# Monday, February 15 ## 2.5: Right-Derived Functors :::{.remark} Today: right-derived functors of a left-exact functor. Luckily we can use some opposite category tricks which save us some work of re deriving everything. ::: :::{.definition title="Right Derived Functors"} Let \( F: \cat{A} \to \cat{B} \) be left-exact where \( \cat{A} \) has enough injectives. Given \( A \in \cat{A} \), fix an injective resolution \( 0 \to A \mapsvia{\eps} I\) and define \[ R^i \cat{F} \da H^i( FA ) && i \geq 0 .\] ::: :::{.remark} Then \[ 0 \to FA \mapsvia{F\eps} FI^0 \mapsvia{Fd^0} FI^1 \] is exact, and \[ R^0 FA = \ker F(d^0) / \gens{ 0 } = \im F\eps \cong FA ,\] and so there is naturally an isomorphism $R^0 F \cong F$. Observe that \( F \) yields a right-exact functor $F\op: \cat{A}\op \to \cat{B}\op$, where we note that $F\op (f\op) = F(f)\op$. Note that taking the opposite category sends injectives to projectives and so \( \cat{A}\op \) has enough projectives. This means that $L_i F\op$ are defined using the projective resolution $I$, so we have \[ R^i F(A) = (L_i F\op)\op .\] Thus all results about left-derived functors translate to right-derived functors: - $R_i F$ is independent of the choice of injective resolution, up to a natural isomorphism. - If $A$ is injective, then $R^{i>0} F(A) = 0$. - The collection \( \ts{ R^i F } _{i\geq 0 } \) forms a universal cohomological \( \delta\dash \)functor for \( F \). - An object \( Q \in \cat{A} \) is **$F\dash$acyclic** if $R^{>0}F(Q) = 0$. - $R^iF$ can be computed using $F\dash$acyclic objects instead of injective resolutions. ::: :::{.definition title="?"} Fix a right \(R\dash\)module \( M \in \modr \), then $F \da \Hom_{\modr}(M, \wait): \modr \to \Ab$ is a left-exact functor. Its right-derived functors are **ext functors** and denoted $\Ext_{\modr}^i(M, \wait)$. ::: :::{.example title="?"} \[ \Ext_{\modr}^i(M, A) = (R^i F)(A) = [ R^i \Hom_{\modr}(M, \wait) ] (A) .\] ::: :::{.remark} Exercises 2.5.1, 2.5.2 are important extensions of our existing characterizations of injectives and projectives in $\modr$. These upgrade the characterization involving $\Hom$ to one involving $\Ext$. [^note_typo] [^note_typo]: Note the typo in 2.5.1.3, it should say the following: "$B$ is $\Hom_{R}(A, \wait)$ is acyclic for all $A$." ::: :::{.remark} Fix $B\in \modr$ and consider $G\da \Hom_{\modr}(\wait, B): \modr \to \Ab$. Then $G$ is still left-exact, but is now *contravariant*. We can regard it as a covariant functor left-exact functor $G: \modr \op \to \Ab$. So we define $R^i G(A)$ by an injective resolution of $A$ in \( \cat{A}\op \), and this is the same as a projective resolution of $A$ in \( \cat{A} \). So apply \( G \) and take cohomology. It turns out that \[ R^i \Hom_{\modr}(\wait, B) \cong R^i \Hom_{\modr}(A, \wait)(B) \da \Ext^i_{\rmod}(A, B) ,\] so we can use the same notation $\Ext^i_R(\wait, B)$ for both cases. ::: ## 2.6: Adjoint Functors and Left/Right Exactness :::{.slogan} $\wait$ adjoints are $\wait\op$ exact, since $\wait$ adjoints have $\wait\dash$derived functors. ::: :::{.theorem title="Exactness of adjoint functors"} Let \[ \adjunction{L}{R}{ \cat{A} } { \cat{B} } \] be an adjoint pair of functors. Then there exists a natural isomorphism \[ \tau_{AB}: \Hom_{\cat{B}}(LA, B) \mapsvia{\sim} \Hom_{\cat{A}}(A, RB) \quad \forall A\in \cat{A}, B\in \cat{B} .\] Moreover, - $L$ is right exact, and - $B$ is left exact. ::: :::{.proposition title="1.6: Yoneda"} A sequence \[ A \mapsvia{\alpha} B \mapsvia{\beta} C \] is exact in \( \cat{A} \) if and only if for all \( M \in \Ob( \cat{A} ) \), the sequence \[ \Hom_{\cat{A}} (M, A) \mapsvia{\alpha^* \da \alpha\circ \wait} \Hom_{\cat{A}} (M, B) \mapsvia{\beta^* \da \beta \circ \wait} \Hom_{\cat{A}} (M, C) \] is exact. ::: :::{.proof title="?"} \envlist 1. Take $M=A$, then $0 = \beta^* \alpha^*(\one_A) = \beta \alpha \one = \beta \alpha$. Thus $\im \alpha \subseteq \ker \beta$. 