# Lecture 4 (Friday, January 22) ## Long Exact Sequences :::{.remark} Some terminology: in an abelian category \( \mathcal{A} \) an example of an **exact complex** in \( \Ch(\mathcal{A}) \) is \[ \cdots \to 0 \to A \mapsvia{f} B \mapsvia{g} C \to 0 \to \cdots .\] where *exactness* means $\ker = \im$ at each position, i.e. $\ker f = 0, \im f = \ker g, \im g = C$. We say $f$ is monic and $g$ epic. As a special case, if $0\to A\to 0$ is exact then $A$ must be zero, since the image of the incoming map must be 0. This also happens when every other term is zero. If $0\to A \mapsvia{f} B \to 0$, then $A \cong B$ since $f$ is both injective and surjective (say for \(R\dash\)modules). ::: :::{.theorem title="Long Exact Sequences"} Suppose $0\to A\to B \to C \to 0$ is a SES in \( \Ch(\mathcal{A}) \) (note: this is a sequence of *complexes*), then there are natural maps \[ \delta: H_n(C) \to H_{n-1}(A) \] called **connecting morphisms** which decrease degree such that the following sequence is exact: \begin{tikzcd} & \cdots & {H_{n+1}(C)} \\ \\ {H_n(A)} & {H_n(B)} & {H_n(C)} \\ \\ {H_{n-1}(A)} & \cdots \arrow["{f_* = H_n(f)}", from=3-1, to=3-2] \arrow["{g_* = H_n(g)}", from=3-2, to=3-3] \arrow["\delta", from=1-3, to=3-1, in=180, out=360] \arrow["\delta", from=3-3, to=5-1, in=180, out=360] \arrow[from=5-1, to=5-2] \arrow[from=1-2, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwyLCJIX24oQSkiXSxbMSwyLCJIX24oQikiXSxbMiwyLCJIX24oQykiXSxbMiwwLCJIX3tuKzF9KEMpIl0sWzAsNCwiSF97bi0xfShBKSJdLFsxLDQsIlxcY2RvdHMiXSxbMSwwLCJcXGNkb3RzIl0sWzAsMSwiZl8qID0gSF9uKGYpIl0sWzEsMiwiZ18qID0gSF9uKGcpIl0sWzMsMCwiXFxkZWwiXSxbMiw0LCJcXGRlbCJdLFs0LDVdLFs2LDNdXQ==) This is referred to as the **long exact sequence in homology**. Similarly, replacing chain complexes by cochain complexes yields a similar connecting morphism that increases degree. > Note on notation: some books use $\bd$ for homology and $\delta$ for cohomology. ::: The proof that this sequence exists is a consequence of the *snake lemma*. :::{.lemma title="The Snake Lemma"} The sequence highlighted in red in the following diagram is exact: \begin{tikzcd}[column sep=tiny] 0 && {{\color{red}\ker(f)}} && {{\color{red}\ker(\alpha)}} && {{\color{red}\ker(\beta)}} && {{\color{red}\ker(\gamma)}} \\ \\ && 0 && A && B && C && 0 \\ &&&&&&& {} \\ && 0 && {A'} && {B'} && {C'} && 0 \\ \\ &&&& {{\color{red}\coker(\alpha)}} && {{\color{red}\coker(\beta)}} && {{\color{red}\coker(\gamma)}} && {{\color{red}\coker(g')}} && 0 \arrow[from=5-3, to=5-5] \arrow["{f'}"', from=5-5, to=5-7] \arrow["{g'}"', from=5-7, to=5-9] \arrow["f", from=3-5, to=3-7] \arrow["g", from=3-7, to=3-9] \arrow[from=3-3, to=3-5] \arrow["\beta"', from=3-7, to=5-7] \arrow["\gamma"', from=3-9, to=5-9] \arrow["\alpha"', from=3-5, to=5-5] \arrow[from=7-5, to=7-7] \arrow[from=7-7, to=7-9] \arrow[from=7-9, to=7-11] \arrow[from=7-11, to=7-13] \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \arrow[from=1-9, to=7-5, in=180, out=360, "\exists \delta", color=red, dotted] \arrow[from=5-9, to=5-11] \arrow[from=3-9, to=3-11] \arrow[from=1-5, to=3-5] \arrow[from=1-7, to=3-7] \arrow[from=1-9, to=3-9] \arrow[from=5-5, to=7-5] \arrow[from=5-7, to=7-7] \arrow[from=5-9, to=7-9] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMjEsWzQsMiwiQSJdLFs2LDIsIkIiXSxbOCwyLCJDIl0sWzQsNCwiQSciXSxbNiw0LCJCJyJdLFs4LDQsIkMnIl0sWzIsNCwiMCJdLFsyLDIsIjAiXSxbNCwwLCJ7XFxjb2xvcntyZWR9XFxrZXIoXFxhbHBoYSl9Il0sWzIsMCwie1xcY29sb3J7cmVkfVxca2VyKGYpfSJdLFs2LDAsIntcXGNvbG9ye3JlZH1cXGtlcihcXGJldGEpfSJdLFs4LDAsIntcXGNvbG9ye3JlZH1cXGtlcihcXGdhbW1hKX0iXSxbNCw2LCJ7XFxjb2xvcntyZWR9XFxjb2tlcihcXGFscGhhKX0iXSxbNiw2LCJ7XFxjb2xvcntyZWR9XFxjb2tlcihcXGJldGEpfSJdLFs4LDYsIntcXGNvbG9ye3JlZH1cXGNva2VyKFxcZ2FtbWEpfSJdLFsxMCw2LCJ7XFxjb2xvcntyZWR9XFxjb2tlcihnJyl9Il0sWzAsMCwiMCJdLFsxMiw2LCIwIl0sWzcsM10sWzEwLDIsIjAiXSxbMTAsNCwiMCJdLFs2LDNdLFszLDQsImYnIl0sWzQsNSwiZyciXSxbMCwxLCJmIl0sWzEsMiwiZyJdLFs3LDBdLFsxLDQsIlxcYmV0YSIsMV0sWzIsNSwiXFxnYW1tYSIsMV0sWzAsMywiXFxhbHBoYSIsMV0sWzEyLDEzXSxbMTMsMTRdLFsxNCwxNV0sWzE1LDE3XSxbMTYsOV0sWzksOF0sWzgsMTBdLFsxMCwxMV0sWzExLDEyXSxbNSwyMF0sWzIsMTldXQ==) ::: :::{.proof