = JAT1 P A1 Substituting p <+ p —r, we
) p—i—r—l+ p—1
ave
r r—1 r—1 -1
o {Z €Al | dze dApfl +Ap,r,1} B A;_l +A;+1 (;) Z;-i-l hich is (6)
erd, = dATTL 4 oAT-] Caanl v Al O
ptr—1 T Ap_1 prr—1 7 Fp-1 P

Here we've used that x € F,,C = dx € F,_,_1C = dx € A;_T_l. What is the image of
T 3 . .

;le in general? Note that later we can replace p <+ p + r. By the 1st isomorphism theorem, we
ave

~ Zv/By . Zb 4 BYLZ

d:E =2 /B — — — — p_T:ET_v
P p p/ p Z£+1/Bg Z}vg’—l—l B;—r B;_r p—r

where we’ve applied the lemma from last time, and we’ve used the fact that in the last map,
all of the B are contained in all of the Z, so we can choose any superscript we want. These
are all isomorphisms up until the last part, so

: ~ 1 1

im dj, = B /BT

T

. Replacing p <= p + r, we get a Tth fact
Fact (7)

imdy . = Byt /BT
Now combining (6) and (7), we have

+1 +1
kedy . ZpM/By 7
imdy,, ~ Byt'/By Byt

_ r—+1
=

28.2 5.5: Convergence of the Spectral
Sequence of a Filtration

Remark 28.2.1: We'll restrict our attention to bounded complexes.

Remark 28.2.2: A filtration F' on a chain complex C' induces a filtration on the homology H,.C,
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where H,H,C = im(H, F,C — H,C):

Link to Diagram

These inclusions induce a map from the homology of the subcomplex to the homology of the total
complex.

Remark 28.2.3: If the filtration on C' is bounded, say 0 = F,C,, C --- C F;C,, = C,, for some
s < t, then so is the induced filtration on H,,C. Also note that FyH, = H, and F;H, = 0.

Theorem 28.2.4(Classical Convergence Theorem).

Assume F' is a bounded filtration on C, then the spectral sequence is bounded and converges
to H,C, so

F,C
1 _
Epq = Hpiq (Fp:C’> = Hp14C.

Remark 28.2.5: Need to check next time that the E;f; terms give the proper quotients.

29 ‘ Wednesday, March 24

Remark 29.0.1: Last time: we're trying to prove the classical convergence theorem in the bounded
case. We have

E;q = Hy1(FpC/Fp1C) = Hpy4C.

We’d like this converge, i.e. the E* page will be the sections of Hy4,C. Writing C), := F,C,, for
the filtered pieces, we have
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Then the induced filtration on homology is

Proof (of classical convergence theorem,).
As discussed, we have a natural bounded filtration on each H,C. Fixing p,n and writing
q =n — p, we have

Ay ={ce FCp | de) € FpeyCas }.

This stabilizes for large r, namely whenever F},_,C,,_1 = 0 (which happens since the complex

is bounded). Call the stabilized object AZ° := {c € 0 ‘ d(c) = O}, which is ker d in the pth
filtered piece. Some facts:

0. Z, = np(A}) where

F,Cp,

: F,C, —
77p p~n prlcn

where Z° = n,(A;°).
1. A% = ker(FpCy, 4 F,Cp_1), which is the “numerator” of F,H,C.

2. d(Cny1) N FpCp = | J d(4],):

r€ZL
Apir
d Fp—i—rCn-‘rl - Cn+1
F,Cp

Link to Diagram
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3. Recall that we defined B, := np(dA;;Ll). We can write By° = n,(UrdA;,,), where the
left-hand side and the inner term on the right-hand side are equal to U By,
r>1
4. A, = A N F_1Cy = ker(AX 2 ED).
Now to assemble this, note that
F,H,C AR
P~ = P - by 1 and 2
FP*IHHC Ap—l + Ur dAp-f—r
AOO
o~ 7717( v ) by 4
Mp (UrZO dA;)-l-r)
ZOO
_“p
=E,°.
where we’ve used that A7 + U dAy., Ckerny, =F, 1C.
r>0 -

29.1 Applications: Two Spectral Sequences
of a Double Complex

Remark 29.1.1: Consider two different filtrations of the total complex Tot(C) (either sum or
product) of a double complex C. .. We know there is an spectral sequence associated to each and
play them off of each other to get extra information about cohomology.

Definition 29.1.2 (Filtration I: by columns (of a double complex))
Let 'F), Tot(C') be the total subcomplex obtain by applying truncation functors:

(renC), = {7 257
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o+ o 0 0
[ 0 0
e i— o 0 0
° °
n ° n+1

Link to Diagram
We still have d = d* + d" : 'F, — 'F,. By the construction theorem, there is a spectral
sequence {I E;,q} starting with Eg,q = C)p,4 and

Ipo _ Fp Tot(C)p+q
P4 Py Tot(Cpig

Link to Diagram

Recall that d), : £, — E,,_, (going r columns to the left, where we’ve suppressed ¢) is the map
induced from d : Tot(C),, — Tot(C),—1. So for r = 0, we have dg’q : Eg,q — qu_l. But the
left-hand side is C), ; and the right-hand side is C}, 41, so it’s perhaps not surprising that this
coincides with the original d” from C, ..

Thus ! E;q = HJ(Cp+) by taking homology in the vertical direction. For the differential, we
want d}gq : E;q — E;_l,q, and these will just be the maps induced on the vertical homology by
d". So we write IEiq = HZ}}HZIJ(C**).
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If C is a first quadrant complex, the filtration is canonically bounded since F_; Tot(C) = 0
and F,, Tot(C),, = Tot(C),. So we get the spectral sequence that we started constructing in
section 5.1, and we now know it converges to H, Tot(C') by the classical convergence theorem.
So

'E2, = H}H!(C) = HpyqTot(C).

Remark 29.1.3: We can say something about the unbounded case. Suppose C' is 4th quadrant,
then F_; Tot(C) = 0, so the first filtration F' is bounded below. The diagonals are infinite, so we

N

take Tot(C) := Tot®(C). Every element of (Tot(C)),, lives in @ Cpn—p for some finite N and the
p=0

filtration is exhaustive, i.e. Tot® C' = U E, Tot® C. A version of the classical convergence theorem

p=>0
will yield

"B}, = HpyqTot® C.

However, this will not hold for Tot™.

Remark 29.1.4: Next time: a second filtration and its spectral sequence, and how to play them
off of each other.

30 ‘ Friday, March 26

30.1 5.6: Two Spectral Sequences on Total
Complexes

Remark 30.1.1: Recall that we had two filtrations on a total complex: the first was fixing
a vertical line and replacing everything to the right with zeros, which was given by ! qu =

F,(Tot)/F,_1(Tot) = C,,. Taking homology with the vertical differentials yielded ? E;’q = H;(Cpx),
and ! Eg’q = H;LHZI’ (Cy«). Applying the classical convergence theorem when this is 1st quadrant
yields some spectral sequence with these as the pages which converges to Hp4(Tot(C)).

Definition 30.1.2 (The second filtration)
We'll define a filtration by rows: let I/ F), Tot(C) be the total complex of the double complex

C <
(TrenClpa=1,"" "7
B 0 p,q > n.

This is the complex gotten by replacing everything below the nth row with zeros. We define
the Oth page

Mgo _ T E, Tot(C)pq
Pa B, 1 Tot(Cpiq

= Cq,pv

Friday, March 26 117

P



Friday, March 26

which follows from the fact that we are modding out a full diagonal by a diagonal with one
fewer elements:

Link to Diagram

&Warning 30.1.3
Note the switched order! A

Remark 30.1.4: Note that the differential is
0. 170 0
d-: Ep,q — Ep,q—l
=d":Cup— Cy1yp

We similarly have 71 Eziq =H C}; (Cxp), again noting the switched indices, with differential

d':E,,—E, .,
= Hh(cq,p) — Hh(c*,pfl)

which comes from the original differential inducing a map on horizontal homology. Then 7 Eiq =
HYH}(C). -

Remark 30.1.5: Note that transposing everything about the line p = g interchanges filtrations
and II, and thus the two spectral sequences Epg = i E, p. Using that first quadrant sequences
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are canonically bounded, we can apply the classical convergence theorem to '/ E to obtain

HE? = Hyg(Tot(C)).
Transposing sends QIV to QII and thus 'E = H, 1, Tot®(C). Note that this does not guarantee
anything about Tot™(C).

Remark 30.1.6: In particular, if we have a QI double complex, both filtrations converge to the
homology of the total complex.

- 30.2 Application: Balancing Tor ~

Remark 30.2.1: Our proof in 2.7 that Torf(A, B) could be computed either by a projective
resolution P, — A or a projective resolution @, — B was a disguised spectral sequence argument.
So we’ll go recover it using the actual spectral sequence.

Remark 30.2.2: We have a Q)1 double complex C given by Cp, ;= (P ® Q)pq = Pp ® Qq, and we
now have two spectral sequences converging to H,(Tot(P ® @)). Taking the first filtration, we can
write

Hg(TOt(C)) = Hy(Pp, ® Qq) = P, ® Hy(Q).

Using that P is an exact complex, and noting that we delete the augmentation when taking
homology, we have

v 0 q>0
HY (Tot(C)) = {P g
» @B q=0.

Thus

meaning that this collapses at E? and we have

Hy(Tot(P ® Q)) = Ly(— ® B)(A) := Tor}}(A, B).

Now consider taking the second filtration, which yields

A®Qp qg=20

"By = Hy(Py @ Qp) = Hy(P.) © Qp = {0 o0,

The second pages comes from taking the vertical homology, so

H)(A®Q) q¢=0
II h
Egﬁq:H;Hq(Pq@)Qp):{op ¢>0.
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which is L,(A ® —)(B) in ¢ = 0. Since HEz,q = Hpy(Tot(P ® Q)) = L,(— ® B)(A), and we thus
have

L,(A® —)(B) = L,(— ® B)(4).

Remark 30.2.3: See the this section of Weibel for other applications in the exercises: the Kunneth
formula, the Universal Coefficient Theorem, and the Acyclic Assembly Lemma.

— 30.3 Hypercohomology ~

Remark 30.3.1: We’d like to compute derived functors acting on chain complexes instead of just
objects.

Definition 30.3.2 (Cartan-Eilenberg Resolutions)

Let A be an abelian category with enough projectives and let A, € Ch(A). A (left) Cartan-
Eilenberg resolution (a CE resolution) P, , of A, is an upper half-plane complex (so P, 4 = 0
when ¢ < 0) of projective objects and an augmentation chain map P; o =5 A, such that

1. If A, = 0 then the entire column P, , is zero.

2. The augmentation induces maps on boundaries and in homology which are projective
resolutions in A:

By(P,d") 25, B,(4)
Hy(P,d") 2%, g (4).
Remark 30.3.3: So we have the following situation
q: o Ppiag Ppyg FPp14q ¢
e By Py Pypqg &——— -
e Dy Bpo Bp10 ¢
Apq A, Ap g ¢— -
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Link to Diagram

The situation in row g will be:

D — PP+1,Q Pp,q £ Pp—l,q -
Zp(P,d")
H,(P,d")
p ) q
BP(P7 dh)

Link to Diagram

Here when we take the homology of the complex along the rows p, we’ll obtain

ZP(Pv dh)q

hy _
HQ(P7d )_ Bp(P,dh)q7

and since the induces maps preserve cycles and boundaries, we get induced maps on homology.

