Field arithmetic and the complexity of algebraic objects

Danny Krashen, IAS/PCMI GSS 2021

D. Zack Garza
University of Georgia
dzackgarza@gmail.com
Last updated: 2021-07-15

Table of Contents

Contents

Table of Contents 2
1 Monday, July 12 3
1.1 Intro 3
1.2 Galois Cohomology 3
1.3 Milnor K-Theory 4
1.4 Witt Ring 4
1.5 Motivic Cohomology 5
1.6 Dimension 6
1.7 Structural Problems in Galois Cohomology 7
1.7.1 Period-Index Problems 8
1.7.2 Symbol Length Problem 8
2 Tuesday, July 13 9
2.1 Pfister Form 11
2.2 Canonical Dimension 12

1 Monday, July 12

Talk: Danny Krashen

1.1 Intro

Missed first 13 m

Fix a field $k_{0} \in$ Field, we'll consider extensions $k \in$ Field $/ k_{0}$.

1.2 Galois Cohomology

Definition 1.2.1 (Galois Cohomology)
For $M \in \mathrm{G}_{k}$-Mod for G_{k} the Galois group of $k \in$ Field $_{/ k_{0}}$, we can take invariants $M^{G_{k}}$. The functor $-{ }^{G_{k}}$ is left-exact, so we define

$$
H_{\text {Gal }}^{*}\left(G_{k} ;-\right):=\mathbb{R}^{*}(-)^{G_{k}} .
$$

Remark 1.2.2: Note that the tensor product on G_{k}-Mod induces a cup product on $H_{\text {Gal }}^{*}$. An important example of coefficients is $M=\mu_{\ell}^{\otimes m}$, where $\mu_{\ell}^{\otimes 0}:=\mathbb{Z} / n$. It is known that $H_{\text {Gal }}^{*}\left(G_{k} ; \mu^{\otimes 0}\right)=$ \mathbb{Z} / n.

We'll define symbols

$$
\left(a_{1}, \cdots, a_{n}\right):=\left(a_{1}\right) \smile \cdots \smile\left(a_{n}\right) \in H_{\text {Gal }}^{*}\left(k, \mu_{\ell}^{\otimes n}\right),
$$

which are in fact generators. To remember the ℓ, we write $\left(a_{1}, a_{2}, \cdots, a_{n}\right)_{\ell}$.

Remark 1.2.3: Galois cohomology is a special case of étale cohomology, where for $M \in \mathrm{G}_{\mathrm{k}}-\mathrm{Mod}$,

$$
H_{\mathrm{Gal}}^{n}\left(G_{k} ; M\right)=H_{\mathrm{ett}}^{n}(k ; M)=H_{\mathrm{et}}^{n}(\operatorname{Spec} k ; M) .
$$

Étale cohomology works for schemes other than just Spec k.

1.3 Milnor K-Theory

Definition 1.3.1 (?)
Given $k \in$ Field, define

$$
\mathrm{K}_{*}^{\mathrm{M}}(k):=\bigoplus_{i=1}^{\infty} \mathrm{K}_{i}^{\mathrm{M}}(k)
$$

where

- $\mathrm{K}_{0}^{\mathrm{M}}(k)=\mathbb{Z}$
- $\mathrm{K}_{1}^{\mathrm{M}}(k)=k^{m}$, written additively as elements $\{a\}$ on the left-hand side, so $\{a\}+\{b\}:=$ $\{a b\}$.
- It's generated by $\mathrm{K}_{1}^{\mathrm{M}}(k)$, with products written by concatenation:

$$
\left\{a_{1}, \cdots, a_{n}\right\}=\left\{a_{1}\right\}\left\{a_{2}\right\} \cdots\left\{a_{n}\right\} .
$$

- The only relations are $\{a, b\}=0$ when $a+b=1$, motivated by

$$
(a, b)_{\ell}=0 \in H_{\text {Gal }}^{2}\left(k ; \mu_{\ell}^{\otimes 2}\right) \Longleftrightarrow a+b=1 .
$$

- There is a map

$$
\begin{aligned}
\mathrm{K}_{0}^{\mathrm{M}}(k) & \rightarrow H_{\mathrm{et}}^{*}\left(k ; \mu_{\ell}^{\otimes 0}\right) \\
\{a\} & \mapsto(a),
\end{aligned}
$$

and the Norm-Residue isomorphism (formerly the Bloch-Kato conjecture) states that this is an isomorphism after modding out by ℓ, i.e.