title="of the Snake Lemma: Existence"} \envlist - Start with $c\in \ker(\gamma) \leq C$, so $\gamma(c) = 0 \in C'$ - **Choose** $b\in B$ by surjectivity - We'll show it's independent of this choice. - Then $b'\in B'$ goes to $0\in C'$, so $b' \in \ker (B' \to C')$ - By exactness, $b' \in \ker (B' \to C') = \im(A'\to B')$, and now produce a unique $a'\in A'$ by injectivity - Take the image $[a']\in \coker \alpha$ - Define $\bd(c) \da [a']$. ::: :::{.proof title="of the Snake Lemma: Uniqueness"} \envlist - We chose $b$, suppose we chose a different $\tilde b$. - Then $\tilde b - b \mapsto c-c = 0$, so the difference is in $\ker g = \im f$. - Produce an $\tilde a\in A$ such that $\tilde a\mapsto \tilde b - b$ - Then \( \bar a \da \alpha(\tilde a) \), so apply $f'$. - Define $\beta(\tilde b) = \tilde b ' \in B$. - Commutativity of the LHS square forces $\tilde a'\mapsto \tilde b' - b'$. - Then $\bar a + a' \mapsto \tilde b' -b' + b' = \tilde b'$. - So $\tilde a' + a'$ is the desired pullback of $\tilde b'$ - Then take $[\tilde a'] \in \coker \alpha$; are $a', \tilde a'$ in the same equivalence class? - Use that fact that $\tilde a = a' + \bar a$, where $\bar a \in \im \alpha$, so $[\tilde a] = [a' + \bar a] = [a'] \in \coker \alpha \da A'/\im \alpha$. ::: \todo[inline]{A few changes in the middle, redo!} :::{.proof title="of the Snake Lemma: Exactness"} \envlist - Let's show $g: \ker \beta\to \ker \gamma$. - Let \( b \in \ker \beta \), then consider \( \gamma(g(\beta)) = g'(\beta(b)) = g'(0) = 0 \) and so \( g(b) \in \ker \gamma \). - Now we'll show $\im(\ro{g}{\ker \beta}) \subseteq \ker \delta$ - Let \( b \in \ker \beta, c = g(b) \), then how is \( \delta(c) \) defined? - Use this $b$, then apply \( \beta \) to get \( b' = \beta(b) = 0 \) since \( b \in \ker \beta \). - So the unique thing mapping to it $a'$ is zero, and thus $[a'] = 0 = \delta(c)$. - \( \ker \delta \subseteq \im( \ro{g}{ \ker \beta} ) \) - Let \( c\in \ker \delta \), then \( \delta(c) = 0 = [a'] \in \coker \alpha \) which implies that \( a' \in \im \alpha \). - Write \( a' = \alpha(a) \), then \( \beta(b) = b' = f'(a') = f'( \alpha(a)) \) by going one way around the LHS square, and is equal to \( \beta(f(a)) \) going the other way. - So \( \tilde b \da b - f(a) \in \ker \beta \), since \( \beta(b) = \beta(f(a)) \) implies their difference is zero. - Then $g(\tilde b) = g(b) - g(f(a)) = g(b) = c$, which puts $c\in g(\ker \beta)$ as desired. ::: :::{.exercise title="?"} Show exactness at the remaining places -- the most interesting place is at $\coker \alpha$. Also check that all of these maps make sense. ::: :::{.remark} We assumed that \( \mathcal{A}= \rmod \) here, so we could chase elements, but this happens to also be true in any abelian category \( \mathcal{A} \) but by a different proof. The idea is to embed \( \mathcal{A} \to \rmod \) for some ring $R$, do the construction there, and pull the results back -- but this doesn't quite work! \( \mathcal{A} \) can be too big. Instead, do this for the smallest subcategory \( \mathcal{A}_0 \) containing all of the modules and maps involved in the snake lemma. Then \( \mathcal{A}_0 \) is small enough to embed into $\rmod$ by the **Freyd-Mitchell Embedding Theorem**. :::