Exercise 5.7.1 shows that P, . < A, will be a projective resolution in A and so Z,(P,d"). — Z,(A). =

Lemma 30.3.4(?).
Every A, has a CE resolution P; 5 A

Proof (?).
Choose a levelwise resolution and use the horseshoe lemma:

0 ——— By(A) ——— Z,(A) ———— Hp(A) — 0

Link to Diagram
Recall that this involved a direct sum construction. Now do a similar thing for the following

SES:
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0 — Zp(A) Ap & Bp1(4) ——— 0
0— PpZ’* 7777777777777 > Ppt ***** A ’ PZEL* — 0

Link to Diagram

We use the fact that we have the two side resolutions from the previous step. So set P, ; := P;}q
assembled into a double complex using the sign trick: d” = (—1)’d where we used the
differential d from P}f*. We can now define

h.pA  dor1 B z A
d" : Pp+1,* — Ppy* — Ppy* — PW.

One then checks that By,(¢) and Hp(e) are indeed projective resolutions.

31 ‘ Monday, March 29

— 31.1 Maps of Double Complexes ~

Remark 31.1.1: Last time: we talked about hypercohomology. We're doing this so we can set up
a Grothendieck spectral sequence. A

Definition 31.1.2 (Chain homotopies of double complexes)

Let f,g : D — E be two maps between double complexes. A chain homotopy from f to
g consists of s;"q : Dpq = Ept1,4 and s, 2 Dy g — Ep g4 for all p, g satisfying the following
conditions:

1. All of the possible maps D, , — E,, summed should be equal to g — f, ie. g — f =
(d"s" 4 shd") + (d¥s” + sVd):
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Link to Diagram

2. The two rectangles below should be zero, i.e. s'd" + d"s® = 0 = s"d” + d¥s":

Ep_1g41 <—d" Epq+1

Link to Diagram

Remark 31.1.3: The definition is set up so that s" 4 s* : Tot(D), — Tot(E),;1 is a chain
homotopy Tot®(D) — Tot?(E).

Remark 31.1.4: Exercises 5.7.2 and 5.7.3 show:

1. If f: A— B is a chain map and P — A,Q — B are CE resolutions, then there is a map of
double complexes f : P — @ lifting f.

2. If f,g : A — B are chain homotopic, then f,§ are chain homotopic in the sense just defined.
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3. Any two CE resolutions P, P’ of A are chain homotopy equivalent, as are Tot®(F(P)) and
Tot®(F(P")) for any additive functor F.

Remark 31.1.5: This last remark shouldn’t be too hard to believe: chain homotopies are defined
in terms of addition.

— 31.2 Hypercohomology ~

Definition 31.2.1 (Hyper Left-Derived Functors)

Let F' : A — B be a right-exact functor where .4 has enough projectives and B is cocomplete
(closed under direct sums/coproducts). If A € Ch(A) is a chain complex and P — A a CE
resolution, define

If f: A— B is a chain map in Ch(A) and f : P — Q where P, Q are CE resolutions of A, B
resp., define L; F'(f) to be the map

H; Tot(Ff) — L;F(B).
This yields a functor

the hyper left-derived functor of F'.

Remark 31.2.2: Recall that chain homotopy yields a notion of equivalence, and chain homotopic
maps induce the same map on homology. The same is true for double complexes. There is a lemma
that shows a SES of double complexes induces a LES in homology.

Proposition 31.2.3 (Convergence of spectral sequences and filtration comparison).

a. There is always a convergent spectral sequence

B2 (LyF)(Hy(A) = Ly F(A).

b. If A is bounded below complex, so there exists a py such that A, = 0 for p < pg, then
there is another spectral sequence

'E2 = HyLyF(A) = Ly F(A).

Proof (of (a)).

These are the spectral sequences associated to the upper half-plane double complex F'P ..
Recall that "'E> = HYH}(FP) = HyqTot® FP := L, F(A). The filtration by rows is
exhaustive since we are taking the direct sum, so any cycle or boundary is supported in some

31.2 Hypercohomology 124



I Monday, March 29

finite row. So what we want to show is that
g2 (LyF)(H,A) = HLH}(FP).

The main claim is the following: H;L(FP) = FH;L(P).
Fix a row p of the double complex so we can drop p and A from the notation. We have the
following situation:

d d d d
—2 P, P, Py

By

Link to Diagram
We have a SES

0—By—Z;— Hy— 0,
which induces a LES

.—— Ly,FH, ——— L, FH,

FBy—— FZ; —— FH, ——— 0

Link to Diagram

We have L1 F'H, = 0, since in the CE resolution we assume that H,(P, d") is projective.
The second SES we have is

0 Z, - P, % B,y

inducing the LES

s — LQFPq - LlFqul
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Link to Diagram
Here L;FB,_1 = 0 since B),_4(P, d" ) was projective. Putting these together, we have

ket F'd: FPy — FP,_, _ FZ
Hy(FP) = s 1= o 1 = FH (P..).
FP) =30 Fa FP,y1 —» FP, ~ FB, a(Per)

Now what is its vertical homology? The map Hy(Ps ) — Hy(A) is a projective resolution,
so apply F' to the source — it’s no longer exact, and you get F'H,(P) from above, and taking
homology yields the left-derived functors applied to the source. Thus

HYFH](P) = LyF(H,y(A)),

and the left-hand side is equal to H;,’H;L(FP).

Exercise 31.2.4 (Prove (b))
Prove part (b) of the proposition.

Remark 31.2.5: There is a cohomology variant of this: everything dualizes to R'F (A) for a left
exact functor F' : A — B where A € Ch(A), A has enough injectives, and B is complete. Using a
right CE resolution I** of injective objects in A yields an upper half-plane complex with A* — 1*°
such that the induces maps on cohomology are themselves injective resolutions of BP(A*) and
HP(A"). In this case

RIF(A*) = H' Tot™! F(I*7).

We can prove dual version of all of the results about left hyper-derived functors, although there are
some slight convergence issues to worry about due to the direct product.

32 ‘ Wednesday, March 31

Remark 32.0.1: Last time we talked about hypercohomology and hyper derived functors, and we
proved that two spectra sequences converging to L, ,F'(A).

— 32.1 Grothendieck Spectral Sequences ~

Remark 32.1.1: We'll focus on the cohomological version, which gives a spectral sequence from a
composition of functors. Let A, B,C be abelian categories with enough injectives, and let G : A — B,
F : B — C be left exact functors. By a previous result, F'G : A — C is left exact, which follows from
checking that it preserves 4-term exact sequences. Recall that B € B is F-acyclic if R*F(B) = 0
for all ¢ > 0.
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Theorem 32.1.2 (Grothendieck Spectral Sequence).
Assume the above setup, and that G sends injectives in A to F-acyclic objects in B. Then
there is a convergent QI spectral sequence for each A € A:

EPY = (RPF)(R'G)(A) = RPTI(FG)(A).
The edge maps are the natural maps
(RPF)(GA) — RP(FG)(A)
RI(FG)(A) — F(RIG(A)).

The exact sequences of the low-degree terms are

0= (R'F)(GA) = R (FG)(A) = F(R'G(A)) = (R'F)(GA) = R (FG)(A).

Proof (?).

Choose an injective resolution A — I in A and apply G to form the cochain complex G (I) e B.
Using a first quadrant CE resolution of G(I), form the hyper right-derived functors R*F(G([)).
We have the two spectral sequences that converge to this, since the complex is bounded below:

IEP? — HPRIF(GI) = (RPTIF)(GI).

By hypothesis I? is injective in .4, and thus G(I?) is F-acyclic in B, so this spectral sequence
collapses onto the horizontal axis at the 2nd page. So (RPF)(GI) = HP(FG(I)), which is
by definition RP(FG)(A), and this holds for all p > 0. This follows because only one term
survives on each diagonal, and the associated graded is just to those terms, so it lifts to just
being the actual homology.

The second spectral sequence converges to the same thing, and so by reindexing the previous
limiting term p — p + ¢, we can write

Hppd — (RPF)(HY(GI)) = RPY(FG)(A).

But this is (RPF)(RYG)(A) by definition.
By example 5.2.6, the edge maps from the p-axis are

P;0 p,0 P
BT — BYS — HP,

and composing these yields (RPF)(GA) — RP(FG)(A). We also have H? —» EPY s EJ,
|

Remark 32.1.3: We're skipping the section on sheaf cohomology and 5.9, so we’ll move into
chapter 6. e

32.2 6.8: The Lyndon-Hochschild-Serre
Spectral Sequence
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Remark 32.2.1: Let H < G and A € G-Mod, then Ay, A7 € G/H-Mod. The canonical projection
p: G — G/H induces a forgetful functor p* : G/H-Mod — G-Mod given by pullback. Note that
G /H-modules are essentially G-modules where H acts trivially, so this functor forgets the trivial
H action. Generally, this works a bit like the Frobenius map, which yields a representation that
can be pulled back.

Lemma 32.2.2(?).
The invariant functor (—)g has a left adjoint and the coinvariant functor (—)” has a right
adjoint.

Proof (?).

A G/H-module is a G-module with a trivial H action, so both Ag, AH are G /H-modules.
One needs to check that although H preserves these submodules, so does GG. The universal
property of A7 < A as the largest trivial submodule and A — Ap as the largest trivial
quotient imply that there are natural isomorphisms: for A € G-Mod and B € G/H-Mod,

Hom(p*B,A) = H AR
om(p*B, A) — G(;gl(B, )
f=f
which is well-defined since f(b) = f(hb) = hf(b) = f(b), putting f(b) € A¥. We also have
Hom(A, p B) = Hom(Ax, B)
(f:A5 ag L B) i f,

and these give the required adjunction.

Theorem 32.2.3 (Lyndon-Hochschild-Serre Spectral Sequence).
Let H < G for A € G-Mod, then there are two QI spectral sequences:

E},=Hy(G/H,Hy(H, A))
EY? = HP(G/H,HY(H, A)).
Remark 32.2.4: Note that we can identify the functors
()7, (=)n : G-Mod — G/H-Mod,

whose derived functors are group homology/cohomology. The idea will be that G-invariants can be
written as a composition of other functors, and we can apply the Grothendieck spectral sequence
construction.
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33.1 Review: The Lyndon-Hochschild-Serre
Spectral Sequence

Remark 33.1.1: We're trying to prove the Lyndon-Hochschild-Serre spectral sequence for H I G.

Lemma 33.1.2(?).
Let H < G and A € G-Mod with

G

G
Then Ap, A are in H_MOd and (—)¥ (respectively (—)p) are right (respectively left) adjoin
to

o7 %—Mod — G-Mod.

Theorem 33.1.3 (Lyndon-Hochschild-Serre Spectral Sequence).
Let H < G and A € G-Mod, then there exist two ()1 spectral sequences:

G
Eg,q =H, (ﬁv H,(H; A)) = Hpiq(G; A)
EP? = HP (%,Hq(H;A)) = HPTI(G; A).

