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1 Monday, July 12

Talk: Danny Krashen

E 1.1 Intro e

Missed first 13m

Fix a field k0 ∈ Field, we’ll consider extensions k ∈ Field/k0 .

E 1.2 Galois Cohomology e

Definition 1.2.1 (Galois Cohomology)
For M ∈ Gk-Mod for Gk the Galois group of k ∈ Field/k0 , we can take invariants MGk . The
functor −Gk is left-exact, so we define

H∗Gal(Gk;−) := R∗(−)Gk .

Remark 1.2.2: Note that the tensor product on Gk-Mod induces a cup product on H∗Gal. An
important example of coefficients isM = µ⊗m` , where µ⊗0

` := Z/n. It is known that H∗Gal(Gk;µ⊗0) =
Z/n.

We’ll define symbols

(a1, · · · , an) := (a1) ^ · · ·^ (an) ∈ H∗Gal(k, µ⊗n` ),

which are in fact generators. To remember the `, we write (a1, a2, · · · , an)`.

Remark 1.2.3: Galois cohomology is a special case of étale cohomology, where for M ∈ Gk-Mod,

Hn
Gal(Gk;M) = Hn

ét(k;M) = Hn
ét(Spec k;M).

Étale cohomology works for schemes other than just Spec k.

E 1.3 Milnor K-Theory e
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1 Monday, July 12

Definition 1.3.1 (?)
Given k ∈ Field, define

KM
∗ (k) :=

∞⊕
i=1

KM
i (k)

where

• KM
0 (k) = Z

• KM
1 (k) = km, written additively as elements {a} on the left-hand side, so {a}+ {b} :=
{ab}.

• It’s generated by KM
1 (k), with products written by concatenation:

{a1, · · · , an} = {a1} {a2} · · · {an} .

• The only relations are {a, b} = 0 when a+ b = 1, motivated by

(a, b)` = 0 ∈ H2
Gal(k;µ⊗2

` ) ⇐⇒ a+ b = 1.

• There is a map

KM
0 (k)→ H∗ét(k;µ⊗0

` )
{a} 7→ (a),

and the Norm-Residue isomorphism (formerly the Bloch-Kato conjecture) states
that this is an isomorphism after modding out by `, i.e.

KM
0 (k)/` ∼−→ H∗ét(k;µ⊗0

` ).

E 1.4 Witt Ring e

Remark 1.4.1: Assume ch k 6= 2, so there is a correspondence between quadratic forms and
symmetric bilinear forms given by polarization:

Quadratic forms
 Symmetric bilinear forms
qb(x) := b(x, x) 7→b(x, y)

q 7→ bq(x, y) := 1
2 (q(x+ y)− q(x)− q(y)) .

So we’ll identify these going forward and write q for an arbitrary symmetric bilinear form or a
quadratic form. We say q is nondegenerate if there is an induced isomorphism:

V
∼−→ V ∨

v 7→ bq(v,−).

1.3 Milnor K-Theory 4



1 Monday, July 12

Note that a symmetric bilinear form q on V can be
regarded as an element of Sym2(V ∨).

Definition 1.4.2 (The Witt Ring)
Let QuadForm/k be the category of pairs (V, q) with V ∈ Vect/k a k-vector space and q ∈
Sym2(V ∨) representing a quadratic form on V . The Witt ring is generated as a group by
isomorphism representing a quadratic form on V .

W (k) =
Z
〈{

[(V, q)] ∈ QuadForm/k

}〉
〈qhyp, (q1 + q2)− (q1 ⊥ q2)〉 ∈ AbGrp.

where the hyperbolic form is defined as qhyp(x, y) = xy. The ring structure is given by the
tensor product (a.k.a. Kronecker product of forms).

Remark 1.4.3: Noting that Galois cohomology lives mod ` for various `, here KM
0 (k) lives over Z.

So Milnor K-theory relates all of the various mod ` Galois cohomologies together.

Definition 1.4.4 (Fundamental ideals and Pfister Forms)
The fundamental ideal I(k) E W (k) is the ideal of even dimensional forms, and set In(k) :=
(I(k))n. There is a map

KM
n (k)→ In(k)/In+1(k)

{a1, a2, · · · , an} 7→ 〈〈a1, a2, · · · , an〉〉 ,

which follows from Gram-Schmidt: any form can be diagonalized q ∼=
∑

aix
2
i , which we can

write as 〈a1, a2, · · · , an〉. We can define the n-fold Pfister forms

〈〈a〉〉 := 〈〈1,−a〉〉

〈〈a1, a2, · · · , an〉〉 :=
n∏
i=1
〈〈ai〉〉 .

