# Friday, March 05 > See first 10m :::{.observation} For a SES \[ A_1 \mapsvia{\alpha} A_2 \mapsvia{f} B \mapsvia{g} C_1 \mapsvia{\gamma} C_2 ,\] one can obtain an exact sequence \[ 0\to \coker \alpha \mapsvia{\bar f} B \mapsvia{g} \ker \gamma \to 0 .\] ::: :::{.observation} For a SES \[ 0 \to Y \mapsvia{i} Z \mapsvia{\pi} {Z\over Y} \to 0 \] there is an induced exact sequence ::: Some missed stuff here. :::{.proof title="of Kunneth Formula (continued)"} Note that \[ 0\to \complex{Z} \tensor M \to \complex{P}\tensor M \to d\complex{P}\tensor M\to 0 ,\] where the differentials for the end terms are zero, and the homology will recover the original complex. \begin{tikzcd} &&&& {} && {H_{n+1}(dP \tensor M)= dP \tensor M} \\ \\ {} && {H_{n}(Z \tensor M) = Z\tensor M} && {H_{n}(P \tensor M)} && {H_{n}(dP \tensor M) = dP \tensor M} \\ \\ && {H_{n-1}(Z \tensor M) = Z_{n-1}\tensor M} \arrow[from=1-7, to=3-3, in=180, out=0] \arrow[from=3-3, to=3-5] \arrow[from=3-5, to=3-7] \arrow[from=3-7, to=5-3, in=180, out=0] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMCwyXSxbMiwyLCJIX3tufShaIFxcdGVuc29yIE0pID0gWlxcdGVuc29yIE0iXSxbNCwyLCJIX3tufShQIFxcdGVuc29yIE0pIl0sWzQsMF0sWzYsMCwiSF97bisxfShkUCBcXHRlbnNvciBNKT0gZFAgXFx0ZW5zb3IgTSJdLFs2LDIsIkhfe259KGRQIFxcdGVuc29yIE0pID0gZFAgXFx0ZW5zb3IgTSJdLFsyLDQsIkhfe24tMX0oWiBcXHRlbnNvciBNKSA9IFpfe24tMX1cXHRlbnNvciBNIl0sWzQsMV0sWzEsMl0sWzIsNV0sWzUsNl1d) By using the explicit formula for $\bd$, it turns out that \( \bd = (dP_{i+1} \injectsvia{i} Z) \tensor \one M \). By observation one, we get a SES \[ 0 \to {Z_n\tensor M \over dP_{n+1} \tensor M } \to H_n(P\tensor M) \to \ker i( \tensor \one_M) \to 0 .\] By observation 1, the first term equals $H_n(\complex{P})\tensor M$. From this, we get a flat resolution of $H_{n-1}(P)$: \begin{tikzcd} \textcolor{rgb,255:red,214;green,92;blue,92}{\deg:} & \textcolor{rgb,255:red,214;green,92;blue,92}{2} & \textcolor{rgb,255:red,214;green,92;blue,92}{1} & \textcolor{rgb,255:red,214;green,92;blue,92}{0} \\ 0 & 0 & {dP_n} & {Z_{n-1}} & {H_{n-1}(P)} & 0 \arrow[from=2-2, to=2-3] \arrow[from=2-3, to=2-4] \arrow[from=2-4, to=2-5] \arrow[from=2-5, to=2-6] \arrow[from=2-1, to=2-2] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTAsWzAsMSwiMCJdLFsxLDEsIjAiXSxbMSwwLCIyIixbMCw2MCw2MCwxXV0sWzIsMCwiMSIsWzAsNjAsNjAsMV1dLFszLDAsIjAiLFswLDYwLDYwLDFdXSxbMiwxLCJkUF9uIl0sWzMsMSwiWl97bi0xfSJdLFs0LDEsIkhfe24tMX0oUCkiXSxbNSwxLCIwIl0sWzAsMCwiXFxkZWc6IixbMCw2MCw2MCwxXV0sWzEsNV0sWzUsNl0sWzYsN10sWzcsOF0sWzAsMV1d) So we can use this to compute $\Tor(H_{n-1}(P), M)$ by taking homology: \begin{tikzcd} \textcolor{rgb,255:red,214;green,92;blue,92}{\deg} & \textcolor{rgb,255:red,214;green,92;blue,92}{2} & \textcolor{rgb,255:red,214;green,92;blue,92}{1} & \textcolor{rgb,255:red,214;green,92;blue,92}{0} \\ 0 & 0 & {dP_n \tensor M} & {Z_{n-1}\tensor M} & 0 \arrow[from=2-1, to=2-2] \arrow[from=2-2, to=2-3] \arrow["{i\tensor \one}", from=2-3, to=2-4] \arrow[from=2-4, to=2-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbMCwxLCIwIl0sWzEsMSwiMCJdLFsyLDEsImRQX24gXFx0ZW5zb3IgTSJdLFszLDEsIlpfe24tMX1cXHRlbnNvciBNIl0sWzQsMSwiMCJdLFszLDAsIjAiLFswLDYwLDYwLDFdXSxbMiwwLCIxIixbMCw2MCw2MCwxXV0sWzEsMCwiMiIsWzAsNjAsNjAsMV1dLFswLDAsIlxcZGVnIixbMCw2MCw2MCwxXV0sWzAsMV0sWzEsMl0sWzIsMywiaVxcdGVuc29yIFxcMSJdLFszLDRdXQ==) Thus \[ \ker(i\tensor \one_M) = \Tor_1( H_{n-1}(P), M) \cong \ker (dP_m \mapsvia{\bd} Z_{n-1} \tensor M) .\] ::: :::{.theorem title="Universal Coefficient Theorem"} Let $\complex{P}$ be a chain complex of free abelian groups. For every abelian groups $M$ and every $n$, the Kunneth sequence splits non-canonically as \[ H_n(\complex{P} \tensor M) \cong \qty{ H_n( \complex{P} )\tensor M } \oplus \Tor_1^{\ZZ}(H_{n-1}(P), M) .