# Wednesday, January 27 See phone pic for missed first 10m. ## 1.4: Chain Homotopies :::{.definition title="Split Exact"} A complex is called **split** if there are maps $s_n: C_n \to C_{n+1}$ such that $d =dsd$. In this case, the maps $s_n$ are referred to as the **splitting maps**, and if $C$ is additionally acyclic, we say $C$ is **split exact**. ::: :::{.remark} Note that when $C$ is split exact, we have \begin{tikzcd} && {C_n} && {C_{n-1}} \\ \\ {C_{n+1}} && {C_n} \arrow["d", from=3-1, to=3-3] \arrow["d", from=1-3, to=1-5] \arrow["{s_n}"{description}, from=1-3, to=3-1] \arrow["{s_{n-1}}"{description}, from=1-5, to=3-3] \arrow["\id"{description}, from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMiwwLCJDX24iXSxbNCwwLCJDX3tuLTF9Il0sWzIsMiwiQ19uIl0sWzAsMiwiQ197bisxfSJdLFszLDIsImQiXSxbMCwxLCJkIl0sWzAsMywic19uIiwxXSxbMSwyLCJzX3tuLTF9IiwxXSxbMCwyLCJcXGlkIiwxXV0=) ::: :::{.example title="Not all complexes split"} Take \[ C = \qty{ 0 \to \ZZ/2\ZZ \mapsvia{d} \ZZ/4\ZZ \to \ZZ/2\ZZ \to 0 } .\] Then $\im d = \ts{0, 2} = \ker d$, but this does not split since $\ZZ/2\ZZ^2 \not\cong \ZZ/4\ZZ$: one has an element of order 4 in the underlying additive group. Equivalently, there is no complement to the image. What might be familiar from algebra is $ds = \id$, but the more general notion is $dsd = d$. ::: :::{.example title="?"} The following complex is not split exact for the same reason: \[ \cdots \mapsvia{\cdot 2} \ZZ/4\ZZ \mapsvia{\cdot 2} \ZZ/4\ZZ \to \cdots .\] ::: :::{.question} Given $f,g: C\to D$, when do we get equality $f_* = g_*: H_*(C) \to H_*(D)$? ::: :::{.definition title="Homotopy Terminology for Chains"} A chain map $f:C\to D$ is **nullhomotopic** if and only if there exist maps $s_n: C_n\to D_{n+1}$ such that $f = ds + sd$: \begin{tikzcd} && {C_n} && {C_{n-1}} \\ \\ {D_{n+1}} && {D_n} \arrow["d", from=3-1, to=3-3] \arrow["d", from=1-3, to=1-5] \arrow["{s_n}"{description}, from=1-3, to=3-1] \arrow["{s_{n-1}}"{description}, from=1-5, to=3-3] \arrow["\id"{description}, from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMiwwLCJDX24iXSxbNCwwLCJDX3tuLTF9Il0sWzIsMiwiRF9uIl0sWzAsMiwiRF97bisxfSJdLFszLDIsImQiXSxbMCwxLCJkIl0sWzAsMywic19uIiwxXSxbMSwyLCJzX3tuLTF9IiwxXSxbMCwyLCJcXGlkIiwxXV0=) The map $s$ is called a **chain contraction**. Two maps are **chain homotopic** (or initially: $f$ is chain homotopic to $g$, since we don't yet know if this relation is symmetric) if and only if $f-g$ is nullhomotopic, i.e. $f-g = ds + sd$. The map $s$ is called a **chain homotopy** from $f$ to $g$. A map $f$ is a **chain homotopy equivalence** if both $fg$ and $gf$ are chain homotopic to the identities on $C$ and $D$ respectively. ::: :::{.lemma title="?"} If map $f:C\to D$ is nullhomotopic then $f_*: H_*(C) \to H_*(D)$ is the zero map. Thus if $f,g$ are chain homotopic, then they induce equal maps. ::: :::{.proof title="?"} An element in the quotient $H_n(C)$ is represented by an $n\dash$cycle $x\in Z_n(C)$. By a previous exercise, $f(x)$ is a well-defined element of $H_n(D)$, and using that $d(x) = 0$ we have \[ f(x) = (ds + sd)(x) = d(s(x)) ,\] and so $f[x] = [f(x)] = [0]$. \begin{tikzcd} && x && {d(x) = 0} \\ && {C_n} && {C_{n-1}} \\ \\ {D_{n+1}} && {D_n} \\ && {d(s(x))} \arrow["d", from=4-1, to=4-3] \arrow["d", from=2-3, to=2-5] \arrow["{s_n}"{description}, from=2-3, to=4-1] \arrow["{s_{n-1}}"{description}, from=2-5, to=4-3] \arrow["\id"{description}, from=2-3, to=4-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMiwxLCJDX24iXSxbNCwxLCJDX3tuLTF9Il0sWzIsMywiRF9uIl0sWzAsMywiRF97bisxfSJdLFsyLDAsIngiXSxbNCwwLCJkKHgpID0gMCJdLFsyLDQsImQocyh4KSkiXSxbMywyLCJkIl0sWzAsMSwiZCJdLFswLDMsInNfbiIsMV0sWzEsMiwic197bi0xfSIsMV0sWzAsMiwiXFxpZCIsMV1d) Now