# Wednesday, February 03 :::{.remark} All rings have 1 in this course! ::: ## Horseshoe Lemma :::{.proposition title="Horseshoe Lemma"} Suppose we have a diagram like the following, where the columns are exact and the rows are projective resolutions: \begin{tikzcd} &&&&&&&& 0 \\ \\ \cdots && {P_2'} && {P_1'} && {P_0'} && {A'} && 0 \\ \\ &&&&&&&& A \\ \\ \cdots && {P_2''} && {P_1''} && {P_0''} && {A''} && 0 \\ &&&&&&&& {} \\ &&&&&&&& 0 \arrow["{\iota_A}", from=3-9, to=5-9] \arrow["{\eps'}", from=3-7, to=3-9] \arrow["{\eps''}", from=7-7, to=7-9] \arrow[from=7-9, to=9-9] \arrow["{\pi_A}", from=5-9, to=7-9] \arrow[from=3-5, to=3-7] \arrow[from=3-3, to=3-5] \arrow[from=3-1, to=3-3] \arrow[from=7-1, to=7-3] \arrow[from=7-3, to=7-5] \arrow[from=7-5, to=7-7] \arrow[from=3-9, to=3-11] \arrow[from=7-9, to=7-11] \arrow[from=1-9, to=3-9] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTYsWzgsMiwiQSciXSxbOCw0LCJBIl0sWzgsNiwiQScnIl0sWzgsOCwiMCJdLFsxMCwyLCIwIl0sWzYsMiwiUF8wJyJdLFs0LDIsIlBfMSciXSxbMiwyLCJQXzInIl0sWzAsMiwiXFxjZG90cyJdLFs2LDYsIlBfMCcnIl0sWzQsNiwiUF8xJyciXSxbMiw2LCJQXzInJyJdLFsxMCw2LCIwIl0sWzAsNiwiXFxjZG90cyJdLFs4LDddLFs4LDAsIjAiXSxbMCwxLCJcXGlvdGFfQSJdLFs1LDAsIlxcZXBzJyJdLFs5LDIsIlxcZXBzJyciXSxbMiwzXSxbMSwyLCJcXHBpX0EiXSxbNiw1XSxbNyw2XSxbOCw3XSxbMTMsMTFdLFsxMSwxMF0sWzEwLDldLFswLDRdLFsyLDEyXSxbMTUsMF1d) Note that if the vertical sequence were split, one could sum together to two resolutions to get a resolution of the middle. This still works: there is a projective resolution of $P$ of $A$ given by \[ P_n \da P_n' \oplus P_n'' \] which lifts the vertical column in the above diagram to an exact sequence of complexes \[ 0 \to P' \mapsvia{\iota} P \mapsvia{\pi} P'' \to 0 ,\] where $\iota_n: P_n' \injects P_n$ is the natural inclusion and $\pi_i: P_n \surjects P_n''$ the natural projection. ::: ### Proof of the Horseshoe Lemma We can construct this inductively: \begin{tikzcd} && 0 && 0 \\ \\ {\ker(\eps')} && {P_0'} && {A'} && 0 \\ \\ {\ker(\eps)} && \textcolor{rgb,255:red,92;green,92;blue,214}{P_0} && \textcolor{rgb,255:red,92;green,92;blue,214}{A} && {\coker(\eps)} \\ \\ {\ker(\eps'')} && {P_0''} && {A''} && 0 \\ \\ && 0 && 0 \arrow["{\varepsilon''}", from=7-3, to=7-5] \arrow["{\eta''}"', dashed, from=7-3, to=5-5] \arrow["\iota"', from=3-3, to=5-3] \arrow["\pi"', from=5-3, to=7-3] \arrow["{\iota_A}", from=3-5, to=5-5] \arrow["{\pi_A}", from=5-5, to=7-5] \arrow["{\varepsilon'}", from=3-3, to=3-5] \arrow["{\eta'}", from=3-3, to=5-5] \arrow[from=1-5, to=3-5] \arrow[from=1-3, to=3-3] \arrow[from=7-5, to=7-7] \arrow[from=3-5, to=3-7] \arrow[from=5-1, to=5-3] \arrow[from=7-1, to=7-3] \arrow[from=3-1, to=3-3] \arrow[from=7-3, to=9-3] \arrow[from=7-5, to=9-5] \arrow["\eta", color={rgb,255:red,92;green,92;blue,214}, from=5-3, to=5-5] \arrow[from=5-5, to=5-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTYsWzIsMCwiMCJdLFs0LDAsIjAiXSxbMiwyLCJQXzAnIl0sWzQsMiwiQSciXSxbMiw0LCJQXzAiLFsyNDAsNjAsNjAsMV1dLFs0LDQsIkEiLFsyNDAsNjAsNjAsMV1dLFsyLDYsIlBfMCcnIl0sWzQsNiwiQScnIl0sWzYsNiwiMCJdLFs2LDIsIjAiXSxbMCwyLCJcXGtlcihcXGVwcycpIl0sWzAsNCwiXFxrZXIoXFxlcHMpIl0sWzAsNiwiXFxrZXIoXFxlcHMnJykiXSxbMiw4LCIwIl0sWzQsOCwiMCJdLFs2LDQsIlxcY29rZXIoXFxlcHMpIl0sWzYsNywiXFx2YXJlcHNpbG9uJyciXSxbNiw1LCJcXGV0YScnIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsNCwiXFxpb3RhIiwyXSxbNCw2LCJcXHBpIiwyXSxbMyw1LCJcXGlvdGFfQSJdLFs1LDcsIlxccGlfQSJdLFsyLDMsIlxcdmFyZXBzaWxvbiciXSxbMiw1LCJcXGV0YSciXSxbMSwzXSxbMCwyXSxbNyw4XSxbMyw5XSxbMTEsNF0sWzEyLDZdLFsxMCwyXSxbNiwxM10sWzcsMTRdLFs0LDUsIlxcZXRhIiwwLHsiY29sb3VyIjpbMjQwLDYwLDYwXX0sWzI0MCw2MCw2MCwxXV0sWzUsMTVdXQ==) - $P_0''$ projective and $\pi_A$ surjective implies $\eps''$ lifts to $\eta'': P_0'' \to A$ - Composing yields $\eta' \da \iota_A \circ \eta': P_0' \to A$ - Get $\eps \da \eta' \oplus \eta'':P_0 \da P_0' \oplus P_0'' \to A$. Flipping the diagram, we can apply the snake lemma to the two columns: \begin{tikzcd} \textcolor{rgb,255:red,214;green,92;blue,92}{0} && 0 && 0 \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\ker(\eps')} && {P_0'} && {A'} && \textcolor{rgb,255:red,214;green,92;blue,92}{0} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\ker(\eps)} && \textcolor{rgb,255:red,92;green,92;blue,214}{P_0} && \textcolor{rgb,255:red,92;green,92;blue,214}{A} && \textcolor{rgb,255:red,214;green,92;blue,92}{\coker(\eps)} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\ker(\eps'')} && {P_0''} && {A''} && \textcolor{rgb,255:red,214;green,92;blue,92}{0} \\ \\ && 0 && 0 \arrow["{\varepsilon''}", from=7-3, to=7-5] \arrow["{\eta''}"', dashed, from=7-3, to=5-5] \arrow["\iota"', from=3-3, to=5-3] \arrow["\pi"', from=5-3, to=7-3] \arrow["{\iota_A}", from=3-5, to=5-5] \arrow["{\pi_A}", from=5-5, to=7-5] \arrow["{\varepsilon'}", from=3-3, to=3-5] \arrow["{\eta'}", from=3-3, to=5-5] \arrow[from=1-5, to=3-5] \arrow[from=1-3, to=3-3] \arrow[from=7-5, to=7-7] \arrow[from=3-5, to=3-7] \arrow[from=5-1, to=5-3] \arrow[from=7-1, to=7-3] \arrow[from=3-1, to=3-3] \arrow[from=7-3, to=9-3] \arrow[from=7-5, to=9-5] \arrow["\eta", color={rgb,255:red,92;green,92;blue,214}, from=5-3, to=5-5] \arrow[from=5-5, to=5-7] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=1-1, to=3-1] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=3-1, to=5-1] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=5-1, to=7-1] \arrow["\bd", color={rgb,255:red,214;green,92;blue,92}, squiggly, from=7-1, to=3-7, out=65, in=90] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=3-7, to=5-7] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=5-7, to=7-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTcsWzIsMCwiMCJdLFs0LDAsIjAiXSxbMiwyLCJQXzAnIl0sWzQsMiwiQSciXSxbMiw0LCJQXzAiLFsyNDAsNjAsNjAsMV1dLFs0LDQsIkEiLFsyNDAsNjAsNjAsMV1dLFsyLDYsIlBfMCcnIl0sWzQsNiwiQScnIl0sWzYsNiwiMCIsWzAsNjAsNjAsMV1dLFs2LDIsIjAiLFswLDYwLDYwLDFdXSxbMCwyLCJcXGtlcihcXGVwcycpIixbMCw2MCw2MCwxXV0sWzAsNCwiXFxrZXIoXFxlcHMpIixbMCw2MCw2MCwxXV0sWzAsNiwiXFxrZXIoXFxlcHMnJykiLFswLDYwLDYwLDFdXSxbMiw4LCIwIl0sWzQsOCwiMCJdLFs2LDQsIlxcY29rZXIoXFxlcHMpIixbMCw2MCw2MCwxXV0sWzAsMCwiMCIsWzAsNjAsNjAsMV1dLFs2LDcsIlxcdmFyZXBzaWxvbicnIl0sWzYsNSwiXFxldGEnJyIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsyLDQsIlxcaW90YSIsMl0sWzQsNiwiXFxwaSIsMl0sWzMsNSwiXFxpb3RhX0EiXSxbNSw3LCJcXHBpX0EiXSxbMiwzLCJcXHZhcmVwc2lsb24nIl0sWzIsNSwiXFxldGEnIl0sWzEsM10sWzAsMl0sWzcsOF0sWzMsOV0sWzExLDRdLFsxMiw2XSxbMTAsMl0sWzYsMTNdLFs3LDE0XSxbNCw1LCJcXGV0YSIsMCx7ImNvbG91ciI6WzI0MCw2MCw2MF19LFsyNDAsNjAsNjAsMV1dLFs1LDE1XSxbMTYsMTAsIiIsMCx7ImNvbG91ciI6WzAsNjAsNjBdfV0sWzEwLDExLCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dLFsxMSwxMiwiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF19XSxbMTIsOSwiXFxiZCIsMCx7ImNvbG91ciI6WzAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJzcXVpZ2dseSJ9fX0sWzAsNjAsNjAsMV1dLFs5LDE1LCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dLFsxNSw4LCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dXQ==) We can now conclude that - $\coker \eps = 0$ - $\bd = 0$ since it lands on the zero moduli So append a zero onto the far left column: \begin{tikzcd} \textcolor{rgb,255:red,214;green,92;blue,92}{0} && 0 && 0 \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\ker(\eps')} && {P_0'} && {A'} && \textcolor{rgb,255:red,214;green,92;blue,92}{0} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\ker(\eps)} && \textcolor{rgb,255:red,92;green,92;blue,214}{P_0} && \textcolor{rgb,255:red,92;green,92;blue,214}{A} && \textcolor{rgb,255:red,214;green,92;blue,92}{\coker(\eps)} \\ \\ \textcolor{rgb,255:red,214;green,92;blue,92}{\ker(\eps'')} && {P_0''} && {A''} && \textcolor{rgb,255:red,214;green,92;blue,92}{0} \\ \\ 0 && 0 && 0 \arrow["{\varepsilon''}", from=7-3, to=7-5] \arrow["{\eta''}"', dashed, from=7-3, to=5-5] \arrow["\iota"', from=3-3, to=5-3] \arrow["\pi"', from=5-3, to=7-3] \arrow["{\iota_A}", from=3-5, to=5-5] \arrow["{\pi_A}", from=5-5, to=7-5] \arrow["{\varepsilon'}", from=3-3, to=3-5] \arrow["{\eta'}", from=3-3, to=5-5] \arrow[from=1-5, to=3-5] \arrow[from=1-3, to=3-3] \arrow[from=7-5, to=7-7] \arrow[from=3-5, to=3-7] \arrow[from=5-1, to=5-3] \arrow[from=7-1, to=7-3] \arrow[from=3-1, to=3-3] \arrow[from=7-3, to=9-3] \arrow[from=7-5, to=9-5] \arrow["\eta", color={rgb,255:red,92;green,92;blue,214}, from=5-3, to=5-5] \arrow[from=5-5, to=5-7] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=1-1, to=3-1] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=3-1, to=5-1] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=5-1, to=7-1] \arrow[from=7-1, to=9-1] \arrow["\bd", color={rgb,255:red,214;green,92;blue,92}, squiggly, from=7-1, to=3-7, out=65, in=90] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=3-7, to=5-7] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=5-7, to=7-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTgsWzIsMCwiMCJdLFs0LDAsIjAiXSxbMiwyLCJQXzAnIl0sWzQsMiwiQSciXSxbMiw0LCJQXzAiLFsyNDAsNjAsNjAsMV1dLFs0LDQsIkEiLFsyNDAsNjAsNjAsMV1dLFsyLDYsIlBfMCcnIl0sWzQsNiwiQScnIl0sWzYsNiwiMCIsWzAsNjAsNjAsMV1dLFs2LDIsIjAiLFswLDYwLDYwLDFdXSxbMCwyLCJcXGtlcihcXGVwcycpIixbMCw2MCw2MCwxXV0sWzAsNCwiXFxrZXIoXFxlcHMpIixbMCw2MCw2MCwxXV0sWzAsNiwiXFxrZXIoXFxlcHMnJykiLFswLDYwLDYwLDFdXSxbMiw4LCIwIl0sWzQsOCwiMCJdLFs2LDQsIlxcY29rZXIoXFxlcHMpIixbMCw2MCw2MCwxXV0sWzAsMCwiMCIsWzAsNjAsNjAsMV1dLFswLDgsIjAiXSxbNiw3LCJcXHZhcmVwc2lsb24nJyJdLFs2LDUsIlxcZXRhJyciLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiw0LCJcXGlvdGEiLDJdLFs0LDYsIlxccGkiLDJdLFszLDUsIlxcaW90YV9BIl0sWzUsNywiXFxwaV9BIl0sWzIsMywiXFx2YXJlcHNpbG9uJyJdLFsyLDUsIlxcZXRhJyJdLFsxLDNdLFswLDJdLFs3LDhdLFszLDldLFsxMSw0XSxbMTIsNl0sWzEwLDJdLFs2LDEzXSxbNywxNF0sWzQsNSwiXFxldGEiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfSxbMjQwLDYwLDYwLDFdXSxbNSwxNV0sWzE2LDEwLCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dLFsxMCwxMSwiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF19XSxbMTEsMTIsIiIsMCx7ImNvbG91ciI6WzAsNjAsNjBdfV0sWzEyLDE3XSxbMTIsOSwiXFxiZCIsMCx7ImNvbG91ciI6WzAsNjAsNjBdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJzcXVpZ2dseSJ9fX0sWzAsNjAsNjAsMV1dLFs5LDE1LCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dLFsxNSw4LCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dXQ==) Thus the LHS column is a SES, and we have the first step of a resolution. Proceeding inductively, at the next step we have \begin{tikzcd} &&&& 0 \\ \\ \cdots && {P_1'} && {\ker(\eps')} && 0 \\ \\ &&&& {\ker(\eps)} \\ \\ \cdots && {P_1''} & {} & {\ker(\eps'')} && 0 \\ \\ &&&& 0 \arrow[from=1-5, to=3-5] \arrow[from=3-5, to=5-5] \arrow[from=5-5, to=7-5] \arrow[from=7-5, to=9-5] \arrow["{d_1'}", from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow[from=7-5, to=7-7] \arrow[from=7-1, to=7-3] \arrow[from=3-1, to=3-3] \arrow["{d_1''}", from=7-3, to=7-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTIsWzQsMCwiMCJdLFs0LDIsIlxca2VyKFxcZXBzJykiXSxbNCw0LCJcXGtlcihcXGVwcykiXSxbNCw2LCJcXGtlcihcXGVwcycnKSJdLFs0LDgsIjAiXSxbNiw2LCIwIl0sWzYsMiwiMCJdLFsyLDIsIlBfMSciXSxbMiw2LCJQXzEnJyJdLFszLDZdLFswLDYsIlxcY2RvdHMiXSxbMCwyLCJcXGNkb3RzIl0sWzAsMV0sWzEsMl0sWzIsM10sWzMsNF0sWzcsMSwiZF8xJyJdLFsxLDZdLFszLDVdLFsxMCw4XSxbMTEsN10sWzgsMywiZF8xJyciXV0=) However, this is precisely the situation that appeared before, so the same procedure works. :::{.exercise title="?"} Check that the middle complex is exact! Follows by construction. ::: ## Injective Resolutions :::{.definition title="Injective Objects"} Let \( \mathcal{A} \) be an abelian category, then \( I\in \mathcal{A} \) is **injective** if and only if it satisfies the following universal property: $A$ is projective if and only if for every monic $\alpha :A\to I$, any map $f:A\to B$ lifts to a map $B\to I$: \begin{tikzcd} 0 && A && B \\ \\ && I \arrow[from=1-1, to=1-3] \arrow["\alpha", from=1-3, to=3-3] \arrow["{\exists \beta}", dashed, from=1-5, to=3-3] \arrow["f", hook, from=1-3, to=1-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCIwIl0sWzIsMCwiQSJdLFs0LDAsIkIiXSxbMiwyLCJJIl0sWzAsMV0sWzEsMywiXFxhbHBoYSJdLFsyLDMsIlxcZXhpc3RzIFxcYmV0YSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsxLDIsImYiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==) We say \( \mathcal{A} \) **has enough injectives** if and only if for all $A$, there exists $A\injects I$ where $I$ is injective. ::: :::{.slogan} Maps on subobjects extend. ::: :::{.proposition title="Products of Injectives are Injective"} If $\ts{I_ \alpha}$ is a family of injectives and $I \da \prod_{\alpha} I_ \alpha \in A$, then $I$ is again injective. ::: :::{.proof title="?"} Use the universal property of direct products. ::: ## Baer's Criterion :::{.proposition title="Baer's Criterion"} An object $E \in \rmod$ is injective if and only if for every right ideal $J \normal R$, every map $J\to E$ extends to a map $R\to E$. Note that $J$ is a right $R\dash$submodule. ::: :::{.proof title="?"