\] ::: :::{.remark} In optimal situations the tor term vanishes, e.g. if either term is torsionfree (so no elements of finite order). ::: :::{.fact} Every subgroup of a free abelian group is free (hence projective, hence flat). ::: :::{.proof title="?"} Since $dP_n \leq dP_{n-1}$, we can conclude $dP_n$ is free. Thus the following SES splits: \[ 0\to Z_n \to P_n \mapsvia{d} dP_n \to 0 .\] So any lift of the identity map on $dP_n$ gives an isomorphic copy of the last term in the middle term, yielding $P_n \cong Z_n \oplus dP_n$. Now tensoring with $M$ and using that it distributes over direct sums yields \[ P_n \tensor M \cong (Z_n \tensor M) \oplus (dP_n \tensor M) .\] The left-hand side contains a copy of $\ker(d_n \tensor \one: P_n \tensor M \to P_{n-1} \tensor M)$, which itself contains a copy of $Z_n\tensor M$. So by a linear algebra exercise, we have $\ker(d_n \tensor \one) \cong (Z_n \tensor M) \oplus A$ for some unknown $A$, and since $dP_{n+1} \tensor M = \im(d_{n+1}\tensor \one)$ is contained in the first term, we can use the partial exactness of tensoring to preserve quotients and obtain \[ H_n(P\tensor M) = \qty{ H_n(P) \tensor M} \oplus C' \] for some $C'$. Now applying the Kunneth formula we find that $C' = \Tor^\ZZ_1( H_{n-1}(P), M)$, yielding the claimed direct sum. ::: :::{.remark} The following is a generalization for both. ::: :::{.theorem title="Kunneth formula for complexes"} Let $P, Q \in \Ch(\rmod)$ be complexes, then \[ P\tensor Q \da \Tot^{\oplus}(P\tensor Q)_n \da \bigoplus_{p+q = n} P_p \tensor Q_q \] with differential[^sign_trick] \[ d(a\tensor b) = (da)\tensor b + (-1)^pa \tensor (db) .\] If $P_n, dP_n$ are flat for all $n$, then there exists a SES \[ 0 \to \bigoplus_{p+q=n} H_p(P)\tensor H_q(Q) \to H_n(P\tensor Q) \to \bigoplus_{p+q=n-1} \Tor^R_1(H_p(P), H_q(Q) ) \to 0 .\] [^sign_trick]: Recall that the squares would commute if we took the usual differentials, so we use a sign trick to get $d^2=0$. ::: :::{.proof title="?"} Omitted here, but uses same ideas as the previous proofs. Hint: take $Q$ to have $M$ in degree 0. ::: ## Applications to Topology :::{.definition title="Simplicial Homology"} See some applications in section 1 of Weibel, e.g. simplicial and singular homology. The setup: $X\in \Top, R\in \Ring$ unital, and for $k\geq 0$ let $S_k = S_k(X)$ be the free \(R\dash\)module on $\Hom_\Top( \Delta_k, X)$ where \( \Delta_k\) is the standard simplex By ordering the vertices, this induces an ordering on the faces by taking lexicographic ordering. Then the restriction of a map $\Delta_k \to X$ to the $i$th face of \( \Delta_k \) gives a map \( \Delta_{k-1} \to X \), which induces an \(R\dash\)module morphism $\bd_i: S_k \to S_{k-1}$ By summing these we can define \( d \da \sum_{i=0}^k (-1)^i \bd_i: S_k\to S_{k-1} \) and it turns out that $d^2 = 0$. So we can define a complex \[ \cdots \to S_2 \mapsvia{d} \to S_1\to S_0 \to 0 \in \Ch(\rmod) .\] Taking it homology yields the **simplicial homology** of the complex $H_n(X; R) \da H_n(\complex{S}(X) )$. ::: :::{.remark} Taking $R=\ZZ$ makes $S_k(X)$ a free abelian group. If $M$ is any abelian group, we can define $H_n(X; M) \da H_n( \complex{S}(X) \tensor_\ZZ M)$, the homology with **coefficients** in $M$. If no coefficients are specified, we write $H_n(X) \da H_n(X; \ZZ)$. There is then a universal coefficient theorem in topology: \[ H_n(X; M) \cong \qty{ H_n(X) \tensor_\ZZ M} \oplus \Tor_1^\ZZ( H_{n-1}(X), M) .\] ::: :::{.remark} Next week: group cohomology, spectral sequences next week. This will give us some objects to apply spectral sequences. :::