Proof (?).
We want to write this as a composition of functors:

N\H
G-Mod — =, G/H-Mod

(_;\G\\\\\ I/()g

\/\
Ab

Link to Diagram
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We can write

(AEG/H — {aeA‘ha:theH}

{aGAnga:aVLZ]GG/H}

{ EA‘a—aneG}
AC

By the lemma, (=) is right adjoint to p¥, which is exact. By prop 2.3.10, it sends injectives

G
to injectives, and injectives are F-acyclic for F'(—) = (—)#. So this is a valid setup for the
Grothendieck spectral sequence.
|

33.2 Application: Bootstrapping Homology
of Cyclic Groups

Example 33.2.1(?): Let C,, be cyclic of order m, and suppose we have the results from section
6.2:

1. If m is odd,
Z qg=20
Hy(Cn;Z) = {Z/m q odd
0 q even.

2. If H < Z(G) and A is a trivial G-module, then G/H ~ H,(H; A) trivially as well. *

3. If A is a trivial Co-module and let x2: A — A be multiplication, then

Hp(CQ; A) = COkeI‘(X2) = A/2A P odd
ker(xs) = {a €A ‘ 2a = O} p even.

Note that the previous fact was a special case of multiplication by m.

Using the SES
0— C,, — Oy = Cy — 0,
we can use the LHS spectral sequence to compute
E} = Hp(Co; Hy(Crp3 Z)) = Hpiq(Cam: Z).
Let A = Hy(Cy,;Z), then by fact (2) we’ll get a trivial Co-module, and we can then use fact (3).

“Note that this can be phrased in terms of the image of the functor lying in trivial modules.
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e For ¢ = 0 we have

E} o = Hy(Cy; Z)

Y/ p=0
=47Z/2 podd by (3).
0 p even

e For p = 0 we have

Eg,q Hq(cm>Z)

Z p=
=q7Z/m podd
0 p even.

o For ¢ > 0 odd and p > 0 odd, note that Z/m X2 Z/m is a bijection for odd m, so

Z/m _0
27/m

Ez’q = Hy(C2;Z/m) =0 since

e For ¢ > 0 odd and p > 0 even,

E} = Hp(Cy; Z/m) = 0.

e For ¢ > 0 even and p > 0,

Hy(Cr;Z) =0 = E., =0.

Thus the E5 page of the LHS spectral sequence looks like the following, where there is only one
possible nontrivial differential which is forced to be zero:
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q
?

5 Z/m . B

3 Z/m o . o

: Ce e

1 Z/m . . . . .

0 Z Z)2 . Z)2 . Z/)2 .

B
: 0 1 2 3 4 5

Link to Diagram

Note that each diagonal only has (at most) two nonzero terms along the axes, and so we’ll get a
2-term filtration. Recall that in general we get {F;H,};~, where F<_1H, = 0 and F>, H, = H,.
Here Eg5, comes from F_1, Fy and E5Y, comes from F,_1, Fy,. So we have

Ho(Com;Z) =Z
H,(Cam;Z) =0 for n even.

For n odd, we get a SES
0—Z/m — Hy(Com;Z) — Z/2 — 0.

Letting B € Ab be the middle term, its order is 2m, the product of the two outer elements. By
Cauchy’s theorem, since 2 ] #B, there is an element y € B of order 2. So send the generator of Z/2
to y to form the splitting. Thus

B2Z/m®ZL/2=Z/m x7Z/2=7/2m,

33.2 Application: Bootstrapping Homology of Cyclic Groups 132


https://q.uiver.app/?q=

I Friday, April 02

where we’ve now used the ged(2,m) = 1. So

Z n=2>0
H,(Com;Z) = { Z/2m n even
0 n odd.

Question 33.2.2

Can you get the group homology of any cyclic group this way? Similar formulas likely hold, see
section 6.2.

" 33.3 Restriction and Inflation ~

Remark 33.3.1: The exact sequence of low degree terms in the cohomological LHS spectral
sequence are of the form

0 Hl (G/H, AH) inflation Hl (G, A) restriction Hl (H, A)

d2

H?(G/H; APy nflation - 2. 4)

Link to Diagram

Note that these maps have particular name, inflation and restriction.

Remark 33.3.2: We thought of homology as a functor of the module A, but here we see it’s
varying. Can this be thought of as a functor of the group instead?

Setup: let p: H — G be a group morphism, then recall that any G-module becomes an H-module
by composition with p, which yields an exact functor

p™ : G-Mod — H-Mod.

Letting A € G-Mod, set
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" 34.1 Restriction and Inflation ~

Definition 34.1.1 (Restriction and Corestriction)

Let p: H — G be a group morphism, this induces an exact functor p* : G-Mod — H-Mod. We
define

(4)
e S™(A) = H"(p*G; A)

These are all functors G-Mod — Z-Mod. As in section 2.1, H,, defines a homological -functor,
and since pf is exact, T, S, are homological é-functors as well. We have a map

AG = (PP AT
T°A — S°A.
and similarly

(P*A)m — Ag
S()A — T()A.

These maps on the Oth terms extend to morphisms of J-functors.
There thus exist two maps

res§ H*(G; A) — H*(G; p*A) restriction
cores H,(G; pPA) — H,(G; A) corestriction.

Remark 34.1.2: A special case is when H < G is a subgroup and p : H — @ is the inclusion.
Then we define a capital Res as

p* = Res% : G-Mod — H-Mod,
which is a restriction of the action to a subgroup and thus a type of forgetful functor.
Remark 34.1.3: Note that ZG is a free Z H-module with basis being any set of coset representatives,

thus any projective G-module restricts to a projective H-module, using the characterization of
projective modules as direct summands of free modules.
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Remark 34.1.4: Recall that

H,.(G; A) = Tor2%(z, A)
H,(G;A) = Extyo(Z, A).

We can compute both using a ZG-projective resolution P, — Z. This is also a ZH-projective
resolution, so we can use this to compute H*(H; —) and H,(H;—) as well. v

Fact 34.1.5

1. There’s a natural chain map induced by the forgetful functor:

B Hgm(P*,A) — H?Im(P JA).

2. There is an induced map
H*(B) : Ext(Z, A) — Exty(Z, A),
which is equal to the map
res : H*(G; A) — H*(H; A),
giving a way to calculate res from something just coming from restriction of functions.

3. There is a chain map

a:P.®zp A— P.®ZHP, ®zc A
pRa—pRa,

which induces

H(a) : Torf (7, A) — Tor¢(Z, A)
which is equal to

cores$ : Ho(H; A) — H,(G; A).

So this can be computed from tensor products.

Definition 34.1.6 (Inflation and Coinflation)
Now consider quotient groups instead: assume H < G and let p : G — G/H. By precomposing

G
with p, we get a map p° : ﬁ—Mod — G-Mod. Given a G-module, taking H invariants yields a

G/H-module, so H*(G/H; A ¢ E-Mod. We form the following composition:

* . H
H* (%,AH> res H*(G, AH) H*(G;—) (A" —A) H*(G, A)
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Link to Diagram
We’ll refer to this as inflation. We similarly define coinflation as the following composition:

H.(G;—)(A—-Aq)

H.(G; A) H(G: Ay) —o=_, H, (fl,AH)

Link to Diagram
Remark 34.1.7: When x = 0, we can write

inf : (AF)# — (AH)G - AC,

and note that this is exactly the functor composition we needed to get the LHS spectral sequence.
Similarly there is a LHS for homology, and an isomorphism

coinf : AG — (AH)G — (AH)Q
H
&
Remark 34.1.8: When A € H-Mod™V, Ay < A is the identity, so A = A = Ay. In this case
inf = res and coinf = cores. v
Remark 34.1.9: Back to the LHS spectral sequence, the five-term exact sequence yields
0— EX = HYT) - ESY & By g — HX(T),
which we can identify as
1 G H\ inf 1 res 1 G dy ) G H\ inf 2
0—H E;A — H (G;A) — H (H;A)# — H E;A — H*(G; A).
There is a similar story in homology with coinflation and corestriction. A~

34.2 Shapiro’s Lemma, Induced/Coinduced
Modules

Definition 34.2.1 (Induced and Coinduced Modules)
Let H < G and B € ZH-Mod. Define the induced G-module (or tensor-induced G-module)

Ind% (B) = ZG ®zu B € ZG-Mod.

This is a ZG-module with an action on the first tensor factor. Similarly define the coinduced
or hom-induced G-module.

colnd%(B) = Hom(ZG, B) € ZG-Mod.

Here the action is (g.f)(¢') = f(gq).
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Lemma 34.2.2 (Shapiro’s Lemma (Frobenius Reciprocity)).

H,(G;Ind$ B) = H,(H; B) (1)
H*(G;colnd® B) = H*(H; B) (2).

Remark 34.2.3: So this provides a way of computing homology on subgroups when the coefficients
are in these induced/coinduced modules. ~
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35.1 6.3: Shapiro’s Lemma, (co)Induced
Modules (cont)

Remark 35.1.1: Recall that we had two ways of inducing an H-module up to a G-module for
H < G a subgroup. In this case, we can take cohomology with coefficients in any B € ZH-Mod.
Shapiro’s lemma (or Frobenius Reciprocity) allowed compute homology and cohomology when the
coefficients are in induced or coinduced modules:

H,.(G;Ind$ B) = H,(H; B) (1)
H*(G;colnd® B) = H*(H; B) (2).

Proof (of Shapiro’s lemma).
Let P, — Z be a right ZG-projective resolution of Z. Since ZG is a free ZH module, these
are still projective over ZH. Then take

P, ®z6 (ZG ®zn B) = P, ®zu B.

The homology of the left-hand side computes Tor%G(Z, Indg B). On the other hand, we can
consider P, to be a projective resolution in ZH and thus the homology of the right-hand side
is Tor(Z, B), which is H,(H; B).

For (2), use the tensor-hom adjunction. *

“See proposition 2.6.3 in Weibel.

I Theorem 35.1.2(Adjoints of Restriction are Induction and Coinduction).
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For H < G, A € ZG-Mod, B € ZH-Mod,

Exts(IndY B, A) = Ext’ (B, Res% A) (1)
Ext(A, colnd$ B) = Extl(Res% A, B) (1).

Remark 35.1.3: Taking A = Z € ZG-Mod™", one gets result (2) in Shapiro’s lemma. This shows

that Ind is left adjoint to Res and colnd is right adjoint to it, so these will have derived functors.

A special case is when H = {1} is the trivial group, in which case any H-module B is an abelian

group such that B = B = By. So ()%, (=) are exact, and thus their higher derived functors
are zero, i.e. H,(H,B) =0= H"(H;B) for n > 0. Moreover

H,(G;ZG @7, B) = H™(G, Hom(ZG, B)) = {B n=0

Z 0 n>0.

Lemma 35.1.4(%).
If the index [G : H] (i.e. the number of left or right cosets) is finite, then

nd% B = colnd%, B € G-Mod.