$$
\mathrm{K}_{0}^{\mathrm{M}}(k) / \ell \xrightarrow{\sim} H_{\mathrm{ett}}^{*}\left(k ; \mu_{\ell}^{\otimes 0}\right) .
$$

1.4 Witt Ring

Remark 1.4.1: Assume ch $k \neq 2$, so there is a correspondence between quadratic forms and symmetric bilinear forms given by polarization:

$$
\begin{aligned}
& \text { Quadratic forms } \\
& \qquad \begin{aligned}
q_{b}(x):=b(x, x) & \leftrightarrow b(x, y) \\
q & \mapsto b_{q}(x, y):=\frac{1}{2}(q(x+y)-q(x)-q(y)) .
\end{aligned}
\end{aligned}
$$

So we'll identify these going forward and write q for an arbitrary symmetric bilinear form or a quadratic form. We say q is nondegenerate if there is an induced isomorphism:

$$
\begin{aligned}
V & \xrightarrow{\sim} V^{\vee} \\
v & \mapsto b_{q}(v,-) .
\end{aligned}
$$

Note that a symmetric bilinear form q on V can be regarded as an element of $\operatorname{Sym}^{2}\left(V^{\vee}\right)$.

Definition 1.4.2 (The Witt Ring)
Let QuadForm $/ k$ be the category of pairs (V, q) with $V \in$ Vect $_{/ k}$ a k-vector space and $q \in$ $\operatorname{Sym}^{2}\left(V^{\vee}\right)$ representing a quadratic form on V. The Witt ring is generated as a group by isomorphism representing a quadratic form on V.

$$
W(k)=\frac{\mathbb{Z}\left\langle\left\{[(V, q)] \in \text { QuadForm }_{/ k}\right\}\right\rangle}{\left\langle q_{\text {hyp }},\left(q_{1}+q_{2}\right)-\left(q_{1} \perp q_{2}\right)\right\rangle} \in \text { AbGrp. } .
$$

where the hyperbolic form is defined as $q_{\text {hyp }}(x, y)=x y$. The ring structure is given by the tensor product (a.k.a. Kronecker product of forms).

Remark 1.4.3: Noting that Galois cohomology lives mod ℓ for various ℓ, here $\mathrm{K}_{0}^{\mathrm{M}}(k)$ lives over \mathbb{Z}. So Milnor K-theory relates all of the various $\bmod \ell$ Galois cohomologies together.

Definition 1.4.4 (Fundamental ideals and Pfister Forms)
The fundamental ideal $I(k) \unlhd W(k)$ is the ideal of even dimensional forms, and set $I^{n}(k):=$ $(I(k))^{n}$. There is a map

$$
\begin{aligned}
\mathrm{K}_{n}^{\mathrm{M}}(k) & \rightarrow I^{n}(k) / I^{n+1}(k) \\
\left\{a_{1}, a_{2}, \cdots, a_{n}\right\} & \mapsto\left\langle\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle\right\rangle,
\end{aligned}
$$

which follows from Gram-Schmidt: any form can be diagonalized $q \cong \sum a_{i} x_{i}^{2}$, which we can write as $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$. We can define the n-fold Pfister forms

$$
\begin{aligned}
\langle\langle a\rangle\rangle & :=\langle\langle 1,-a\rangle\rangle \\
\left\langle\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle\right\rangle: & =\prod_{i=1}^{n}\left\langle\left\langle a_{i}\right\rangle\right\rangle .
\end{aligned}
$$

Remark 1.4.5: The Milnor conjecture (proved by Voevodsky et al) states that the above map is an isomorphism after modding out by 2 , so

$$
\mathrm{K}_{n}^{\mathrm{M}}(k) / 2 \xrightarrow{\sim} I^{n}(k) / I^{n+1}(k) .
$$

Moreover, the LHS is isomorphic to $H^{n}\left(k, \mu_{2}\right)$. There are interesting maps going the other way

$$
I^{n}(k) \rightarrow I^{n}(k) / I^{n+1}(k) \xrightarrow{\sim} H^{n}\left(k, \mu_{2}\right)
$$

Upshot: this is surjective - any mod 2 cohomology class comes from a quadratic form, and thus we can reason about cohomology by reasoning about quadratic forms.