2. Take $M = \ker \beta$ and consider the inclusion \( \iota: \ker M \injects B \), then \( \beta^*(\iota) = \beta \iota = 0 \) and thus \( \iota \in \ker \beta^* = \im \alpha^* \). So there exists \( \sigma\in \Hom( \ker \beta, A) \) such that \( \iota = \alpha^* (\sigma) \da \alpha \sigma \), and thus \( \ker \beta = \im \iota \subset \im \alpha \). Thus $\ker \beta= \im \alpha$, yielding exactness of the bottom sequence. ::: :::{.proof title="of theorem"} We'll first prove that $R$ is left-exact. Take a SES in $B$, say \[ 0 \to B' \to B \to B'' \to 0 .\] Apply the left-exact covariant functor $\Hom_{\cat{B}}(LA, \wait)$ followed by $\tau$: \begin{tikzcd} 0 && { \Hom_{\cat{B}} (LA, B') } && { \Hom_{\cat{B}} (LA, B) } && { \Hom_{\cat{B}} (LA, B'')} \\ \\ 0 && {\Hom_{\cat{B}} (A, RB')} && {\Hom_{\cat{B} }(A, RB)} && {\Hom_{\cat{B}} (A, RB'')} \arrow[from=1-1, to=1-3] \arrow[from=1-3, to=1-5] \arrow[from=1-5, to=1-7] \arrow[from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow["{\tau_{AB}}"{description}, squiggly, from=1-3, to=3-3] \arrow["{\tau_{AB}}"{description}, squiggly, from=1-5, to=3-5] \arrow["{\tau_{AB}}"{description}, squiggly, from=1-7, to=3-7] \arrow[dashed, from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOCxbMCwwLCIwIl0sWzIsMCwiXFxIb21fe1xcY2F0e0J9KShMQSwgQicpIl0sWzQsMCwiXFxIb21fe1xcY2F0e0J9KShMQSwgQikiXSxbNiwwLCJcXEhvbV97XFxjYXR7Qn0pKExBLCBCJycpIl0sWzIsMiwiXFxIb21fe1xcY2F0e0J9KShBLCBSQicpIl0sWzQsMiwiXFxIb21fe1xcY2F0e0J9KShBLCBSQikiXSxbNiwyLCJcXEhvbV97XFxjYXR7Qn0pKEEsIFJCJycpIl0sWzAsMiwiMCJdLFswLDFdLFsxLDJdLFsyLDNdLFs0LDVdLFs1LDZdLFsxLDQsIlxcdGF1X3tBQn0iLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJzcXVpZ2dseSJ9fX1dLFsyLDUsIlxcdGF1X3tBQn0iLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJzcXVpZ2dseSJ9fX1dLFszLDYsIlxcdGF1X3tBQn0iLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJzcXVpZ2dseSJ9fX1dLFs3LDQsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) The bottom sequence is exact by naturality of $\tau$. Now applying the Yoneda lemma, we obtain an exact sequence \[ 0 \to \Hom_{\cat{A}}(A, RB') \to \Hom_{\cat{A}}(A, RB) \to \Hom_{\cat{A}}(A, RB'') .\] So $R$ is left exact. Now $L\op: \cat{A} \to \cat{B}$ is right adjoint to $R\op$, so $L\op$ is left exact and thus $L$ is right exact. ::: ## Tensor Product Functors and Tor :::{.remark} Let - $R, S \in \Ring$, - $B\in \bimod{R}{S}$, - $C\in \mods{S}$. Then $\Hom_{S}(B, C)\in \modr$ in a natural way: given $f:B\to C$, define $(f\cdot r)(b) = f(rb)$. ::: :::{.exercise title="?"} Check that this is a well-defined morphism of right \(S\dash\)modules. ::: :::{.remark} We saw this structure earlier with $S=\ZZ$, see p.41. ::: :::{.proposition title="Tensor-Hom adjunction"} Fix $R,S$ and ${}_R B_S$ as above. Then for every \( A \in \modr \) and \( C\in \mods\dash S \) there is a natural isomorphism \[ \tau: \Hom_S( A\tensor_R B, C ) &\mapsvia{\sim} \Hom_R(A, \Hom_S(B, C) ) \\ f &\mapsto g(a)(b) = f(a\tensor b) \\ f(a\tensor b) = g(a)(b) &\mapsfrom g .\] Note that the tensor product is a right $S\dash$module, and the hom on the right is a right \(R\dash\)module, so these expressions make sense. Here $B$ is fixed, so $A$ and $C$ are variables and this is a statement about bifunctors \[ \wait \tensor_R B: \modr \to \modsright{S} ,\] which is left adjoint to \[ \Hom_S(B, \wait): \modsright{S} \to \modr .\] So the former is a left adjoint and the latter is a right adjoint, so by the theorem, $\wait \tensor_R B$ is right exact. ::: :::{.remark} If $B$ is only a left \(R\dash\)module, we can always take $S = \ZZ$, which makes this into a functor \[ \wait \tensor_R B: \modr \to \Ab .\] Since this is a right exact functor from a category with enough injectives, we can define left-derived functors. ::: :::{.definition title="?"} Let $B\in \bimod{R}{S}$ and let \[ T(\wait) \da \wait\tensor_R B: \modr \to \modsright{S} .\] Then define $\Tor_n^R(A, B) \da L_n T(A)$. ::: :::{.remark} Note that these are easier to work with, since they're covariant in both variables. :::