Proof (?).
Let X be a set of left coset representatives for G/H, where we’ll take the convention that left
cosets are of the form gH. Then X is a free Mod-ZH-basis of ZG, so

Indf B=7ZG @ B= Pz B € Z-Mod.
zeX

How does g ~ x ® b for g € G? We have gx € yH for some y € X, so for some h € H we have
gx = gh.
We can then compute

gz ®b) =gx®Db
=yh®b
=y ® hb.

since h € ZH. Now X! = {x_l ‘ reX } is a set of coset representatives for H\G and hence
a left ZH-basis for ZG. We can thus write

Ind% B =~ Hom(ZG, B
colndf; Z%Im( G, B)

~H -1
lom (@ ZHzx ,B)
zeX
= |] Hom(zHz™", B) by exc. A.1.4
ZH
zeX

= H WI(A)7

zeX
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where each term is a copy of A. This follows because we can specify such a module hom
by specifying the image of a basis. So here for b € B, 7,(B) for a fixed = is the H-module
morphism ZG — B where 27 — b and z=! — 0 for z # .

How does G act on these homs? Using equation (77)

we have
ylg=ha,
and thus
(9 m®)™") = (T(0))(y™'9)

= (o (b)) (ha™")

= h(ma(b))(z7")

= hb,
and y~! is the only one that lights up for the G-action, i.e. (g - m.(b))(27') = 0 for y # 2, and
thus

g - 7z(b) = my(hb).
Thus we have a G-module map

Ind% B = colnd¥ B

PzeoB= P B

zeX zeX
x ® B my(b),

which is an isomorphism since

g-(x®b) =y hb— my(hb) = g - m5(b).

Corollary 35.1.5(%).
If G is a finite group, then for any A € G-Mod,

H>%(G;2G ®z A) = 0.

Proof (?).
We think of A as a module for the trivial subgroup, and so

H™(G;ZG ®z A) = HY(G,Ind§ A)

>~ H"(G; colnd{ A) by the lemma
= H"(1; A) by Shapiro’s lemma
—
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for n > 0, since these are the higher derived functors of taking fixed points, and everything is
fixed by 1.
[ |

— 35.2 Lie Algebra (Co)homology ~

Remark 35.2.1: Motivation and historical background: if G is a Lie group, G € Grp N Mfd(C°),
i.e. the group operations are smooth maps. Usually these are real manifolds, they were introduced
in the late 1800s by Sophus Lie who studied differential equations on such objects. Taking the
tangent space at the identity, we write g = T.G, which is a Lie Algebra. Lie showed that this is
isomorphic to the vector space of left G-invariant vector fields (1st order differential operators) on
G, which enjoys a bracket operation:

[(X,Y](f) = XY f) =Y (X[) fec™.

This turns out to again be a 1st order operator, despite looking like it might be 2nd order. This
led to the study of abstract Lie algebras.

36 Section 7.1: Lie Algebras (Friday, April
09)

" 36.1 Definitions ~

Definition 36.1.1 (k-algebras)
Let k € CRing, e.g. a field. An algebra over k is a k-module with a bilinear product A%? — A.

Remark 36.1.2: The product need not be associative, and A need not have 1, so A = 0 is an
algebra.

Definition 36.1.3 (Lie Algebra Definitions)
A Lie algebra g is a k-algebra whose product (denoted [—, —]) is called the Lie bracket,
which satisfies

1. [zz] =0 for all z € g, and skew-symmetry: [zy] = —[yz] for all z,y € g.
2. The Jacobi identity:

[zly2]] + [ylzz]] + [zlzy]] = 0 <= [z[yz]] = [[2y]z] = [y[=2]],

so the product behaves like a derivation.
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o There is an adjoint map ad, = [—, z] : gO.

o A (2-sided) ideal h < g is a k-submodule absorbing under the bracket, so [zh] € hVz €
g, h € b In particular, h < g is a subalgebra.

e A morphism p: g — ¢ of Lie algebras is a k-module map which preserves the bracket,

so [p(z)p(y)] = p([zy]), so we get a category Lie-Alg .
o If h O g, there is a quotient Lie algebra g/b consisting of additive coset = + b, and a
SES
0—-bh—>g—g/bhb—0.

o A Lie algebra g is abelian if [zy] = 0 for all z,y € g. Any k-module can be made into
an abelian Lie algebra by setting [zy] := 0.

o The derived subalgebra of g is [gg] < g, the k-submodule of g generated by all brackets
[zy]. The largest abelian quotient of g is given by g/[gg].

) 36.2 Examples ~

Example 36.2.1(?): Let A be any associative k-algebra, not necessarily with 1, and let g := Lie(A)
be the same k-module with a bracket defined as [zy] := 2y — yx. One can check that this satisfies
the Jacobi identity. So there is a functor

Lie : Alg ;. (Assoc) — Lie-Alg ..

In particular, for A € Alg,(Assoc) (e.g. A = k), the ring Mat(m x m; A) € Alg,(Assoc) and can
be mapped into Lie Algebras. We write

gl,,(A) := Lie(Mat(m x m; A)) = Lie(Eild(Am)),

and often omit notation to write gl,, := gl (k) where [zy] := xy — yx as the general linear Lie
algebra over A.

Example 36.2.2(Important special cases): Let A € Alg.(Assoc,Comm) be an associative
commutative k-algebra, then

o 50,,(A) is the special linear Lie algebra, which consists of all trace zero matrices in gl,,(A).
o+ 0,(A) is the orthogonal algebra of all skew-symmetric matrices, i.e. z* = —z.
e t;,(A) is the upper triangular matrices, so z;; = 0 if i > j.

o n,,(A) are the strictly upper triangular matrices.

e 0(A) are the diagonal matrices, so z;; = 0 if i # 3.0

®Note that this is referred to as h or sometimes t, since it’s the torus.
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Definition 36.2.3 (Derivation Algebras)
Let A € Alg;, not necessarily associative. A derivation D of A (or from A to A) is a k-module
endomorphism of A satisfying the Leibniz rule:

D(ab) = (Da)b+ a(Db) Va,b e A.

We write Der(A) < Eild(A) as the k-submodule of all derivations. One can check that [Dy, Ds]

is again a derivation for derivations D;, so Der(A) € Lie-Alg called the derivation algebra of

A.

Definition 36.2.4 (Nilpotent Algebras)
Let g € Lie-Alg, and define a decreasing sequence of ideals

=g, g'=[gg], 0":=]g

This yields the lower central series

@ DglD---2g"

J

and g is said to be nilpotent if g" = 0 for some n.

Example 36.2.5(?): For g := n,,(A) the strictly upper triangular matrices, we have x € g" <=
xij; = 0 unless j > i+ (n+1). So we get n + 1 diagonals of all zeros:

Definition 36.2.6 (Solvable Algebras)
Define

9@ =g, oW :=[g0g0] rtD) =gy,

which yields a decreasing sequence of ideals, the derived series,

39(0)2...

g is solvable if g(”) = 0 for some n.

Remark 36.2.7: Note that nilpotent implies solvable, since one can show by induction that g(”) C

n

g
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Example 36.2.8(%): For g = t,,(A) for A commutative, the diagonal of the product is the product
along the diagonals, so

. g(l) are matrices with zeros on the diagonal,
(2) are matrices with zeros on 2 diagonals,
(3) are matrices with zeros on 4 diagonals,

* g
g

and so on, so g is solvable. On the other hand, taking brackets with one diagonal of zeros doesn’t
introduce new zero diagonals, and g = g'. So g is not nilpotent, provided m > 2

Remark 36.2.9: Next time: g-modules.

37 | Monday, April 12

— 37.1 Lie Algebra Homology ~

Remark 37.1.1: Last time: Lie algebras. Fix a cocommutative ring k, usually a field, then a Lie
algebra g over k is a k-module with a bilinear product called the bracket such that

o [z2] =0, so [zy] = —[ya]
e The Jacobi identity holds.

Definition 37.1.2 (Modules over Lie algebras)
A left g-module M is a k-module with a k-bilinear product

-:g®kM—>M

TRXmMr=>x-m
which is compatible with the bracket in the following sense:
[zy]m = x(ym) — y(zm) Va,y € g,me M, (1)
i.e. there is a Lie algebra morphism g — gl(M) = Lie(Egd(M)), the Lie algebra of the

endomorphism algebra.

Example 37.1.3(Algebra Commutators): For A € Alg,(Assoc) and g € Lie(A), then any
M € A-Mod (so the action is associative) can be made into an M’ € g-Mod by the formula
equation (1).

Example 37.1.4(Adjoint Representations): Any Lie algebra g is a module over itself by the
adjoint representation, where ad,(—) = [z, —].
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Example 37.1.5(Trivial Modules): Any M € k-Mod becomes a trivial g-module by defining
xm = 0 for all x € g,m € M. Note that this is acting by zero instead of the identity: this is
motivated from Lie algebras obtained from Lie groups by taking tangent spaces at the identity. A
trivial group action on the elements would be the identity, but then taking its derivative acting on
tangent vectors to curves would be zero.

There is a unique trivial g-module, namely k with this trivial action.

Definition 37.1.6 (Morphisms of Lie algebra modules)

A morphism M i) N of g-modules is a morphism of k-modules commuting with the module
action, so f(xm) = z(fm) for x € g,m € M. This yields H(grn(M7 N) < H%m(M, N) as a

k-submodule.

Remark 37.1.7: This yields a category g-Mod < k-Mod which is a subcategory of k-modules, and
this is in fact an abelian category. So we have notions of (co)kernels, injectives and projectives, etc.
There is also a category Mod-g, but these can be sent to left g-modules by defining = - m = —mx
which makes g anticommutative. Thus there is an equivalence of categories

g-Mod = Mod-g,

and so we usually just refer to left modules.
Remark 37.1.8: We’ll want to take homology and cohomology. There are some relevant functors:

e The trivial module functor:
Triv : k-Mod — g-Mod,

which sends M to itself, adding the structure of a trivial g-action.

e g-invariants:
(—)? : g-Mod — k-Mod
Ml—)Mg::{azeM‘xm:0V:c€g}.

— This yields the largest g-trivial submodule, and similarly (—)? is right-adjoint to Triv.
Triy
k-Mod T g-Mod.
()9
— There is an isomorphism

evy : H(grn(k:,M) = M
[ f(L).

where k is the trivial g-module.
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e g-coinvariants:

(=)g : 9-Mod — k-Mod
M s M/gM.

— This is the largest g-trivial quotient of M, so this is left-adjoint to Triv:

—)8

g-Mod T k-Mod.
Triv

We might expect this is related to some tensor product,
but it may not be clear what ring one should tensor
over.

Remark 37.1.9: Assume that g-Mod has enough projectives, which we’ll see is true in a later
section by identifying this with a category R-Mod of modules over a ring.

Definition 37.1.10 (Cohomology of Lie algebras)
Define the (co)homology of g with coefficients in M as

Hy(g; M) = L(=)g(M)
H"(g; M) = R(—)%(M).

Example 37.1.11(%): If g = {0}, then M? = M = M, and these functors are exact (and are
essentially the identity) and thus their higher derived functors are zero. So H"(0;M) = 0 =
H,(0; M).

[

— 37.2 The Universal Enveloping Algebra

Remark 37.2.1: A better name might be the universal associative algebra. This plays an analogous
role to the group algebra ZG of a group. We’ll assign an associative algebra U(g) to g, and there
will be an equivalence of categories

g-Mod = U(g)-Mod,

where we’ll know that the latter has enough projectives and injectives, allowing us to compute
homology and cohomology with injective and projective resolutions.