1.5 Motivic Cohomology

Remark 1.5.1: Motivic cohomology relates the various $\bmod \ell$ cohomologies together much like $\mathrm{K}_{*}^{\mathrm{M}}$, but additionally relates different twists. In particular, it relates various $H_{\mathrm{et}}^{i}\left(k ; \mu_{\ell}^{\otimes j}\right)$, where Milnor K-theory interprets this "diagonally" when $i=j$. This works by constructing motivic complexes

$$
\mathbb{Z}(m) \in \operatorname{Ch}\left(\operatorname{Shre}_{\text {phsmSch }}^{k}\right),
$$

which are complexes of presheaves on smooth k-schemes, usually considered in the Zariski, étale, or Nisnevich topologies.

Remark 1.5.2: Zariski hypercohomology is defined as

$$
\mathbb{H}^{n}(X ; \mathbb{Z}(m))=H^{n, m}(X ; \mathbb{Z})=H_{\mathrm{mot}}^{n}(X ; \mathbb{Z}(m)) \quad \text { for } X:=\operatorname{Spec} k
$$

These relate to Galois cohomology in the following ways:

- There is a quasi-isomorphism $\mu_{\ell}^{\otimes m} \xrightarrow{\sim_{W}} \mathbb{Z} / \ell(n)$ in the étale topology.
- There is an isomorphism $H_{\text {zar }}^{n}(k, \mathbb{Z}(n)) \underset{\sim}{\sim} \mathrm{K}_{n}^{\mathrm{M}}(k)$.
- Bloch-Kato identifies $H_{\mathrm{zar}}^{*}(X ; \mathbb{Z} / \ell(n)) \xrightarrow{\sim} H_{\mathrm{ett}}^{n}(X ; \mathbb{Z} / \ell(n))$.

1.6 Dimension

Remark 1.6.1: There are a number of competing notions for the "dimension" of a field.
Definition 1.6.2 (Dimension of a field)
If k is finitely generated over either a prime field or an algebraically closed field, we say

$$
\operatorname{dim}(k)= \begin{cases}{\left[k: k_{0}\right]_{\operatorname{tr}}} & k_{0}=\bar{k}_{0} \\ {\left[k: k_{0}\right]_{\operatorname{tr}}+1} & k_{0} \text { finite } \\ {\left[k: k_{0}\right]_{\operatorname{tr}}+2} & k_{0}=\mathbb{Q} .\end{cases}
$$

Definition 1.6.3 (Cohomological dimension)
We define its cohomological dimension cohdim (k), which is at most n if $H^{n}\left(G_{k} ; M\right)=0$ for all $m>n$ and M torsion,

$$
\operatorname{cohdim}(k):=\min \{n \mid \operatorname{cohdim}(k) \leq n\} .
$$

Equivalently, $\operatorname{coh} \operatorname{dim}(k)=n \Longleftrightarrow$ there exists a torsion M with $H^{n}\left(G_{k} ; M\right) \neq 0$ and $H^{m}\left(G_{k} ; M\right)=0$ for all $m>n$.

Remark 1.6.4: $\operatorname{coh} \operatorname{dim}(k)=\operatorname{dim}(k)$ if k is finitely generated or a finite extension of $k_{0}=\bar{k}_{0}$, or if k is finitely generated over \mathbb{Q} and has no real orderings. So if k has orderings, $\operatorname{cohdim}(k)=\infty$.

Definition 1.6.5 (Diophantine Dimension)
We say k is C_{n} if for $d>0$ and $m>d^{n}$, then every homogeneous polynomials of degree d in m variables has a nontrivial root.

$$
\operatorname{ddim}(k):=\min \left\{n \mid k \text { is } C_{n}\right\} .
$$

Example 1.6.6(?): If k is finitely generated or finite over $k_{0}=\bar{k}_{0}$, then

$$
\operatorname{ddim}(k)=\operatorname{dim}(k)=\operatorname{cohdim}(k) .
$$

Definition 1.6.7 (T_{n}-rank)
We say k is T_{n} if for every $d_{1}, d_{2}, \cdots, d_{r}>0$ and every system of polynomial equations $f_{1}=\cdots=f_{r}=0$ with $\operatorname{deg} f_{i}=d_{i}$ in m variables, with $m>\sum d_{i}^{n}$. Then the T_{n}-rank is defined as

$$
T_{n^{-}} \operatorname{rank}(k):=\min \left\{n \mid k \text { is } T_{n}\right\}
$$

Question 1.6.8

Note that $T_{n} \Longrightarrow C_{n}$, so $T_{n}-\operatorname{rank}(k) \geq \operatorname{ddim}(k)$, when are they equal? This is likely unknown.

