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1 ‘ Monday, July 12

Talk: Danny Krashen

" 1.1 Intro ~

Fix a field ko € Field, we’ll consider extensions k € Field .

— 1.2 Galois Cohomology ~

Definition 1.2.1 (Galois Cohomology)
For M € Gx-Mod for Gy the Galois group of k € Field 5, we can take invariants MGk, The

functor —C* is left-exact, so we define

Ha(Gr; —) =R (=)

Remark 1.2.2: Note that the tensor product on Gg-Mod induces a cup product on H¢,;. An
important example of coefficients is M = u$™, where uf” == Z/n. Tt is known that Hg, (Gr; u®°) =
Z/n.
We'll define symbols

(a1, @) = (a1) — -+ — (an) € Heu(k, ug™),

which are in fact generators. To remember the £, we write (a1, a2, ,ap)p.

Remark 1.2.3: Galois cohomology is a special case of étale cohomology, where for M € Gx-Mod,
Héa (G M) = Hgi (ks M) = Hg (Spec k; M).

Etale cohomology works for schemes other than just Spec k.

e 1.3 Milnor K-Theory ~
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Definition 1.3.1 (7)
Given k € Field, define

K (k) = DKM (k)
=1

where

o KN(k)=7
o KM(k) = k™, written additively as elements {a} on the left-hand side, so {a} + {b} =

{ab}.

o It’s generated by K} (k), with products written by concatenation:

{1, yan} = {a1} {aa} -+ {an}
o The only relations are {a,b} = 0 when a + b = 1, motivated by
(a,b)e =0 € Hpy(k; u5?) <= a+b=1.
e There is a map

K§' (k) — H (k; )
{a} = (a),

and the Norm-Residue isomorphism (formerly the Bloch-Kato conjecture) states
that this is an isomorphism after modding out by /, i.e.

Ko (k) /€ = Hey(k; 15°).
— 1.4 Witt Ring ~

Remark 1.4.1: Assume chk # 2, so there is a correspondence between quadratic forms and
symmetric bilinear forms given by polarization:

Quadratic forms = Symmetric bilinear forms

ap(x) == b(z,x) < b(z,y)

4 byl 9) = 3 (ol + ) — a(@) ~ aly).

So we’ll identify these going forward and write g for an arbitrary symmetric bilinear form or a
quadratic form. We say ¢ is nondegenerate if there is an induced isomorphism:

vy
v = bg(v, —).
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Note that a symmetric bilinear form q on V can be
regarded as an element of Sym?*(V'V).

Definition 1.4.2 (The Witt Ring)

Let QuadForm ;. be the category of pairs (V,q) with V' € Vect /i @ k-vector space and ¢ €
Sme(VV) representing a quadratic form on V. The Witt ring is generated as a group by
isomorphism representing a quadratic form on V.

B Y/ <{[(V, q)] € QuadForm/k}>
Wik) = (qhyps (@1 + q2) — (@1 L g2)) € AbGrp.

where the hyperbolic form is defined as guyp(2,y) = xy. The ring structure is given by the
tensor product (a.k.a. Kronecker product of forms).

Remark 1.4.3: Noting that Galois cohomology lives mod ¢ for various ¢, here Kg/[(k:) lives over Z.
So Milnor K-theory relates all of the various mod ¢ Galois cohomologies together.

Definition 1.4.4 (Fundamental ideals and Pfister Forms)
The fundamental ideal I(k) < W (k) is the ideal of even dimensional forms, and set I" (k) =
(I(k))™. There is a map

K (k) — I"(k)/ I+ (k)

{alaa2a"' ,(Ln} = <<a17a27"' aan>>7

which follows from Gram-Schmidt: any form can be diagonalized g = Z aixg, which we can
write as (a1, az, -+ ,a,). We can define the n-fold Pfister forms

({a)) = ((1,=a))

<<a’17 az,:-- 7an>>

[T ({as)) -

=1

Remark 1.4.5: The Milnor conjecture (proved by Voevodsky et al) states that the above map
is an isomorphism after modding out by 2, so

KM (k)/2 = I"(k)/T" ().
Moreover, the LHS is isomorphic to H"(k, ). There are interesting maps going the other way

I™(k) — I"(k) /I (k) = H™(k, 12)

Upshot: this is surjective — any mod 2 cohomology class comes from a quadratic form, and thus we
can reason about cohomology by reasoning about quadratic forms.