Remark 1.4.5: The Milnor conjecture (proved by Voevodsky et al) states that the above map
is an isomorphism after modding out by 2, so

KM
n (k)/2 ∼−→ In(k)/In+1(k).

Moreover, the LHS is isomorphic to Hn(k, µ2). There are interesting maps going the other way

In(k)→ In(k)/In+1(k) ∼−→ Hn(k, µ2)

Upshot: this is surjective – any mod 2 cohomology class comes from a quadratic form, and thus we
can reason about cohomology by reasoning about quadratic forms.

E 1.5 Motivic Cohomology e

1.5 Motivic Cohomology 5



1 Monday, July 12

Remark 1.5.1: Motivic cohomology relates the various mod ` cohomologies together much like
KM
∗ , but additionally relates different twists. In particular, it relates various H i

ét(k;µ⊗j` ), where
Milnor K-theory interprets this “diagonally” when i = j. This works by constructing motivic
complexes

Z(m) ∈ Ch(Sh
pre

smSch/k),

which are complexes of presheaves on smooth k-schemes, usually considered in the Zariski, étale,
or Nisnevich topologies.

Remark 1.5.2: Zariski hypercohomology is defined as

Hn(X;Z(m)) = Hn,m(X;Z) = Hn
mot(X;Z(m)) for X := Spec k.

These relate to Galois cohomology in the following ways:

• There is a quasi-isomorphism µ⊗m`
∼W−−→ Z/`(n) in the étale topology.

• There is an isomorphism Hn
zar(k,Z(n)) ∼−→ KM

n (k).
• Bloch-Kato identifies H∗zar(X;Z/`(n)) ∼−→ Hn

ét(X;Z/`(n)).

E 1.6 Dimension e

Remark 1.6.1: There are a number of competing notions for the “dimension” of a field.

Definition 1.6.2 (Dimension of a field)
If k is finitely generated over either a prime field or an algebraically closed field, we say

dim(k) =


[k : k0]tr k0 = k0

[k : k0]tr + 1 k0 finite
[k : k0]tr + 2 k0 = Q.

Definition 1.6.3 (Cohomological dimension)
We define its cohomological dimension cohdim(k), which is at most n if Hn(Gk;M) = 0
for all m > n and M torsion,

cohdim(k) := min
{
n
∣∣∣ cohdim(k) ≤ n

}
.

Equivalently, cohdim(k) = n ⇐⇒ there exists a torsion M with Hn(Gk;M) 6= 0 and
Hm(Gk;M) = 0 for all m > n.

Remark 1.6.4: cohdim(k) = dim(k) if k is finitely generated or a finite extension of k0 = k0, or if
k is finitely generated over Q and has no real orderings. So if k has orderings, cohdim(k) =∞.

1.6 Dimension 6
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Definition 1.6.5 (Diophantine Dimension)
We say k is Cn if for d > 0 and m > dn, then every homogeneous polynomials of degree d in
m variables has a nontrivial root.

ddim(k) := min
{
n
∣∣∣ k is Cn

}
.

Example 1.6.6(?): If k is finitely generated or finite over k0 = k0, then

ddim(k) = dim(k) = cohdim(k).

Definition 1.6.7 (Tn-rank)
We say k is Tn if for every d1, d2, · · · , dr > 0 and every system of polynomial equations
f1 = · · · = fr = 0 with deg fi = di in m variables, with m >

∑
dni . Then the Tn-rank is

defined as

Tn- rank(k) := min
{
n
∣∣∣ k is Tn

}
.

Question 1.6.8
Note that Tn =⇒ Cn, so Tn- rank(k) ≥ ddim(k), when are they equal? This is likely unknown.

Remark 1.6.9: There is a famous example of a field k with cohdim(k) = 1 but ddim(k) =∞.

Question 1.6.10
Is it true that ddim(k) ≥ cohdim(k)? Serre showed that this holds when cohdim is replaced by
cohdim2, the 2-primary part – does this hold for all p? These are both open.

Why would one expect this to be true?