Remark 1.6.9: There is a famous example of a field k with $\operatorname{coh} \operatorname{dim}(k)=1$ but $\operatorname{ddim}(k)=\infty$.

Question 1.6.10

Is it true that $\operatorname{dim}(k) \geq \operatorname{cohdim}(k)$? Serre showed that this holds when cohdim is replaced by cohdim 2 , the 2-primary part - does this hold for all p ? These are both open.

Why would one expect this to be true?

Remark 1.6.11: A recent result: cohdim $_{p}$ grows at most linearly in ddim, with slope not 1 but rather $\approx \log _{2} p$. These questions say that if an equation has enough variables then there is a solution, but why should this be reflected in cohomology? To show this bound, one would want to show that given some $\alpha \in H^{*}(k)$, there exists a polynomial f_{α} where if f_{α} has a root and $\alpha=0$ in homology. In special cases, we were able to come up with such polynomials. When α is a symbol, this is closely related to norm varieties which have a point iff α is split. One might optimistically hope these are described as hypersurfaces, from which answers to the above would follow, but they turn out to not have such a concrete realization.

1.7 Structural Problems in Galois Cohomology

Remark 1.7.1: Here we'll describe the problems we need help with! Perhaps insight from motivic cohomology will lend insight to them. We'll write $H^{i}(k):=H^{i}\left(k ; \mu_{\ell}^{\otimes j}\right)$.

1.7.1 Period-Index Problems

Definition 1.7.2 (An extension splitting a cohomology class)
If $\alpha \in H^{i}(k)$, we say $L_{/ k}$ splits α if

$$
\left.\alpha\right|_{L}=0 \in H^{i}(L) .
$$

Definition 1.7.3 (?)
We define the index

$$
\text { ind } \alpha:=\operatorname{gcd}\left\{[L: k] \mid L_{/ k} \text { finite and splits } \alpha\right\} .
$$

and the period of α as its (group-theoretic) order $H^{i}(k)$. Note that per $\alpha \leq \ell$.
Remark 1.7.4: One can show that per $\alpha \mid \operatorname{ind} \alpha$, and ind $\alpha \mid(\operatorname{per} \alpha)^{m}$ for some m.

Question 1.7.5

For a fixed k and i, j, ℓ, which is the minimum m such that

$$
\operatorname{ind} \alpha \mid(\operatorname{per} \alpha)^{m} ?
$$

Alternatively, what is the minimum m such that ind $\alpha \mid \ell^{m}$?

Conjecture 1.7.6.

If $\operatorname{ddim}(k)=n\left(\right.$ or $\operatorname{dim}(k)=n$ since k is finitely generated) with $\alpha \in H^{2}\left(k, \mu_{\ell}\right)$, then

$$
\operatorname{ind} \alpha \mid(\operatorname{per} \alpha)^{n-1}
$$

Remark 1.7.7: Even in this case, no known bound is known for $k=\mathbb{Q}(t)$, for any choice of ℓ. How complicated can the cohomology class be? The rough idea is that for $H^{i}(k)$ with i near $\operatorname{dim} k$, this should have a small index and if $i=\operatorname{dim} k$ then per $k=\operatorname{ind} k$.

Remark 1.7.8: We know per $=$ ind for any number field for classes in $H^{2}\left(\operatorname{Spec} k ; \mu_{N}\right)$, with or without roots.

1.7.2 Symbol Length Problem

Remark 1.7.9: We know $H^{n}\left(k, \mu_{\ell}^{\otimes n}\right)$ is generated by symbols $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. We can use symbol length to measure complexity, leading to the following:

Question 1.7.10

Given k, n, what is the minimal number m such that every $\alpha \in H^{n}(k)$ is a sum of no more than m symbols. I.e. how easy is it to write α ?

Remark 1.7.11: We'd like a bound in terms of $\operatorname{dim}(k)$ and $\operatorname{dim}(k)$. One can construct fields needing arbitrarily long symbols, but perhaps for finite dimensional fields, one feels there should be a bound. Danny feels that there may not be such a bound once $n \geq 4$.