— 1.5 Motivic Cohomology ~
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Remark 1.5.1: Motivic cohomology relates the various mod ¢ cohomologies together much like
KM, but additionally relates different twists. In particular, it relates various H, (k; u?] ), where
Milnor K-theory interprets this “diagonally” when ¢ = j. This works by constructing motivic
complexes

Z(m) € Ch(grlgsmSch/k),

which are complexes of presheaves on smooth k-schemes, usually considered in the Zariski, étale,
or Nisnevich topologies. ~

Remark 1.5.2: Zariski hypercohomology is defined as
H"(X;Z(m)) = H"™(X;Z) = H}} ot (X;Z(m)) for X = Speck.

These relate to Galois cohomology in the following ways:

There is a quasi-isomorphism u?m W, Z/6(n) in the étale topology.
There is an isomorphism H?, (k,Z(n)) = KM (k).

zar

o Bloch-Kato identifies H, (X;Z/0(n)) = H(X;Z/l(n)). e
" 1.6 Dimension ~
Remark 1.6.1: There are a number of competing notions for the “dimension” of a field. Ve

Definition 1.6.2 (Dimension of a field)
If k is finitely generated over either a prime field or an algebraically closed field, we say

[k : koler ko = ko

dim(k) = { [k : kol + 1 ko finite
[k‘ : kO]tr +2 k:o = Q

Definition 1.6.3 (Cohomological dimension)
We define its cohomological dimension cohdim(k), which is at most n if H"(Gx; M) =0
for all m > n and M torsion,

cohdim(k) := min {n ‘ cohdim(k) < n} .

Equivalently, cohdim(k) = n <= there exists a torsion M with H"(Gy; M) # 0 and
H"™(Gp; M) =0 for all m > n.

Remark 1.6.4: cohdim(k) = dim(k) if k is finitely generated or a finite extension of kg = ko, or if
k is finitely generated over Q and has no real orderings. So if k has orderings, cohdim(k) = oo. e

1.6 Dimension 6
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Definition 1.6.5 (Diophantine Dimension)
We say k is C,, if for d > 0 and m > d", then every homogeneous polynomials of degree d in
m variables has a nontrivial root.

ddim(k) = min {n | k is C, }

Example 1.6.6 (?): If k is finitely generated or finite over ky = k¢, then

ddim(k) = dim(k) = cohdim(k).

Definition 1.6.7 (7),-rank)

We say k is T, if for every di,ds,--- ,d, > 0 and every system of polynomial equations
fi=---= fr =0 with deg f; = d; in m variables, with m > Zd? Then the T,-rank is
defined as

T,,- rank(k) := min {n ‘ k is Tn} .

Question 1.6.8
Note that T,, = C,, so T,-rank(k) > ddim(k), when are they equal? This is likely unknown.

Remark 1.6.9: There is a famous example of a field k with cohdim(k) = 1 but ddim(k) = oo.

Question 1.6.10
Is it true that ddim(k) > cohdim(k)? Serre showed that this holds when cohdim is replaced by
cohdims, the 2-primary part — does this hold for all p? These are both open.

Why would one expect this to be true?

Remark 1.6.11: A recent result: cohdim, grows at most linearly in ddim, with slope not 1 but
rather ~ log, p. These questions say that if an equation has enough variables then there is a solution,
but why should this be reflected in cohomology? To show this bound, one would want to show that
given some a € H*(k), there exists a polynomial f, where if f, has a root and a = 0 in homology.
In special cases, we were able to come up with such polynomials. When « is a symbol, this is closely
related to norm warieties which have a point iff « is split. One might optimistically hope these are
described as hypersurfaces, from which answers to the above would follow, but they turn out to not
have such a concrete realization.