Remark 1.6.11: A recent result: cohdimp grows at most linearly in ddim, with slope not 1 but
rather ≈ log2 p. These questions say that if an equation has enough variables then there is a solution,
but why should this be reflected in cohomology? To show this bound, one would want to show that
given some α ∈ H∗(k), there exists a polynomial fα where if fα has a root and α = 0 in homology.
In special cases, we were able to come up with such polynomials. When α is a symbol, this is closely
related to norm varieties which have a point iff α is split. One might optimistically hope these are
described as hypersurfaces, from which answers to the above would follow, but they turn out to not
have such a concrete realization.

E
1.7 Structural Problems in Galois

Cohomology e

1.7 Structural Problems in Galois Cohomology 7
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Remark 1.7.1: Here we’ll describe the problems we need help with! Perhaps insight from motivic
cohomology will lend insight to them. We’ll write H i(k) := H i(k;µ⊗j` ).

1.7.1 Period-Index Problems

Definition 1.7.2 (An extension splitting a cohomology class)
If α ∈ H i(k), we say L/k splits α if

α|L = 0 ∈ H i(L).

Definition 1.7.3 (?)
We define the index

indα := gcd
{

[L : k]
∣∣∣ L/k finite and splits α

}
.

and the period of α as its (group-theoretic) order H i(k). Note that perα ≤ `.

Remark 1.7.4: One can show that perα
∣∣ indα, and indα

∣∣ (perα)m for some m.

Question 1.7.5
For a fixed k and i, j, `, which is the minimum m such that

indα
∣∣ (perα)m?

Alternatively, what is the minimum m such that indα
∣∣ `m?

Conjecture 1.7.6.
If ddim(k) = n (or dim(k) = n since k is finitely generated) with α ∈ H2(k, µ`), then

indα
∣∣ (perα)n−1 .

Remark 1.7.7: Even in this case, no known bound is known for k = Q(t), for any choice of `. How
complicated can the cohomology class be? The rough idea is that for H i(k) with i near dim k, this
should have a small index and if i = dim k then per k = ind k.

Remark 1.7.8: We know per = ind for any number field for classes in H2(Spec k;µN ), with or
without roots.

1.7.2 Symbol Length Problem

Remark 1.7.9: We know Hn(k, µ⊗n` ) is generated by symbols (a1, a2, · · · , an). We can use symbol
length to measure complexity, leading to the following:

1.7 Structural Problems in Galois Cohomology 8
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Question 1.7.10
Given k, n, what is the minimal number m such that every α ∈ Hn(k) is a sum of no more than m
symbols. I.e. how easy is it to write α?

Remark 1.7.11: We’d like a bound in terms of ddim(k) and dim(k). One can construct fields
needing arbitrarily long symbols, but perhaps for finite dimensional fields, one feels there should
be a bound. Danny feels that there may not be such a bound once n ≥ 4.

Remark 1.7.12: What’s known: for number fields (or global fields, i.e. a reasonable notion of
dimension with dim k = 2) which lie over finitely generated or prime fields and have a primitive `th
root of unity, we know every class in H2 can be written as exactly one symbol.

Remark 1.7.13: A result of Malgri (?): assuming we have roots of unity, if ` = pt, then for H2

one needs at most t(pddim(k)−1− 1) symbols. If ddim(k) <∞ this yields a bound, and conjecturally
this shouldn’t depend on ???

For higher degree cohomology, we know almost nothing except for special cases of H4 for “3-
dimensional” p-adic curves.

Remark 1.7.14: If one can bound the symbol length, one can uniformly write down a generic
element in cohomology as a sum of at most n symbols. The inability to be able to write down
a general form of a cohomology class for a given field is what makes this difficult – they have
“complexity” that isn’t necessarily bounded in a known way.

2 Tuesday, July 13

Remark 2.0.1: Fix a k0 ∈ Field.

Outline

• Arithmetic problems: consider “complexity” of cohomology or algebraic structures (Witt
group, symbol length, index of classes).

– Examples were ddim, cohdim, the period-index problem, the period-symbol length prob-
lem, which we saw last time.

• Algebraic structure problems: describe (algebraic) structural features of the class of all field
extensions k ∈ Field/k0 .

Today we’ll describe a way to connect these using a notion of essential dimension. Computing this
is difficult in general, but finding lower/upper bounds can be tractable. We’ll get upper bounds
from canonical dimensions, and lower bounds from cohomological invariants.