Remark 1.7.12: What's known: for number fields (or global fields, i.e. a reasonable notion of dimension with $\operatorname{dim} k=2$) which lie over finitely generated or prime fields and have a primitive ℓ th root of unity, we know every class in H^{2} can be written as exactly one symbol.

Remark 1.7.13: A result of Malgri (?): assuming we have roots of unity, if $\ell=p^{t}$, then for H^{2} one needs at most $t\left(p^{\operatorname{ddim}(k)-1}-1\right)$ symbols. If $\operatorname{dim}(k)<\infty$ this yields a bound, and conjecturally this shouldn't depend on ???

For higher degree cohomology, we know almost nothing except for special cases of H^{4} for " 3 dimensional" p-adic curves.

Remark 1.7.14: If one can bound the symbol length, one can uniformly write down a generic element in cohomology as a sum of at most n symbols. The inability to be able to write down a general form of a cohomology class for a given field is what makes this difficult - they have "complexity" that isn't necessarily bounded in a known way.

2 Tuesday, July 13

Remark 2.0.1: Fix a $k_{0} \in$ Field.

Outline

- Arithmetic problems: consider "complexity" of cohomology or algebraic structures (Witt group, symbol length, index of classes).
- Examples were ddim, cohdim, the period-index problem, the period-symbol length problem, which we saw last time.
- Algebraic structure problems: describe (algebraic) structural features of the class of all field extensions $k \in$ Field $_{/ k_{0}}$.

Today we'll describe a way to connect these using a notion of essential dimension. Computing this is difficult in general, but finding lower/upper bounds can be tractable. We'll get upper bounds from canonical dimensions, and lower bounds from cohomological invariants.

Remark 2.0.2: For a particularly concrete problem, consider

$$
\alpha \in H^{2}\left(k ; \mu_{\ell}\right) \subseteq H^{2}\left(k ; \mathbb{G}_{m}\right)[\ell]:=\operatorname{Br}(k)[\ell]
$$

i.e. this is a subgroup of the ℓ-torsion of the Brauer group. Suppose we know

$$
\text { ind } \alpha:=\operatorname{gcd}\left\{[L: k] \mid \alpha_{L}=0\right\}=\min \left\{[L: K] \mid \alpha_{L}=0\right\}
$$

where the last equality holds in the special case of $\operatorname{Br}(k)$. If k contains a primitive ℓ th root of unity, we can identify $\mu_{\ell}=\mathbb{Z} / \ell=\mu_{\ell}^{\otimes 2}$, and thus identify

$$
H^{2}\left(k ; \mu_{\ell}\right)=H^{2}\left(k ; \mu_{\ell}^{\otimes 2}\right)=K_{2}^{M}(k) / \ell
$$

So we can write $\alpha=\alpha_{1}+\cdots+\alpha_{r}$ as a sum of symbols with $\alpha_{i}=\left(b_{i}, c_{i}\right)_{\ell}$ with $b_{i}, c_{i} \in k^{\times}$.

Question 2.0.3

How big does n have to be?

Remark 2.0.4: It follows from "the literature" (after stringing several results together) that there almost exists an absolute bounds depending only on ℓ, n but not k. However, we do not know what this bound actually is. There are some known cases:

- $\ell=n=2,3: r \leq 1$, so only one symbol is needed.
- $\ell=n=4$: probably $r \leq 4$.
- $\ell=2, n=4: r \leq 2$, a classical results on central simple algebras.
- $\ell=2, n=8: r \leq 4$

Remark 2.0.5: It turns out that if k contains a field k_{0} with $\operatorname{dim} k_{0}<\infty$, one can produce an explicit bound. Given some $\alpha \in H^{2}\left(k ; \mu_{\ell}\right)$ we can find some $k_{0} \subseteq L \subseteq k$ with L finitely generated over k_{0} and $\left[L: k_{0}\right]_{\text {tr }}$ depending only on the period ℓ and index n, such that $\alpha \in$ $\operatorname{im}\left(H^{2}(L ; \mu) \rightarrow H^{2}(k ; \mu)\right)$.

Slogan 2.0.6

Central simple algebras of a given period and index have finite essential dimension.