1.7 Structural Problems in Galois
Cohomology
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Remark 1.7.1: Here we’ll describe the problems we need help with! Perhaps insight from motivic
cohomology will lend insight to them. We’ll write H*(k) := H'(k; /1,2@]). A~

1.7.1 Period-Index Problems
Definition 1.7.2 (An extension splitting a cohomology class)
If a € H'(k), we say L, splits « if

al, =0¢€ H'(L).

Definition 1.7.3 (7)
We define the index

ind a = ged {[L : k] ‘ L, finite and splits a} .
and the period of a as its (group-theoretic) order H'(k). Note that pera < /.

Remark 1.7.4: One can show that pera | ind v, and ind v | (per &)™ for some m. e

Question 1.7.5
For a fixed k£ and ¢, 7, ¢, which is the minimum m such that

inda | (pera)™?

Alternatively, what is the minimum m such that ind o | £™?

Conjecture 1.7.6.
If ddim(k) = n (or dim(k) = n since k is finitely generated) with a € H?(k, ), then

ind o | (pera)™!

Remark 1.7.7: Even in this case, no known bound is known for k = Q(;ﬁ), for any choice of £. How
complicated can the cohomology class be? The rough idea is that for H*(k) with ¢ near dim k, this
should have a small index and if ¢ = dim k£ then per k = ind k. &

Remark 1.7.8: We know per = ind for any number field for classes in H?(Spec k; uy ), with or
without roots. 7

1.7.2 Symbol Length Problem

Remark 1.7.9: We know H"(k, ,u?") is generated by symbols (a1, az,- - ,ay). We can use symbol
length to measure complexity, leading to the following: A

1.7 Structural Problems in Galois Cohomology 8
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Question 1.7.10
Given k,n, what is the minimal number m such that every o € H" (k) is a sum of no more than m
symbols. I.e. how easy is it to write a?

Remark 1.7.11: We’d like a bound in terms of ddim(k) and dim(k). One can construct fields
needing arbitrarily long symbols, but perhaps for finite dimensional fields, one feels there should
be a bound. Danny feels that there may not be such a bound once n > 4.

Remark 1.7.12: What’s known: for number fields (or global fields, i.e. a reasonable notion of
dimension with dim k& = 2) which lie over finitely generated or prime fields and have a primitive /th
root of unity, we know every class in H? can be written as exactly one symbol.

Remark 1.7.13: A result of Malgri (?7): assuming we have roots of unity, if £ = p, then for H?
one needs at most zf(pddlm(k)_1 — 1) symbols. If ddim(k) < oo this yields a bound, and conjecturally
this shouldn’t depend on 777

For higher degree cohomology, we know almost nothing except for special cases of H* for “3-
dimensional” p-adic curves.

Remark 1.7.14: If one can bound the symbol length, one can uniformly write down a generic
element in cohomology as a sum of at most n symbols. The inability to be able to write down
a general form of a cohomology class for a given field is what makes this difficult — they have
“complexity” that isn’t necessarily bounded in a known way.

2 ‘ Tuesday, July 13

Remark 2.0.1: Fix a kg € Field.

Outline

o Arithmetic problems: consider “complexity” of cohomology or algebraic structures (Witt
group, symbol length, index of classes).

— Examples were ddim, cohdim, the period-index problem, the period-symbol length prob-
lem, which we saw last time.

o Algebraic structure problems: describe (algebraic) structural features of the class of all field
extensions k € Field .

Today we’ll describe a way to connect these using a notion of essential dimension. Computing this
is difficult in general, but finding lower/upper bounds can be tractable. We’ll get upper bounds
from canonical dimensions, and lower bounds from cohomological invariants.