Tuesday, July 13 9
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Remark 2.0.2: For a particularly concrete problem, consider

α ∈ H2(k;µ`) ⊆ H2(k;Gm)[`] := Br(k)[`],

i.e. this is a subgroup of the `-torsion of the Brauer group. Suppose we know

indα := gcd
{

[L : k]
∣∣∣ αL = 0

}
= min

{
[L : K]

∣∣∣ αL = 0
}
,

where the last equality holds in the special case of Br(k). If k contains a primitive `th root of unity,
we can identify µ` = Z/` = µ⊗2

` , and thus identify

H2(k;µ`) = H2(k;µ⊗2
` ) = KM

2 (k)/`.

So we can write α = α1 + · · ·+ αr as a sum of symbols with αi = (bi, ci)` with bi, ci ∈ k×.

Question 2.0.3
How big does n have to be?

Remark 2.0.4: It follows from “the literature” (after stringing several results together) that there
almost exists an absolute bounds depending only on `, n but not k. However, we do not know what
this bound actually is. There are some known cases:

• ` = n = 2, 3: r ≤ 1, so only one symbol is needed.
• ` = n = 4: probably r ≤ 4.
• ` = 2, n = 4: r ≤ 2, a classical results on central simple algebras.
• ` = 2, n = 8 : r ≤ 4

Remark 2.0.5: It turns out that if k contains a field k0 with ddim k0 < ∞, one can produce
an explicit bound. Given some α ∈ H2(k;µ`) we can find some k0 ⊆ L ⊆ k with L finitely
generated over k0 and [L : k0]tr depending only on the period ` and index n, such that α ∈
im
(
H2(L;µ)→ H2(k;µ)

)
.

Slogan 2.0.6
Central simple algebras of a given period and index have finite essential dimension.

An important property is that

ddimL ≤ ddim k0 + [L : k0]tr.

Recall that we can bound the symbol length in H2(k;µ`) in terms of ddimL. The idea is that
we can bound the transcendence degree in terms of `, n. This bound can be made very explicit,
although it’s not tight: for ` = 2, n = 8, it’s 217+ddim k0 − 1. This is an improvement over k0 = Q
though, where it’s known there’s a bound but it can’t be written down. The lower bound is very
low: it is hard to show a symbol can not be written with very few symbols.

Tuesday, July 13 10
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E 2.1 Pfister Form e

Remark 2.1.1: RecallW (k), whose elements are isometry classes of nondegenerate quadratic forms
with addition given by perpendicular sum and the Kronecker product. There is a hyperbolic form xy,
or x2 − y2 in ch k 6= 2, which we can write as 〈1,−1〉, and a fundamental ideal of even-dimensional
forms 〈1,−a〉 = 〈〈a〉〉. We write

〈〈a1, a2, · · · , an〉〉 := 〈〈a1〉〉 〈〈a2〉〉 · · · 〈〈an〉〉 ∈ In(k),

which in fact generate In(k).

Question 2.1.2
Given q ∈ In(k) of dimension d, we know we can write q ∼ q1 ⊥ · · · ⊥ qr where qi are n-fold Pfister
forms. How many are needed? Is this number even bounded?

Theorem 2.1.3((Vishik)).
If d < 2n + 2n−1 then r is bounded by some small number.

Remark 2.1.4: For d ≥ 2n + 2n−1, it’s not so clear, although it is bounded when n ≥ 3. Why is
n ≤ 3 easy and n ≥ 4 hard?

Remark 2.1.5: Consider the following objects:

• H2(k;µ)
• Br(k)
• W (k)
• In(k)
• q ∈ In(k) with dim q = d

These can all be viewed as functors Field/k0 → Set taking field extensions to sets.

Definition 2.1.6 (Essential dimension of a functor)
Given a functor f and α ∈ F (k), define

essdim(α) = min
{

[L : k0]tr
∣∣∣ α ∈ im(F (L)→ F (k))

}
essdim(F ) = min

{
essdim(α)

∣∣∣ α ∈ F (k) ∀k/k0

}
.

Definition 2.1.7 (Versal)
Given a functor F : Alg

/k0
→ Set, we say α ∈ F (R) is versal if for every β ∈ F (K), for any

k/k0 , there exists a morphism R→ k such that β is the image of α under F (R)→ F (k).

2.1 Pfister Form 11
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Observation 2.1.8
If there exists a versal α ∈ F (R) then krulldimR ≥ essdim(F ), so the essential dimension is bounded
above by the Krull dimension.