Definition 37.2.2 (Tensor Algebra)
For k € CRing and M € k-Mod, and tensor algebra is defined as

T(M) = @M®k” =k® @M®k”.
i>0 n>1

Remark 37.2.3: Note that T'(M) € k-Mod by extending the k-action over sums and tensor products

in the obvious way, and in fact T(M) € gr (Alg;;) where tensors in different degrees are juxtaposed.
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Explicitly, for m € M®" and m’ € M®" | we write m @ m’ € M®"*") which is what it means to
be a graded algebra.

Remark 37.2.4: There is an inclusion map
M = M® <& T(M)y < T(M).
where T'(M); = @ M®" and in fact T(M) is generated as a k-algebra by «(M). For example, for
m,m’ € M, we h:xxzf]e t(m) @ o(m') € T(M)sy. This yields a functor
T : k-Mod — Alg ;. (Assoc, Unital),
as well as a forgetful functor
Forget : Alg ;. — k-Mod.

The pair (7,i) is a universal associative algebra in the following sense: if M € k-Mod and
A € Alg),(Assoc), then there is a k-module morphism M — Forget(A) making the following
diagram commute:

Link to Diagram

Note that the red portion of the diagram happens in k-Mod, while the blue portion is in Alg ;, so
this allows lifting module morphisms to algebra morphisms. Commuting here means that

f(m1)f(ma) = f(mima) = f(«(m1) @ v(my2)).
There is thus a natural isomorphism

Hom (M, Forget(A)) = Hom(T' (M), A).
k-Mod Alg /.

38 Universal Enveloping Algebras
(Wednesday, April 14)

Remark 38.0.1: Continuing section 7.3 on universal enveloping algebras.: Letting k& € CRing, g €

Lie-Alg 1., M € k-Mod, we defined the tensor algebra T'(M) == k & EB M®" € gr Alg /(Assoc, Unital)
i>1

and noted that it was universal for maps from M to k-algebras.
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Definition 38.0.2 (Universal Enveloping Algebra)
Let g € Lie-Alg;,, then define the universal enveloping algebra of g as

T(g) '
(zy— yz — [zy] \ z,y€g)

U(g) =

Remark 38.0.3: There is an injection k < U(g), so U(g) is unital. The relations guarantee that
there is a Lie algebra morphism ¢ : g — U(g). Note that we do not know if this is injective yet!
Thus there is a functor

U : Lie-Alg . — Alg .,
and it turns out that this is adjoint to the Lie functor.

Fact 38.0.4
There is an adjunction

BN
Lie-Alg —— Alg .
Lie

Thus for every f: g — Lie(A) for A € Alg;(Assoc), we have a commuting diagram

Link to Diagram

Thus there is a natural isomorphism

Hom (g, Lie(A)) = Hom(U(g), A).
Lie-Alg Alg/k,

Theorem 38.0.5(7).
There is an equivalence of categories

g-Mod = U(g)-Mod,

where we use the fact that #(g) has an underlying ring structure.

Concretely, if M € g-Mod and Hm, € U(g), then setting (z1---zp)m = z1(---x,m) (and
similarly for every i) for m € M makes m into a U(g)-module. Conversely, if M € U(g)-Mod,
we can set xm = t(x)m for € g to make M into a g-module.
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Proof (?).
Let M € k-Mod and set E := Egd(M) € Alg;,. Note that a g-module is a k-module M with a
morphism of Lie algebras g — Lie(E). Using the adjunction, we can map such a morphism to
f:U(g) — E, and by definition a U(g)-module is a k-module M with a k-algebra morphism
U(g) — Egd(M) =FE.

[ |

Corollary 38.0.6(7).
The category g-Mod has enough projectives and injectives.

Remark 38.0.7: We’ll now set up an analog of the augmentation for group algebras, € : ZG — Z.

Definition 38.0.8 (Augmentation Ideal for Lie Algebras)

There is a unique surjective morphism ¢ € Alg,,(U(g), k) where € o «(g) = 0. The kernel
I := kere is defined as the augmentation ideal, and is a two-sided ideal of U(g) generated
by «(g) and write gl (g) = U(g)g, i.e. those elements which contain at least one tensor factor.

Remark 38.0.9: We can identify the coinvariants:

k= U(g)/g=Ug)/sU(g) = Ug),

s
Corollary 38.0.10(?).
1. H.(g; M) = Tor'¥® (k, M),
Proof (?).
To show that two derived functors are isomorphic, it’s enough to show that their underlying
functors (the degree 0 parts) are isomorphic. Starting with (2), we observed that M9 =
Hom(k, M) = Hom(k, M).
g U(g)
For (1), we can write
k ey M = (48 M = M/IM = M/gM = M,
U(g) - T ®Z/l(g) - / = /g - [1§)
50 k ®y(g) (=) = (—)g-
|
Remark 38.0.11: So Lie algebra (co)homology is just a special case of the usual Tor and Ext
we've already looked at. We'll next find a basis for U(g): e

Theorem 38.0.12 (Poincaré-Birkhoff- Witt (PBW) Theorem).
Let g be free in k-Mod and fix a k-basis, so g € Vect/;,. Note that this makes ¢ : g — U(g)
an injection. Let {z4},c4 be a fixed totally ordered k-basis for g. If I = (a1,---,0ap) € AP,
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we’ll write monomials as xj = Zq, - - Ta, € U(g), where we’ll suppress writing ¢(zq,). We'll
say I is (weakly) increasing if a; < --- < o, € A. Noting that the empty sequence () € A is
increasing, set xy == 1 € U(g), and if I = (a) € A' is a single index, then we’ll write z,, € g
and ZT(a) € U(g).

Then if g € Lie-Alg;, is a free k-module, a k-basis for (g) is given by the monomials z; as I
ranges over finite increasing sequences from A.

Proof (?).
Omitted.
|

Remark 38.0.13: To at least see why these are a spanning set, suppose 5 > «. We can commute
elements:

TRTo = TaZg + [T5Ta).

However, note that the commutator here has lower degree (here, the other factors are degree 2 and
the commutator is degree 1). This decreases the number of misorders as well, so induction roughly
works. The fact that these are linearly independent is harder and uses some actual representation
theory. A

30 | Friday, April 16

— 39.1 The Enveloping Algebra (Continued) ~

Remark 39.1.1: Last time: the PBW theorem. Let g € Lie-Alg and free as a k-module with k-basis
{Za}qeca- Then U(g) has a k-basis {x7} where I = (aq,---, ) is a finite increasing sequence from
A

Example 39.1.2(%):If k is a field and dimj g is finite with basis {x1,---,z,}. Take I =

(L,---,1,2---,2,n---,n) where each i occurs a; times. Then a basis for U(g) is {x‘flng R i

Corollary 39.1.3(7?).
The map ¢ : g — U(g) is injective, so we can identify ¢(g) with g.

Proof (?).
The elements z(,) = t(z4) € U(g) are k-linearly independent.
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Corollary 39.1.4(?).
If h < g is a subalgebra and k is a field, then U(g) is free as a U(h)-module.

Proof (?).
Choose an ordered basis for b first and then extend this to an ordered basis for g — that one
can do this is a fact from linear algebra. Then the 1 where I = (aq,- - , o) is increasing and
no x,, € h will be a basis for U(g) over U(bh).
[ |
Example 39.1.5(%): If dimy g < co and {z1,- - ,x} is a basis for h and {z1, -+ , 2k, Tpt1 -, Tn}
is a basis for g, then the PBW basis is given by {:Uﬁ” ceafha x| ag > 0}. Then {xk+1}ak+1..,z?1n}
form a free left U (h)-module basis for U(g). e
Exercise 39.1.6 (?)
Some suggested exercises:
o 7.34
o 7.3.6
o 7.3.7 for working with ¢ (h) as a Hopf algebra.
o 7.3.9 for representations of Lie algebras in characteristic p.
— 39.2 H' for Lie Algebras (Weibel 7.4) ~
Remark 39.2.1: Recall that we have an augmentation ideal Z < U(h) and a SES
0—-Z—U(g) = k—0.
Applying the functor I—LI{(()r)n(—, M) for a fixed M € g-Mod yields a LES:
g
0 Hom(k, M Hom(U(g), M) ———— Hom(Z, M
fon (k, M) fon (t(g), M) fon (Z, M)

Ext}y ) (k, M) = H*(g; M) ——— Extl (U(a). M) =0

Link to Diagram

Here the red term vanishes since U(g) is free and this projective as a g-module. Note that for n > 2,
we have the following situation:
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Extyy o U(g), M) = 0 ————— Ext; (T, M)

U(g)

Extyy g (k, M) = H'(g; M) ———— Extjy (U(g), M) =0

Link to Diagram

Thus we get a degree shifting isomorphism

H"(g; M) = Extyy (T, M).

Remark 39.2.2: We thus have

L(g; = Hom im om = om .
H(g,M)—Ij{(g)(IaM)/ (PLI[(E)(U(Q%M) M —H (I,M)>

Next goal: to more concretely express all of the terms here as M-valued derivations on g.

Definition 39.2.3 (Derivations of an algebra)
Let M € g-Mod, then a derivation from g into M is a k-linear map D : g — M satisfying
the Leibniz rule:

D([zy]) =z - (Dy) —y - (Dx) T,y € g.

Remark 39.2.4: The set of all such maps Der(g, M) <k-Mod kH’ané(g,M) is a k-submodule. A
—IVlo

special case is taking M = g, regarded as a g-module using the adjoint representation. In fact, for
any k-algebra (not necessarily associative), we get

D(ab) = (Da) - b+ a- (Db).
When A := g € Lie-Alg with the adjoint action, we obtain

D([zy]) = [z, Dy] + [Dz,y]
= [any] - [wax]
=x-Dy—y-(Dx),

recovering the previous definition.

Definition 39.2.5 (Inner Derivations)
For M € g-Mod, fix an m € M. We then define

Dp:g— M

T = T -m.
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Any derivation of this form is said to be an inner derivation, and this yields a k-submodule
Inn(g, M) Sk—Mod Der(g, M)
Remark 39.2.6: Note that this is indeed a derivation:

Dp([zy)][zy] - m=z-(y-m) —y-(x-m) =2 (Dpy) —y - (Dpnz).

It also turns out that any inner derivation is of this form, bracketing against a fixed element.

Proposition 39.2.7(?).

Hom(Z, M) = Der(g, M).
g-Mod

Proof (?).

Claim: There exists such a map.
Say ¢ € H%m(I, M) and set

D,:g— M
z — p(x).
Then D, is a derivation, so we have
Dy ([zy]) = o([y])
= p(zy — yz)
= zp(y) — yp(z) since ¢ is g-linear

= chp(y) - yD(p(:L').

Claim: This map is a natural isomorphism, in the sense that it doesn’t depend on any
choices:

Hgm(I, M) — Der(g, M)

@+ Dy.
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Proof (of surjectivity).
Recall that we can write Z = U(g) g, so the following product map is a surjection:

0:U(g) @rg—>U@g=T
TRY — TY.

One checks that the kernel is given by
ker(0) = {u® [zy] — (uz @y — uy ® x) ‘ z,Y € g,u EU(g)}.
Now given D € Der(g, M), consider the map

fU(g) @g— M
flu®z) =wu- Dzx.