Tuesday, July 13 9
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Remark 2.0.2: For a particularly concrete problem, consider
a € H?(k; pe) C H?(k; G () = Br(k)[¢),
i.e. this is a subgroup of the ¢-torsion of the Brauer group. Suppose we know
inda = gcd{[L s k] ‘ ar, :0} :min{[L : K| ’ ar, :0},

where the last equality holds in the special case of Br(k). If k contains a primitive ¢th root of unity,
we can identify py = Z/¢ = u$?, and thus identify

H?(k; pg) = H? (ks 1§%) = K3' (k) /L.

So we can write « = a1 + - - - + @, as a sum of symbols with «; = (b;, ¢;)¢ with b, ¢; € k*.

Question 2.0.3
How big does n have to be?

Remark 2.0.4: It follows from “the literature” (after stringing several results together) that there
almost exists an absolute bounds depending only on £,n but not k. However, we do not know what
this bound actually is. There are some known cases:

e /=n=2,3: r <1, so only one symbol is needed.

e { =n =4: probably r < 4.

e /=2 n=4:r <2, a classical results on central simple algebras.
e (=2n=8:1r<4

Remark 2.0.5: It turns out that if & contains a field ky with ddim ky < oo, one can produce
an explicit bound. Given some o € H 2(k:; we) we can find some kg € L C k with L finitely
generated over ko and [L : kglyy depending only on the period ¢ and index n, such that o €

im (H2(L; ) — H?(k; p)).

Slogan 2.0.6
Central simple algebras of a given period and index have finite essential dimension.

An important property is that
ddim L < ddim kg + [L : kO]tr-

Recall that we can bound the symbol length in H?(k; ) in terms of ddim L. The idea is that
we can bound the transcendence degree in terms of ¢,n. This bound can be made very explicit,
although it’s not tight: for £ = 2,n = 8, it’s 2!7+4dimko _ 1 This is an improvement over kg = Q
though, where it’s known there’s a bound but it can’t be written down. The lower bound is very
low: it is hard to show a symbol can not be written with very few symbols.

Tuesday, July 13 10



I Tuesday, July 13

" 2.1 Pfister Form ~

Remark 2.1.1: Recall W (k), whose elements are isometry classes of nondegenerate quadratic forms
with addition given by perpendicular sum and the Kronecker product. There is a hyperbolic form zy,
or 22 — y? in ch k # 2, which we can write as (1,—1), and a fundamental ideal of even-dimensional
forms (1, —a) = ({(a)). We write

((ar,a,- -+, an)) = ((a1)) ((a2)) - - - ({an)) € I"(k),

which in fact generate I"(k).

Question 2.1.2
Given ¢ € I"(k) of dimension d, we know we can write ¢ ~ ¢; L --- L g, where g; are n-fold Pfister
forms. How many are needed? Is this number even bounded?

Theorem 2.1.3((Vishik)).
If d < 2" + 2" ! then r is bounded by some small number.

Remark 2.1.4: For d > 2" + 2”71 it’s not so clear, although it is bounded when n > 3. Why is
n < 3 easy and n > 4 hard?

Remark 2.1.5: Consider the following objects:

« H?(k;p)

o Br(k)

. W(k)

o I"(k)

o g€ I"(k) with dimg=4d

These can all be viewed as functors Field ,, — Set taking field extensions to sets.

Definition 2.1.6 (Essential dimension of a functor)
Given a functor f and a € F(k), define

essdim(a/) = min {[L 2 ko)tr

o € im(F(L) — F(k))}
essdim(F') = min {essdim(a) ‘ a € F(k) Vk/ko} .

Definition 2.1.7 (Versal)
Given a functor F : Alg/k0 — Set, we say « € F(R) is versal if for every 5 € F(K), for any

k /iy, there exists a morphism R — k such that 3 is the image of a under F(R) — F(k).

2.1 Pfister Form 11
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Observation 2.1.8
If there exists a versal a € F(R) then krulldim R > essdim(F’), so the essential dimension is bounded
above by the Krull dimension.