Example 2.1.9(?): Let F (k) be the set of quadratic forms of dimension n over k, then essdimF =
n. Every such q can be diagonalized to yields q ' 〈a1, a2, · · · , an〉 which is defined over L :=
k0(a1, a2, · · · , an). Alternatively,

q = 〈x1, x2, · · · , xn〉 /k0[x±1
1 , x±1

2 , · · · , x±1
n ]

is versal. Thus every such quadratic form comes from “specializing”.

Considering now the fundamental ideals, the Milnor conjectures yield an isomorphism In/In+1 ∼=
Hn(k;µ2), so there is a SES

1→ In+1 → In
en−→ Hn(k;µ2)→ 1.

Thus a quadratic form q of dimension d in In+1 is equivalent to q ∈ In such that en(q) = 0.

E 2.2 Canonical Dimension e

Definition 2.2.1 (Canonical Dimension)
This is a generalization of essdim. Letting k/k0 , suppose F : Field/k → Set+ is a functor now

2.2 Canonical Dimension 12
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from extensions of k (not k0) into pointed sets. For α ∈ F (k), define a new functor

F̌α(L) :=
{
∅ αL 6= pt
{pt} αL = pt,

and define the canonical dimension

candim(α) = essdim(F̌ (α)).

Remark 2.2.2: This measures how many parameters are needed to trivialize/split α. To have
candim(α) ≤ r means that if α = pt means the following: if αL = pt then there exists an E with
k ⊆ E ⊆ L with [E : k]tr ≤ r such that αE = pt.

Definition 2.2.3 (Generic splitting scheme)
Given F as above and α ∈ F (k), we say an X ∈ Sch/k is a generic splitting scheme for α if

αL = 0 ⇐⇒ X(L) 6= ∅.

Remark 2.2.4: So this encodes triviality of α into polynomial equations.

Example 2.2.5(?): If X is a generic splitting scheme for α finite type over L implies candim(α) ≤
dimX.

Question 2.2.6
Does there exists a finite type generic splitting scheme for cohomology classes in H i(k;µ⊗j` )?

Remark 2.2.7: We do know this in special cases:

• i = 1: Yes, these are etale algebras, so finite schemes over k.
• i = 2: Yes, Danny shows these exist for all twists.

– j = 1: Classical, these are Severi-Brauer varieties.
• For symbols, i = 3, j = 2, ` a prime: see Merkurjev-Suslin
• For symbols, i = 4, j = 3, ` = 3: see Albert algebras
• For symbols, ` prime: this can be done up to prime-to-` extensions, see Rost’s “Norm Varieties”.

Related to Bloch-Kato conjecture.
• For symbols, ` = 2: see Pfister quadrics.

Remark 2.2.8: Upshot: if there exists generic splitting schemes for classes in H i(k;µ2) for i ≥ 3,
one could bound Pfister numbers and thus essdim. Write Ind (k) to be the set of quadratic forms of
dimension d in In, then essdim(Ind ) <∞ would imply that if q ∈ Ind (k) for k ⊇ k0 then q would be
defined over some L/k0 with [L : k0]tr <∞.

If we knew that ddim k0 <∞, e.g. if k0 contains a finite field, this yields a bound on ddimL and
thus on cohdimL. If there is a versal element in α ∈ Ind , then α needs some finite number m of

2.2 Canonical Dimension 13
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Pfister forms to be written. Everything else is a specialization of α, so the length m will almost
give an upper bound.

4! Warning 2.2.9
This may seem like a correct argument, but it is not! A problem arises where you may have
denominators – specialization can get worse, but only a finite number of times, which is how the
actual argument goes.

Remark 2.2.10: If you knew the essential dimensions were finite with some given bound, and
some general period-index conjecture were known, these would give bounds on symbol length in
H i(L;µ2). There’s an argument pushing things into higher powers of the fundamental ideal, thus
higher degree cohomology, which disappear at some point and yield a bound. Motives enter the
picture in terms of the tools used to attack these problems.

2.2 Canonical Dimension 14


	Table of Contents
	Monday, July 12
	Intro
	Galois Cohomology
	Milnor K-Theory
	Witt Ring
	Motivic Cohomology
	Dimension
	Structural Problems in Galois Cohomology
	Period-Index Problems
	Symbol Length Problem


	Tuesday, July 13
	Pfister Form
	Canonical Dimension