An important property is that

$$
\operatorname{ddim} L \leq \operatorname{ddim} k_{0}+\left[L: k_{0}\right]_{\mathrm{tr}}
$$

Recall that we can bound the symbol length in $H^{2}\left(k ; \mu_{\ell}\right)$ in terms of dim L. The idea is that we can bound the transcendence degree in terms of ℓ, n. This bound can be made very explicit, although it's not tight: for $\ell=2, n=8$, it's $2^{17+\operatorname{ddim} k_{0}}-1$. This is an improvement over $k_{0}=\mathbb{Q}$ though, where it's known there's a bound but it can't be written down. The lower bound is very low: it is hard to show a symbol can not be written with very few symbols.

2.1 Pfister Form

Remark 2.1.1: Recall $W(k)$, whose elements are isometry classes of nondegenerate quadratic forms with addition given by perpendicular sum and the Kronecker product. There is a hyperbolic form $x y$, or $x^{2}-y^{2}$ in ch $k \neq 2$, which we can write as $\langle 1,-1\rangle$, and a fundamental ideal of even-dimensional forms $\langle 1,-a\rangle=\langle\langle a\rangle\rangle$. We write

$$
\left\langle\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle\right\rangle:=\left\langle\left\langle a_{1}\right\rangle\right\rangle\left\langle\left\langle a_{2}\right\rangle\right\rangle \cdots\left\langle\left\langle a_{n}\right\rangle\right\rangle \in I^{n}(k),
$$

which in fact generate $I^{n}(k)$.

Question 2.1.2

Given $q \in I^{n}(k)$ of dimension d, we know we can write $q \sim q_{1} \perp \cdots \perp q_{r}$ where q_{i} are n-fold Pfister forms. How many are needed? Is this number even bounded?

Theorem 2.1.3((Vishik)).

If $d<2^{n}+2^{n-1}$ then r is bounded by some small number.

Remark 2.1.4: For $d \geq 2^{n}+2^{n-1}$, it's not so clear, although it is bounded when $n \geq 3$. Why is $n \leq 3$ easy and $n \geq 4$ hard?

Remark 2.1.5: Consider the following objects:

- $H^{2}(k ; \mu)$
- $\operatorname{Br}(k)$
- $W(k)$
- $I^{n}(k)$
- $q \in I^{n}(k)$ with $\operatorname{dim} q=d$

These can all be viewed as functors Field $/ k_{0} \rightarrow$ Set taking field extensions to sets.
Definition 2.1.6 (Essential dimension of a functor)
Given a functor f and $\alpha \in F(k)$, define

$$
\begin{aligned}
& \operatorname{essdim}(\alpha)=\min \left\{\left[L: k_{0}\right]_{\operatorname{tr}} \mid \alpha \in \operatorname{im}(F(L) \rightarrow F(k))\right\} \\
& \operatorname{essdim}(F)=\min \left\{\operatorname{essdim}(\alpha) \mid \alpha \in F(k) \forall k_{/ k_{0}}\right\}
\end{aligned}
$$

Definition 2.1.7 (Versal)
Given a functor $F: \mathrm{Alg}_{k_{0}} \rightarrow$ Set, we say $\alpha \in F(R)$ is versal if for every $\beta \in F(K)$, for any $k_{/ k_{0}}$, there exists a morphism $R \rightarrow k$ such that β is the image of α under $F(R) \rightarrow F(k)$.

Observation 2.1.8

If there exists a versal $\alpha \in F(R)$ then $\operatorname{krulldim} R \geq \operatorname{essdim}(F)$, so the essential dimension is bounded above by the Krull dimension.

Example 2.1.9(?): Let $F(k)$ be the set of quadratic forms of dimension n over k, then essdim $F=$ n. Every such q can be diagonalized to yields $q \simeq\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ which is defined over $L:=$ $k_{0}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. Alternatively,

$$
q=\left\langle x_{1}, x_{2}, \cdots, x_{n}\right\rangle / k_{0}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \cdots, x_{n}^{ \pm 1}\right]
$$

is versal. Thus every such quadratic form comes from "specializing".
Considering now the fundamental ideals, the Milnor conjectures yield an isomorphism $I^{n} / I^{n+1} \cong$ $H^{n}\left(k ; \mu_{2}\right)$, so there is a SES

$$
1 \rightarrow I^{n+1} \rightarrow I^{n} \xrightarrow{e_{n}} H^{n}\left(k ; \mu_{2}\right) \rightarrow 1
$$

Thus a quadratic form q of dimension d in I^{n+1} is equivalent to $q \in I^{n}$ such that $e_{n}(q)=0$.