Example 2.1.9(?): Let F(k) be the set of quadratic forms of dimension n over k, then essdim F' =

n. Every such ¢ can be diagonalized to yields ¢ ~ (aj,as9,--- ,a,) which is defined over L =
ko(ai,asz,- - ,a,). Alternatively,
q = <$1,ZL’2, e 7xn> /k(][xitlaxg:lv e 7567:‘1:1]

is versal. Thus every such quadratic form comes from “specializing”.

Considering now the fundamental ideals, the Milnor conjectures yield an isomorphism I™/1""! =
H"(k; u2), so there is a SES
1 — I 1™ & (ks pg) — 1.
Thus a quadratic form ¢ of dimension d in I"*! is equivalent to ¢ € I" such that e,(q) = 0.
— 2.2 Canonical Dimension ~

Definition 2.2.1 (Canonical Dimension)
This is a generalization of essdim. Letting k/;,, suppose F': Field . — Set, is a functor now

2.2 Canonical Dimension 12
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from extensions of k (not ko) into pointed sets. For a € F'(k), define a new functor

B (L) = 0 ar, # pt
¢ ' {pt} ap, = pt,

and define the canonical dimension

candim(a) = essdim(F(a)).

Remark 2.2.2: This measures how many parameters are needed to trivialize/split a. To have
candim(a) < r means that if @ = pt means the following: if a;, = pt then there exists an F with
k C E C L with [E : k], < r such that ap = pt.

Definition 2.2.3 (Generic splitting scheme)
Given F' as above and a € F'(k), we say an X € Sch, is a generic splitting scheme for « if

ar =0 < X(L) #0.
Remark 2.2.4: So this encodes triviality of « into polynomial equations.

Example 2.2.5(?): If X is a generic splitting scheme for « finite type over L implies candim(a) <
dim X.

Question 2.2.6 ' ‘
Does there exists a finite type generic splitting scheme for cohomology classes in H*(k; HZ@ )?

Remark 2.2.7: We do know this in special cases:

e 7 =1: Yes, these are etale algebras, so finite schemes over k.
e i =2: Yes, Danny shows these exist for all twists.

— j = 1: Classical, these are Severi-Brauer varieties.

e For symbols, i = 3,j = 2, a prime: see Merkurjev-Suslin

e For symbols, i =4,j = 3,¢ = 3: see Albert algebras

o For symbols, £ prime: this can be done up to prime-to-£ extensions, see Rost’s “Norm Varieties”.
Related to Bloch-Kato conjecture.

e For symbols, £ = 2: see Pfister quadrics.

Remark 2.2.8: Upshot: if there exists generic splitting schemes for classes in H i(k; u2) for i > 3,
one could bound Pfister numbers and thus essdim. Write Z] (k) to be the set of quadratic forms of
dimension d in I", then essdim(Z}) < oo would imply that if ¢ € Z} (k) for k D ko then ¢ would be
defined over some L, with [L : koly < oo.

If we knew that ddim kg < oo, e.g. if ko contains a finite field, this yields a bound on ddim L and
thus on cohdim L. If there is a versal element in o € 7], then a needs some finite number m of

2.2 Canonical Dimension 13
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Pfister forms to be written. Everything else is a specialization of «, so the length m will almost
give an upper bound.

AWarning 2.2.9
This may seem like a correct argument, but it is not! A problem arises where you may have
denominators — specialization can get worse, but only a finite number of times, which is how the
actual argument goes.

Remark 2.2.10: If you knew the essential dimensions were finite with some given bound, and
some general period-index conjecture were known, these would give bounds on symbol length in
H i(L; w2). There’s an argument pushing things into higher powers of the fundamental ideal, thus
higher degree cohomology, which disappear at some point and yield a bound. Motives enter the
picture in terms of the tools used to attack these problems.

2.2 Canonical Dimension 14



	Table of Contents
	Monday, July 12
	Intro
	Galois Cohomology
	Milnor K-Theory
	Witt Ring
	Motivic Cohomology
	Dimension
	Structural Problems in Galois Cohomology
	Period-Index Problems
	Symbol Length Problem


	Tuesday, July 13
	Pfister Form
	Canonical Dimension