applying the first part to $f-g$ to get the second part. ::: > See Weibel for topological motivations. ## 1.5 Mapping Cones :::{.remark} Note that we'll skip *mapping cylinders*, since they don't come up until the section on triangulated categories. The goal is to see how any two maps between homologies can be fit into a LES. This helps reduce questions about *quasi-isomorphisms* to questions about split exact complexes. ::: :::{.definition title="Mapping Cones"} Suppose we have a chain map $f:B\to C$, then there is a chain complex $\cone(f)$, the **mapping cone of $f$**, defined by \[ \cone(f)_n = B_{n-1} \oplus C_n .\] The maps are given by the following: \begin{tikzcd} {B_{n-1}} && {B_{n-2}} \\ \oplus && \oplus \\ {C_n} && {C_{n-1}} \arrow["{-d^B}", from=1-1, to=1-3] \arrow["{-f}"', from=1-1, to=3-3] \arrow["{d^C}", from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMCwwLCJCX3tuLTF9Il0sWzAsMSwiXFxvcGx1cyJdLFswLDIsIkNfbiJdLFsyLDAsIkJfe24tMn0iXSxbMiwyLCJDX3tuLTF9Il0sWzIsMSwiXFxvcGx1cyJdLFswLDMsIi1kXkIiXSxbMCw0LCItZiIsMl0sWzIsNCwiZF5DIl1d) We can write this down: $d(b, c) = (-d(b), -f(b) + d(c))$, or as a matrix \[ \begin{bmatrix} -d^B & 0 \\ -f & d^C \end{bmatrix} .\] ::: :::{.exercise title="?"} Check that the differential on $\cone(f)$ squares to zero. ::: :::{.exercise title="Weibel 1.5.1"} When $f = \id:C\to C$, we write $\cone(C)$ instead of $\cone(\id)$. Show that $\cone(C)$ is split exact, with splitting map $s(b, c) = (-c, 0)$ for $b\in C_{n-1}, c\in C_n$. ::: :::{.proposition title="LES in homology of a single chain map using the cone"} Suppose $f:B\to C$ is a chain map, then the induced maps $f_*: H(B) \to H(C)$ fit into a LES. There is a SES of chain complexes: \begin{tikzcd} 0 && C && {\cone(f)} && {B[-1]} && 0 \\ && c && {(0, c)} \\ &&&& {(b, c)} && {-b} \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=1-5, to=1-7] \arrow[from=1-7, to=1-9] \arrow[from=2-3, to=2-5] \arrow[from=3-5, to=3-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbMCwwLCIwIl0sWzIsMCwiQyJdLFs0LDAsIlxcY29uZShmKSJdLFs2LDAsIkJbLTFdIl0sWzgsMCwiMCJdLFsyLDEsImMiXSxbNCwxLCIoMCwgYykiXSxbNCwyLCIoYiwgYykiXSxbNiwyLCItYiJdLFswLDFdLFsxLDJdLFsyLDNdLFszLDRdLFs1LDZdLFs3LDhdXQ==) :::{.exercise title="?"} Check that these are chain maps, i.e. they commute with the respective differentials $d$. ::: The corresponding LES is given by the following: \begin{tikzcd} && \cdots && {H_{n+1}\cone(f)} && {H_{n+1}(B[-1]) = H_n(B)} \\ \\ {} & {} & {H_n(C)} && {H_n \cone(f)} && {H_{n}(B[-1]) = H_{n-1}(B)} \\ \\ && \cdots \arrow[from=1-3, to=1-5] \arrow["{\delta_*}", from=1-5, to=1-7] \arrow["\bd", from=1-7, to=3-3, in=180, out=360] \arrow[from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow[from=3-7, to=5-3, in=180, out=360] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbNCwwLCJIX3tuKzF9XFxjb25lKGYpIl0sWzAsMl0sWzYsMCwiSF97bisxfShCWy0xXSkgPSBIX24oQikiXSxbMSwyXSxbMiwyLCJIX24oQykiXSxbNCwyLCJIX24gXFxjb25lKGYpIl0sWzYsMiwiSF97bn0oQlstMV0pID0gSF97bi0xfShCKSJdLFsyLDAsIlxcY2RvdHMiXSxbMiw0LCJcXGNkb3RzIl0sWzcsMF0sWzAsMiwiXFxkZWx0YV8qIl0sWzIsNCwiXFxiZCJdLFs0LDVdLFs1LDZdLFs2LDhdXQ==) \todo[inline]{Overflowing :(} :::{.lemma title="?"} The map $\bd = f_*$ ::: :::{.proof title="?"} Letting $b\in B_n$ is an $n\dash$cycle. 1. Lift $b$ to anything via $\delta$, say $(-b, 0)$. 2. Apply the differential $d$ to get $(db, fb) = (0, fb)$ since $b$ was a cycle. 3. Pull back to $C_n$ by the map $C\to \cone(f)$ to get $fb$. 4. Then the connecting morphism is given by $\bd[b] = [fb]$. But by definition of $f_*$, we have $[fb] = f_* [b]$. ::: :::