One can compute the following, using that D is a derivation:

flu@zy] —uz @y —uy @ x) = uD([zy]) - (uz) - D(y) + (uy) - D(z)
=u(x-Dy—y-Dzx)—u-(z-Dy)+u-(y- D)
=0.

So f induces a well-defined morphism of g-modules, and descends to a map
p:U(gg=1— M,

which is clearly also a morphism of g-modules. So ¢ € H(gm(I7 M) and D, (z) = p(z) =

o(1-z)=f(1-2)=1-Dx = Dz, and so D = D,,.
]

Proof (of injectivity).
Suppose over D that we have D, for some 1) € H(gm(I , M). We then have

o(uz) =uD(x) = u¥(x) = ¥(ux) Yu € U(g),z € g.

Since Z = U(g) g and ¢ = ¥, yielding a 1-to-1 map.
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40 ‘ Lie Algebra Cohomology (Monday, April
19)

— 40.1 Identification of H' as Derivations ~

Remark 40.1.1: Let g € Lie-Alg/;, and M € g-Mod, we were showing

Homg—Mod (Iv M)

H'(g; M) = :
! im (Homy(g)(U(g), M) — Homy(Z, M))

where the source in the denominator is isomorphic to M, given by the map evi. We found a map
H(;m(l', M) = Der(g, M)
p = Dy x = p(2)).
We also defined inner derivations as those given by maps D, (z) := maz for some m € M.

Theorem 40.1.2(?).

Proof (?).

In the formula, we already know that the numerator is isomorphic to Der(g, M), so it remains
to look at the denominator. The map appearing there is restriction to Z, i.e. ¢ — ¢|;. The
associated derivation is given by

Dy(z) = ¢(z) = @(z - 1) = z¢(1) = xm = Dp(z),
and so D, = D,,. Conversely, given an m, we get a derivation D,,, and thus the image is

precisely all inner derivations.

|
s 40.2 LHS Spectral Sequences ~

Remark 40.2.1: If h < g, there is a SES in Lie-Alg:

0—=bh—>g—g/h—0.
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Theorem 40.2.2(LHS Spectral Sequence).
Let h < g and M € g-Mod, then there are first quadrant spectral sequences

E}, = Hpy(g/b; Hy(h; M)) = Hpyq(g; M)

Remark 40.2.3: This comes from a similar application of the Grothendieck spectral sequence. The
exact sequences in low-degree terms are given as usual® and similar inflation and restriction maps
appear here. This is useful because it allows computing homology of “smaller” algebras, which one
might have control over by induction.

40.2.1 7.7: Chevalley-Eilenberg (Koszul) Complex

Remark 40.2.4: A computationally efficient way of compute Lie algebra cohomology using a

projective resolution of the trivial g-module k € g-Mod, recalling that this involves acting by zero.
7

We’re going to define a chain complex
Vi(g) =k,

which will turn out to be supported in finitely many degrees when dimy g < oo.

Remark 40.2.5: We'll assume g € Lie-Alg ;,(Free), which happens e.g. if k € Field. Recall that the
exterior algebra was a graded algebra defined as the quotient of the tensor algebras:

L E—.y

<x®2 ’ = g> p>0

*
We write 1 Axa A --- Az, for the image of g — /\ g Note that this is a 2-sided homogeneous ideal,
and since x Az =0 we have z Ay = —y A z.

P
Remark 40.2.6: If {z,} is an ordered basis for g, then there is an ordered basis for /\ g

{xalaxa%"'al'ap 061<"'<04p}7

where we note that the indices are strictly increasing like the sequences I we had previously. One

can always arrange this by commuting things to organize the sequence properly. We also have
0 1 P

/\g = k with a basis of 1, and /\g = g. In particular, if dimg = n < oo, then /\g = 0 for all

n
p > n, and in this case /\g = k.

See Weibel p.233.
"See VIGRE project at UGA: programmed this resolution in GAP to compute Lie algebra cohomology!
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Definition 40.2.7 (The Chevalley-Eilenberg (or Koszul) Complex)
Define

where the maps are given below.

Fact 40.2.8

Vp(g) is free in U(g)-Mod, since we’ve constructed a free basis, and so in particular it is projective.
The maps in the complex are given by the following:

IT=%kere=U(g)g

U(g)
V,(g) & V,_1(a) » Vi(g) o Vo(g) -
p p—1
Ulg) & Ao —2— Ug) @k N\ g U(g) @x g & U(g)
u®/\l‘ij% 01 + 0 UR T ux

Link to Diagram

Here we define

p

01 ::ZUCEi@xl/\xQ/\"'/\@/\"'/\Z'p
i=1
p . .

0 ::Z(—l)”‘yu@[:ci:nj]®1:1/\acg/\---/\fi/\---/\@/\---/\xp,
1<J

where the hat denotes omitting a term. Note that imdy; = U(g) g = Z = kere, so we get exactness
at the first position, and exercise 7.7.1 shows that d? = 0.
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I Exactness of the Chevalley-Eilenberg Resolution (Wednesday, April 21)

Example 40.2.9(?): For p = 2, we have

du@z®y)=(ur®y—uy )+ (—u® [zy]).

o
Remark 40.2.10: We want this to be a projective resolution, so not just that ker C im, but rather
we want exactness everywhere so ker = im. We’ll proceed by showing its homology vanishes. Ve
Theorem 40.2.11 (Koszul Resolution).
The Koszul complex V,(g) =+ k is a projective resolution in g-Mod.
Proof (of theorem).
Choose an ordered basis {eq},cq, Where 2 some totally ordered index set, for g over k. By
the PBW theorem, V,, :== V,,(g) has a free k-basis given by
er ® (eq, @ €q,) - (2)
for I = [p1, -, Bm) some weakly increasing sequence from 2. This gives a filtration, so we're
heading toward using the spectral sequence of a filtered complex. The filtered pieces are given
by F,V,, defined as the k-module generated by elements of the form given in equation (2)
where m + n < p. Looking at the formula for d, we will get a differential
dnFp Vi, — FpVn1.
|
4 1 Exactness of the Chevalley-Eilenberg
Resolution (Wednesday, April 21)
Remark 41.0.1: Recall that g was free over k£ with an ordered basis {ea ’ o€ Q} We defined
n
Va(g) =U(g) @k /\ 0
with a differential d = 61 + fy. We claimed that Vj,(g) = k is a projective resolution, and we were
showing that V, was an exact complex. Vs

Proof (of theorem, continued).
We define a filtration

FVy 1:k<61®€a1/\"'/\6an

12[61352)"' 7ﬁm]7a1§"'§an)m+n§p>~

Note that d : F,V,, — F,V,_1, and in fact 6 maps into F,_1V,,—1. We’ll focus on 60; for
simplicity. It lands in the same complex since we can rearrange elements in the sum defining
the differential to express everything in terms of the given basis, where every expression will

Exactness of the Chevalley-Eilenberg Resolution (Wednesday, April 21) 157



Exactness of the Chevalley-Eilenberg Resolution (Wednesday, April 21)

be of length one less. The commutation relation was
egeq = €a€p + [egeql,

where the left-hand side is degree 2, and the right-hand side is a degree 2 term plus a degree
1 term. Moreover d preserves the filtration: when rearranging, the degree u term in 6; will
decrease to m—1, the expression following it may increase to n+1, and (m—1)+(n+1) = m+n.
So F,V, is a subcomplex of V,, and we have

0=F. 1V, CRV.C---C RV CVi= ] KRV,

p=>0

which is not a finite filtration, but is bounded below and exhaustive. So by the canonical
convergence theorem (Weibel 5.5.1), there is a convergent spectral sequence

o _ FpVorg

= = H. Vi .
P,q Fy1Viiq p+q( (9))

We have Equ = 0 unless

e p > 0, since the exterior algebra is only graded in positive degrees.
e ptqg=n2=20

e ¢ < 0, which requires some explanation. We have m+n < p,andsoif p+g=n<p—-m
form>0,qg<-m<0.

So this is a 4th quadrant spectral sequence that is supported above the line y = —z. Recall
that E) , = H.(E).).
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Link to Diagram
Note that

EY = FVo/F_1Vo=k®, k 2k,

since we take expressions with length zero in each factor defining F},V,,. Moreover this position
is already stable provided the E;’O = 0 for all p, the first and third quadrants are all zeros,

and thus all differentials will be trivial from E'! onward.

Claim: For p > 0, Eg’* is exact, and thus the spectral sequence collapses at E*.
Note that turning the page yields

P 0 else.

g _{k (p,q) = (0,0)

Thus H,(Vi(g)) = k in n = 0 and zero elsewhere, which proves the result.
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Proof (Sketch).
For ¢ > 0, define A, .=k <el ‘ I=[p1,B2, 04 increasing> CU(g). So A, is the gth
graded piece of the standard increasing filtration by degree,

k=UyCU C--- CU(g).

Note that this is a section standard filtration of U(g) by degree with respect to the PBW
basis®. We have A, = F,Vi/F;—1Vp and

F ‘7 p+q
0 _ pVp+q ~ A ®
= £ 25 ~ A k .
P4 By 1Vpig q /\ 9

The negative sign is introduced since this is nonzero precisely when —p < ¢ < 0 so q is
negative and —q is positive. Now using the definition of d : V;, — V,,_1, d° is vertical and

n n—1
~d": A @ No—A g g n=p+q

Recalling how d° was defined, note that we’re modding out by lower order terms and
thus brackets get killed when we commute elements to order them.

By Weibel 7.3.6, A == @Aq is in fact a graded algebra, and A = grld(g), the associated
q=0

graded of U (g). This turns out to be a polynomial ring on the indeterminates x = {ea},cq»

ie. A = k[x]. In Weibel section 4.5, Weibel studies the Koszul complex and the map

A ® /\g — A. By comparing the formula for d between these two complexes, one

observes that the Koszul complex differentials are equal to the d° here. So we have an
equality of complexes

Axr No=EPE)..
p>0

Weibel section 4.5 shows that when A € CRing with no zero divisors, e.g. a polynomial

ring, then
N k n=0
Hn (A - Ag) - {0 else.

On the other hand, we have

Hn<A®k/\g>=@Hﬁ_p(E,?,*) ptg=n = q=n-—p
_ 1
- @Epvn_p'
p=>0

But we’ve already shown that Eé,o = k, so all of the other E' terms must be zero.

-
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|
Remark 41.0.2: See section 4.5 on Koszul complex. We’ll do 7.8 next time.
42 ‘ Friday, April 23
PR 42.1 Applications Chevalley-Eilenberg ~

Complex

n
Remark 42.1.1: Last time: V,,(g) :==U(g) @k /\g 5 k is a projective resolution in g-Mod. Note
that we can introduce negative signs to easily interchange g-Mod and Mod-g.

Corollary 42.1.2(Chevalley-FEilenberg).
Let M € Mod-g, then

H.(g; M) = Tot"® (M, k)

is the homology of the following complex:

M @y (g) Vale) = M Sy U(e) @ N\ g = M & [\ g,

*
where we have a concrete differential d on /\ g and we can define 0 .= 1 ®d. If M € g-Mod)
(which is more convenient for cohomology), then

H*(g; M) = Extyg)(k, M)

is the cohomology of the cochain complex

Hom(V(g), M) = Hom(U(g) s N\, M) = Hom(/ g, M).