} $\implies$: This is essentially by definition. Instead of taking arbitrary submodules, we're just taking $R$ itself and *its* submodules: \begin{tikzcd} 0 && J && R \\ \\ && E \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=1-3, to=3-3] \arrow[dashed, from=1-5, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCIwIl0sWzIsMCwiSiJdLFs0LDAsIlIiXSxbMiwyLCJFIl0sWzAsMV0sWzEsMl0sWzEsM10sWzIsMywiIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) $\impliedby$: Suppose we have the following: \begin{tikzcd} 0 && A && B \\ \\ && E \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow["\alpha", from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCIwIl0sWzIsMCwiQSJdLFs0LDAsIkIiXSxbMiwyLCJFIl0sWzAsMV0sWzEsMl0sWzEsMywiXFxhbHBoYSJdXQ==) Let \( \mathcal{E}\da \ts{ \alpha': A' \to E \st A \leq A' \leq B } \), i.e. all of the intermediate extensions: \begin{tikzcd} 0 && A && \textcolor{rgb,255:red,214;green,92;blue,92}{A'} && B \\ \\ && E \arrow[from=1-1, to=1-3] \arrow["\alpha", from=1-3, to=3-3] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=1-3, to=1-5] \arrow[color={rgb,255:red,214;green,92;blue,92}, from=1-5, to=1-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCIwIl0sWzIsMCwiQSJdLFsyLDIsIkUiXSxbNCwwLCJBJyIsWzAsNjAsNjAsMV1dLFs2LDAsIkIiXSxbMCwxXSxbMSwyLCJcXGFscGhhIl0sWzEsMywiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF19XSxbMyw0LCIiLDAseyJjb2xvdXIiOlswLDYwLDYwXX1dXQ==) Add a partial order to \( \mathcal{E} \) where \( \alpha ' \leq \alpha'' \) if and only if \( \alpha'' \) extends \( \alpha' \). Applying Zorn's lemma (and abusing notation slightly), we can produce a maximal \( \alpha': A' \to E \). The claim is that $A' = B$. Supposing not, then $A'$ is a proper submodule, so choose a $b\in B \sm A'$. Then define the set \( J \da \ts{ r\in R \st br \in A' } \), this is a right ideal of $R$ since $A'$ was a right \(R\dash\)module. Now applying the assumption of Baer's condition on $E$, we can produce a map $f:R\to E$:C \begin{tikzcd} 0 && J && R \\ \\ && {A'} \\ \\ && E \arrow[from=1-1, to=1-3] \arrow["b\cdot\wait"', from=1-3, to=3-3] \arrow["{\alpha'}"', from=3-3, to=5-3] \arrow[from=1-3, to=1-5] \arrow["{\exists f}", dashed, from=1-5, to=5-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCIwIl0sWzIsMCwiSiJdLFsyLDIsIkEnIl0sWzIsNCwiRSJdLFs0LDAsIlIiXSxbMCwxXSxbMSwyLCJiXFxjZG90XFx3YWl0IiwyXSxbMiwzLCJcXGFscGhhJyIsMl0sWzEsNF0sWzQsMywiXFxleGlzdHMgZiIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) Now let $A'' \da A' + bR \leq B$, and provisionally define \[ \alpha'': A'' &\to E \\ a + br & \mapsto \alpha'(a) + f(r) .\] :::{.remark} Is this well-defined? Consider overlapping terms, it's enough to consider elements of the form $br\in A'$. In this case, $r\in J$ by definition, and so \( \alpha'(br) = f(r) \) by commutativity in the previous diagram, which shows that the two maps agree on anything in the intersection. ::: Note that \( \alpha'' \) now extends \( \alpha' \), but \( A' \subsetneq A'' \) since $b\in A''\sm A'$. But then $A''$ strictly contains $A'$, contradicting its maximality from Zorn's lemma. ::: :::{.remark} Big question: what *are* injective modules really? These are pretty nonintuitive objects. :::