2.2 Canonical Dimension

Definition 2.2.1 (Canonical Dimension)
This is a generalization of essdim. Letting $k_{/ k_{0}}$, suppose $F:$ Field $_{/ k} \rightarrow$ Set $_{+}$is a functor now
from extensions of k (not k_{0}) into pointed sets. For $\alpha \in F(k)$, define a new functor

$$
\check{F}_{\alpha}(L):= \begin{cases}\emptyset & \alpha_{L} \neq \mathrm{pt} \\ \{\mathrm{pt}\} & \alpha_{L}=\mathrm{pt}\end{cases}
$$

and define the canonical dimension

$$
\operatorname{candim}(\alpha)=\operatorname{essdim}(\check{F}(\alpha))
$$

Remark 2.2.2: This measures how many parameters are needed to trivialize/split α. To have candim $(\alpha) \leq r$ means that if $\alpha=\mathrm{pt}$ means the following: if $\alpha_{L}=\mathrm{pt}$ then there exists an E with $k \subseteq E \subseteq L$ with $[E: k]_{\operatorname{tr}} \leq r$ such that $\alpha_{E}=\mathrm{pt}$.

Definition 2.2.3 (Generic splitting scheme)
Given F as above and $\alpha \in F(k)$, we say an $X \in \operatorname{Sch}_{/ k}$ is a generic splitting scheme for α if

$$
\alpha_{L}=0 \Longleftrightarrow X(L) \neq \emptyset
$$

Remark 2.2.4: So this encodes triviality of α into polynomial equations.

Example 2.2.5(?): If X is a generic splitting scheme for α finite type over L implies candim $(\alpha) \leq$ $\operatorname{dim} X$.

Question 2.2.6

Does there exists a finite type generic splitting scheme for cohomology classes in $H^{i}\left(k ; \mu_{\ell}^{\otimes j}\right) ?$

Remark 2.2.7: We do know this in special cases:

- $i=1$: Yes, these are etale algebras, so finite schemes over k.
- $i=2$: Yes, Danny shows these exist for all twists.
$-j=1$: Classical, these are Severi-Brauer varieties.
- For symbols, $i=3, j=2, \ell$ a prime: see Merkurjev-Suslin
- For symbols, $i=4, j=3, \ell=3$: see Albert algebras
- For symbols, ℓ prime: this can be done up to prime-to- ℓ extensions, see Rost's "Norm Varieties". Related to Bloch-Kato conjecture.
- For symbols, $\ell=2$: see Pfister quadrics.

Remark 2.2.8: Upshot: if there exists generic splitting schemes for classes in $H^{i}\left(k ; \mu_{2}\right)$ for $i \geq 3$, one could bound Pfister numbers and thus essdim. Write $\mathcal{I}_{d}^{n}(k)$ to be the set of quadratic forms of dimension d in I^{n}, then $\operatorname{essdim}\left(\mathcal{I}_{d}^{n}\right)<\infty$ would imply that if $q \in \mathcal{I}_{d}^{n}(k)$ for $k \supseteq k_{0}$ then q would be defined over some $L_{/ k_{0}}$ with $\left[L: k_{0}\right]_{\mathrm{tr}}<\infty$.

If we knew that $\operatorname{ddim} k_{0}<\infty$, e.g. if k_{0} contains a finite field, this yields a bound on $\operatorname{ddim} L$ and thus on cohdim L. If there is a versal element in $\alpha \in \mathcal{I}_{d}^{n}$, then α needs some finite number m of

Pfister forms to be written. Everything else is a specialization of α, so the length m will almost give an upper bound.

\triangle Warning 2.2.9

This may seem like a correct argument, but it is not! A problem arises where you may have denominators - specialization can get worse, but only a finite number of times, which is how the actual argument goes.

Remark 2.2.10: If you knew the essential dimensions were finite with some given bound, and some general period-index conjecture were known, these would give bounds on symbol length in $H^{i}\left(L ; \mu_{2}\right)$. There's an argument pushing things into higher powers of the fundamental ideal, thus higher degree cohomology, which disappear at some point and yield a bound. Motives enter the picture in terms of the tools used to attack these problems.