J

Remark 42.1.3: This is very concrete! Standard trick for exterior algebras: any n-cochain f €

n
Hzm(/\ g, M) can be viewed as an alternating k-multilinear function f(z1,--- ,2,): g — M. The

cochain differential should increase degree, so we define

n+1

elf(x17x27"' 7:1;77,) = Z(_1)1+1xz 'f(x17"' 7@7”' 7:1:71) +Z(_1)Z+1f([mlx]]7xl7 7@7”' 7@7”.

i=1 i<j

Note that the tor definition has the arguments switched compared to the original definition. This
is to set up the tensor cancellation of - -- @) U(g) - --. Swapping factors and introducing signs
makes this work for left g-modules.

Friday, April 23 161



I Friday, April 23

Corollary 42.1.4(?).
If k is a field and dimy g = n, then for any M € g-Mod,

H'(g; M) = 0= Hy(g; M) Vi >n+ 1.

Proof (?).
>n+1
This follows from the fact that /\ g=0.

Example 42.1.5(%): Take g = sl3(C), then dimc g = 3 (4 dimensions and one linear condition).
Then H'(g;m) = 0 for all ¢ > 3.

42.2 Brief Intro to Semisimple Lie Algebras
(Weibel 7.8)

Remark 42.2.1: Public service section since we won’t have a Lie algebras course next Fall. Semisim-
ples: the most important and interesting classes of Lie algebras! These occur frequently and we
can prove a lot about them. We’ll assume g is a finite dimensional Lie algebra over a field k, where
we’'ll soon assume ch(k) = 0.

Definition 42.2.2 (Simple Lie Algebras)
A Lie algebra g is simple if it has no ideals other than 0 and g and [gg] # 0 (i.e. g is not
abelian).

Remark 42.2.3: Recall that Lie-AIgAb ~ k-Mod are vector spaces, and so if g is abelian it auto-
matically has a chain of ideals by just taking vector subspaces. These are closed under brackets
since bracketing is zero. So if dimg g > 2, there are nontrivial ideals, so the abelian condition rules
out all 1-dimensional Lie algebras — they’re all abelian by taking a generator, bracketing it with
itself, and noting you get zero. So there’s only one 1-dimensional Lie algebra over any field k: the
abelian one.

Remark 42.2.4: The derived algebra [gg] < g is a subalgebra and always an ideal, so if g is simple
then [gg] = g. So gl,,(C) is not simple, since [gl,gl,,] = sl,, by taking traces.

Remark 42.2.5: The vector space sum of any two solvable ideals is again a solvable ideal. Note
that this works for products of solvable subgroups N, H < G with N normal. Use 2-out-of-3
property for solvable groups and quotient by N. By finite-dimensionality, we can find a maximal
solvable ideal:

Definition 42.2.6 (7)
For dimg, g < oo, define the radical to be rad g := Z I; be the sum of all solvable ideals I; < g.
We say g is semisimple if rad g = 0.
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Lemma 42.2.7 (7).
Simple implies semisimple.

Lemma 42.2.8(%).
g/ rad g is always semisimple.

Remark 42.2.9: There shouldn’t be any solvable ideals in this quotient, otherwise you could lift.
Next up, our most powerful tool for semisimple Lie algebras: e

Definition 42.2.10 (?)
Recall that for x € g we can define ad, € Egd(g) where ad,(y) = [z,y]. It has a well-defined

(and basis-independent) trace, so define the Killing form®:

k(z,y) = Tr(adyoady) € k z,y € g.

“Named for a mathematician named Killing.

Remark 42.2.11: This is a symmetric bilinear form since traces don’t depend on the order of
products. It has another nice property, g-invariance:

r(lzyl, 2] = klz, [yz]).

)y
Proposition 42.2.12(Cartan’s Criterion).
Let ch(k) = 0 and dimy g < co. Then g is semisimple <= k is nondegenerate.
Proof (?).
Omitted, see Humphreys.
|
Theorem 42.2.13(7).
T
Let ch(k) = 0, then g is semisimple <= g = @ gi as a direct sum/product of simple ideals,
i=1
so [gig;] = 0 for i # j and [g;9;] = g;. In particular, every ideal of g is a sum of sum of certain
gi's, and g = [gg].
Remark 42.2.14: These are like “orthogonal” ideals. So we can study semisimple Lie algebras by
just studying simple Lie algebras. v

Observation 42.2.15

Reminder: if M € g-Mod(Triv), then any derivation D € Der(g, M) satisfies D([zy]) = 0 for all
x,y € g. This follows from expanding the Leibniz rule and using trivial modules act by zero. There
is an isomorphism

Der(g, M) 2 Hom (g*", M) g*" = g/[gg].
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Recall that H' is related to derivations.

Corollary 42.2.16(?).
Let g € g-Mod(ss) with dimy g < oo, then

H'(g;k) = 0= Hy(g; k).

Proof (?).
Since [gg] = g, we have g*® = 0. By Weibel theorem 7.4.1, one can check that Hy(g; k) =
g®® = 0. We also had Der(g, k) — H'(g; k) (it was outer derivations), the left-hand side is
isomorphic to Hgm(gab; k).

|

Theorem 42.2.17(%9).
Let g € Lie-Alg(ss) with dimy g < oo and ch(k) = 0. Then if kK # M is a simple g-module
(where simple means no proper nontrivial g-invariant submodules), then

H'(g; M) = 0= H;(g; M).

Proof (?).
Omitted. This uses the Casimir operator for M, which is in the center Z(U(g)).

43 ‘ Section 7.6 (Wednesday, April 28)

Remark 43.0.1: Today: filling in some previous things, including proofs for Whitehead’s second
lemma and Levi’s theorem.

Definition 43.0.2 (7)
Let g € Lie-Alg), for k € CRing and let M € k-Mod viewed as a trivial g- module. An
extension of g by M is a SES in g-Mod of the following form:

0-M3ESg—o.

Remark 43.0.3: Given such an extension, thinking of M C F, M becomes a g-module in a natural
way: given m € M and x € g, choose & € E such that 7(Z) = x and set

x-m:=[T,mlgpeMJIE,

noting that M is the kernel of a morphism and thus an ideal. Is this well-defined? If #’ € 7~ 1(E),
we have 7(Z' — #) = 0 which implies 7' — Z € ker m = M by exactness. So we can write &’ = m' + &
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for some m’ € M, and since M is abelian and its elements bracket to zero, we have

[ m] = [m' +Z,m] = [Z,m].

Remark 43.0.4: The extension problem: given a g-module M viewed as an abelian Lie algebra,
how many (equivalence classes of) extensions of g by M are there for which the induced action above
agrees with the given action? Here we view equivalence as existence of an isomorphism making the
following diagram commute:

Link to Diagram

Write Extpie-aig(g, M) for the set of equivalence classes of such extensions.

Remark 43.0.5: We can form semidirect products M x g of Lie algebras in the following way:
start with the k-module M x g with bracket

[(m,x),(n,y)] = (xn—ym,[my]) m,n € M, x,y € g.

One checks that this is anticommutative and satisfies the Jacobi identity. This is a Lie algebra
containing M x 0 as an abelian ideal and 0 x g as a subalgebra, which fits into a SES

0 M3 Mxg=g—0.

Moreover, the naturally induced action described previously agrees with this semidirect action.
Identifying elements with their inclusions, we have

[(0,2),(m,0)] = (x-m —0,[0,0]) = (z - m,0).
Thus there is always at least one extension, called the split extension. There is a classification:

Theorem 43.0.6 (Classification of Extensions).
Let M € g-Mod, then there is a bijection of sets

Ext(g, M) = H*(g; M)
Remark 43.0.7: Note that the map m makes M into an F-module and makes M into a trivial

M-module. See Weibel for a functorial proof, using the same correspondence between Ext}g(A, B)
and extensions of A by B. Note that we have an algebra, an ideal, and its quotient, which is
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precisely the setup for the LHS spectral sequence for cohomology with coefficients in M. There was
an associated 5-term exact sequence, which contains a classifying map

Hom (M, M) %5 Hom (g, M)
g-Mod g-Mod

Las > d*(1ay).

One checks that this only depends on the equivalence class of extensions, and turns out to be a
bijection. Weibel’s proof uses some facts about free Lie algebras that we haven’t discussed yet, so

we’ll instead do a slightly more down-to-earth proof from Knapp’s book using the Koszul complex.

Proof (of classification theorem).
We’ll need to assume k € Field. Choose a splitting of the following SES as a k-vector space:

K
0 M - E

<

g—0
J
Link to Diagram

So here moj = 14. Note that we can use j(x) for our Z. From section 7.7, we can characterize
2

H?(g; M) is a subquotient of H%m ( /\ g, M ) , recalling that we canceled a U(g) when taking

the resolution

Ulg) ® \o »k

and applying H](gm(—, M). Specifically, it is ker/im d for the coboundary ¢ from corollary

7.7.3. Recall that we define a hom from an nth piece of an exterior algebra is equivalence to

2
an alternating n-argument function, and define w € H%m ( /\ g, M ) by

w(z,y) = [jz, hyle — j ([xylm) € E,

where we’ll omit parentheses and bracket subscripts immediately. We want to detect if this is
in M, so use that M = ker m and check

m([3z, jy] — jlzy]) = [mjz, mjy] — 7jzy]
= [zy] — [zy]
=0,

and so w(z,y) € M as needed. We now want to compute Jw to compute the action = - m =
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[Z, m]r, so take Z == j(x). Use that § has graded degree +1, so

w(z,y,z) =z -w(y,z) —y- - wzz)+ 2 wx,y)
—w([zy], z) + w([zz], y) — w(lyz], )

= [j=, [jy, 32]] — [§2, jlyz]|
=[5y, [z, 3=]] + 3y, j[z=]]
+ 52, [3%, 3yll = [52, j=y]]
= [jlzyl, 52] + jl[zy], 2]
+ [jlz2], jy] — jll=2], 9]
— [jly=], j=] + jlly=], z].

There is a lot of cancellation here! Use the Jacobi identity for terms in red, and sign rules to
cancel the rest:

Figure 6: image_ 2021-04-28-10-01-22

So w € kerd.

Remark 43.0.8: One should check that choices differ by coboundaries, along with a few other
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things that we're eliding. v

44 ‘ Friday, April 30

o 44.1 Proof Continued e

Remark 44.1.1: Last time: we were proving the bijection between H?(g; M) and extensions of g
by M up to equivalence. e

Proof (of the classification theorem, continued).
We chose a vector space splitting g 2y F and used the Cartan-Eilenberg resolution to construct
2

2- 1 H M) gi
a 2-cocycle w € k_ﬁ]gcli(/\g, ) given by

w(xay) = [jxajy] _][«T,y] z,Y9,

and we saw that d(w) = 0. Say we change j to j' : g — F to j' : ¢ = F with 7j' = 1,, and
let w’ be the corresponding 2-cocycle. Letting o := j — j', then m o & = 0 by linearity and so
1

a:g— kerm = M and thus a € Hom(/\g,M). We then have
k-Mod

da(z,y) = za(y) — ya(r) — a([zy])
=iz, 'y — jyl — [y, 5= — jz] — §'[zy] + jlzy]
= (', §'y) — 3'[2y]) — 7'z, 5yl + 5, jy] — (LG, 3y — jlay])
= (lj'z, j'y] = 7'[zy]) — (l5z, 5y] — jlzy])
= w'(z,y) — w(z,y),

so 6a = w’ —w. So their difference is a coboundary, yielding w = w’ € H?(g, M), making this
construction independent of the choice of j.

Exercise (?)

Show that equivalent extensions also lead to the same element in H2.
This yields a well-defined map

{Extensions of g by M } — H?(g; M)
O0—-M—-FE—g—0)—uw.

2
Conversely, given a 2-cocycle w € E—Il\(/)lncli( /\ g, M) with M abelian, define
= IVIO

o E:=M®g e Vecty,
o A bracket using the following rules (identifying M, g with their images in E):
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— [m,n]lg =0
— [x,m]p =2 -m = —[m,z|g

¢ Note that this guarantees that the actions agree.
B [mvy]E = 'IIJ(.QJ,y) + [x,y]g

One can check that the last definition is anticommutative since w was alternating, and further
that this makes F into a Lie algebra that fits into a SES of the desired form with canonical
maps i, m, j. The cocycle w coming from this extension is given by

where here j is a direct sum inclusions that we’ll suppress. So H? — Ext/ ~— H 2 is the
identity. One can similarly check that Ext / ~— H? — Ext/ ~ is also the identity, since it
produces an equivalent extension. So this defines a bijection of sets.

|

Remark 44.1.3: This was known much earlier for group cohomology: if G € Grp, A € G-Mod,
there is a bijection

{O A—-FE5LG— 1} := {Equivalence classes of extensions of G by A } — H?(G; A),

where G may not be abelian, and one acts by conjugation instead. Analogy: bracketing is like the
differential of conjugation.

- 44.2 Proof Backlog from Monday ~

Remark 44.2.1: Recall Whitehead’s Lemma 2° for g finite-dimensional and semisimple over
ch(k) =0 and M € g-Mod™, then H?(g; M) = 0.

Proof (?).

By Weyl’s theorem, M is a direct sum of simple g-modules and H* commutes with direct
sums, so it suffices to show this when M is simple. By Weibel theorem 7.8.9 (structure of
semisimple Lie algebras using the Casimir operator) we have H"(g; M) = 0 for M # k and for
all n, so we reduce to showing this for M = k. By the classification theorem, we need to show
that every extension of the following form splits:

0+k—-ESg—0,

where we view k € Lie-Alg?®. We proceed in an unanticipated way by reducing Lie algebra
maps to g-module maps.

First note that k C Zg, since F = k & g € Vecty, so there is an embedding g — F where say

$Weibel corollary 7.8.12
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z+ . For ¢ € k and x € g, we have [Z,¢] == z - ¢ = 0 since k € Lie-Alg®, and by linearity
this will show that & commutes with everything. We now make E into a g-module by defining
x-e:=|[7,¢e| for x € g,e € E. If ¥ is another other representative in E of x, then noting that
k € ker T we can write ¥’ = [Z + ¢, €] = [%, ¢] using that ¢ € Z(F). This action makes 7 into a
g-module map, and we have

= [r(Z),7(e)] 7 € Lie-Alg(g, E)

since this is acting via the adjoint action. By Weyl’s theorem, both E and g decompose into
direct sums of simple g-modules. Using that j is injective and a g-module map, it must send
simple submodules of g to simple submodules of F, using that maps to (from?) simple modules
are either zero or isomorphisms and a dimension count. One can check (easily!) that there
is a g-module map o : g < E such that £ = K @ o(g) € g-Mod. So choose & := o(x), then
o € Lie-Alg(g, E), and so

making o(g) < E a Lie-subalgebra. Since o(g) = g, this is precisely a semidirect product and
we obtain F = k x g, and the sequence splits as desired.
[ |

Remark 44.2.2: Next time: Levi’s theorem. s

45 Appendix: Extra Definitions

46 Extra References

e https://www.math.wisc.edu/~csimpson6/notes/2020_spring_homological_algebra/notes.
pdf
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47 ‘ Useful Facts

Definition 47.0.1 (Acyclic)
A chain complex C' is acyclic if and only if H,(C) = 0.

Proposition 47.0.2(Algebra Facts).

o Free = projective = flat = torsionfree (for finitely-generated R-modules)

— Over R a PID: free <= torsionfree
Remark 47.0.3: Notational conventions:

e Finite direct products: @

« Cohomological indexing: C"*, 9"
e Homological indexing: C;, 0;

« Right-derived functors R'F.

— Come from left-exact functors
— Require injective resolutions
— Extend to the right: 0 - F(A) — F(B) —» F(C) — L1F(A)---

e Left-derived functors L; F.

— Come from right-exact functors
— Require projective resolutions
— Extend to the left: --- L1 F(C) - F(A) - F(B) — F(C) =0

o Colimits:

— Examples: coproducts, direct limits, cokernels, initial objects, pushouts
— Commute with left adjoints, i.e. L(colim F;) = colim LF;.

e Examples of limits:

— Products, inverse limits, kernels, terminal objects, pullbacks
— Commute with right adjoints. i.e. R(colim F;) = colim RF;.

" 47.1 Hom and Ext ~

Proposition 47.1.1(Basic properties of Hom).
° H A —) 1 .
om(4, —) is

— Covariant
— Left-exact
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— Is a functor that sends f : X — Y to f. : Hom(A, X) — Hom(A,Y) given by

fu(h) = foh. | |
— Has right-derived functors Extz (A, B) = R’ H%m(A, —)(B) computed using injec-

tive resolutions.
o Hom(—, B) is:
R
— Contravariant

— Right-exact
— Is a functor that sends f : X — Y to f* : Hom(Y, B) — Hom(X, B) given by

FH(h) =ho f. |
— Has left-derived functors Extz(A, B) = L; H%m(—, B)(A) computed using projec-

tive resolutions.
e For N € (R,S')-biMod and M € (R, S)-biMod, H%m(M, N) € (S,5')-biMod.

— Mnemonic: the slots of H%m use up a left R-action. In the first slot, the right

S-action on M becomes a left S-action on Hom. In the second slot, the right
S’-action on N becomes a right S’-action on Hom.

Proposition 47.1.2(Basic Properties of Ext).

« Ext”™!(A, B) = 0 for any A projective or B injective.

Fact 47.1.3
A maps A Iy B in R-Mod is injective if and only if f(a) = 0p = a = 04. Monomorphisms are
injective maps in R-Mod.

Proposition 47.1.4(Recipe for computing Ext’,). 4
Write F'(—) = H%m(A, —). This is left-exact and thus has right-derived functors Ext (A, B) :=

R'F(B). To compute this:
o Take an injective resolution:
1BS O L dy
e Remove the augmentation € and just keep the complex
= (1£>IO£>11 ﬂ)
o Apply F(—) to get a new (and usually not exact) complex

F(I)™ = (1 O pa0) & Rty 2y ) ,

where 0" == F(d').
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o Take homology, i.e. kernels mod images:

, ker d'
R'F(B) = i1
Note that R°F(B) = F(B) canonically:

« This is defined as ker 8°/im ™" = ker 8°/1 = ker 8°.

o Use the fact that F'(—) is left exact and apply it to the augmented complex to obtain

1 FB) 2 p®) & paty 2

+ By exactness, there is an isomorphism ker 8° = F(B).

Proposition 47.1.5 (Computing Homy(Z,Z/n)).
@ H%m(Z,Z/n) = Z/n, where ¢(g) == g(1).

e That this is an isomorphism follows from

o Surjectivity: for each ¢ € Z/n define a map

Yy 1 L — L/n
1= [{)y.

o Injectivity: if g(1) = [0],, then

e Z-module morphism:

p(gf) =¢lgo f)= (g0 /)(1) =g(f(1)) = f(1)g(1) = w(9)e(f),

where we’ve used the fact that Z/n is commutative.

L

~

Proposition 47.1.6 (Common Hom Groups). e H%m(Z/m,Z) =0.
. H(Z)m(Z/m,Z/n) =7/d.
+ Hom(Q,Q) = Q.

~

Proposition 47.1.7(Common Ext Groups). e« Extz(Z/m,G) = G/mG
— Usel = 7Z "™ 7 — Z/m — 1 and apply H(Z)m(—,Z).

o Extz(Z/m,Z/n)="7/d.

Slogan 47.1.8
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e In Ab, direct colimits commute with finite limits. Inverse limits do not generally commute
with finite colimits.

o Left adjoints are right-exact with left-derived functors. Right adjoints are left-exact with
right-derived functors.

o Left adjoints commute with colimits: L(colim F') = colim(L o F')

Proposition 47.1.9(Characterizations of Splittings).
TFAE in R-Mod:

¢« ASES0O— A— B — C — 0 is split.
o« 7

e 47.2 Tensor and Tor ~

Proposition 47.2.1 (Basic Properties of the Tensor Product).

e AQpR — is:

— Covariant

— Right-exact

Left-exact

— Has left-derived functors Ext’ (A, B) = L; H%m(—, B)(A) computed using projec-

tive resolutions.
e —®p B is:

— Covariant
— Right-exact '
— Has left-derived functors Ext'z(A, B) = L; H%m(—7 B)(A) computed using projec-

tive resolutions.

o Tensor commutes with colimits: (colim A;) ® g M = colim(A; ®r M).

Proposition 47.2.2 (Basic Properties of Tor).

« Tor®(A, B) = 0 for either A or B flat.

Fact 47.2.3
The most useful SES for proofs here:

025725 Z/n—0.
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Proposition 47.2.4(Common Tensor Products).

e Z/n®y G=G/nG
o Z/n®zZ/m =17/d.
e Q®zZ/n=0.

Proposition 47.2.5(Common Tor Groups). e« TorZ(Z/n,G) = {h eH ’ nh = e}

o Tor(Z/n,Q) = 0.
o Tor?(Z/n,Z/m) = Z/d.

— 47.3 Universal Properties ~

Proposition 47.3.1(Universal Property of the Quotient for Groups).
If f:G— K and H < G (so that G/H is defined), then the map f descends to the quotient
if and only if H C ker(f).

Proposition 47.3.2(Kernels as pullbacks and cokernels as pushouts).
The kernel ker f of a morphism f can be characterized as a cartesian square, and the cokernel
coker f as a cocartesian square:

» coker f

O ~
1\‘\\
\3}
C

Link to Diagram

) 47.4 Adjunctions ~
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Definition 47.4.1 (Adjoints)

Proposition 47.4.2 (Tensor-Hom Adjunction).
For a fixed M € (R, S)-biMod, there is an adjunction

so for Y € (A,R)-biMod and Z € (B,S)-biMod, there is a (natural) isomorphism in
(B, A)-biMod:

Hgm(X ®r M,Z) = H%m(X, H(S)m(M, 7Z)).

Proposition 47.4.3 (Forgetful Adjunctions).
Let F: R-Mod — Z-Mod be the forgetful functor, then there are adjunctions

F
R-Mod T Z-Mod

~

Homgz(R,—)

R®ac
Z-Mod 1= R-Mod.
F

ToDos
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