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1 Monday, July 12

Abstract:

We shall present the theory of G-torsors (or
G-bundles) in algebraic geometry which includes
for example vector bundles and quadratic bundles
(Grothendieck-Serre, 1958). We focus on the case
of an affine smooth connected curve firstly over an al-
gebraically closed field k; we shall show that G-torsors
are trivial for a semisimple k-group G. Secondly we
will consider the case of a perfect field and discuss
the important case of the affine line (Raghunathan-
Ramanathan, 1984). This will be an opportunity to
deal with étale cohomology and patching techniques.

References:

• http://math.univ-lyon1.fr/homes-www/gille/prenotes/gille_pcmi_part1.pdf

• V. Chernousov, P. Gille, A. Pianzola, Three-point Lie algebras and Grothendieck’s dessins
d’enfants. Math. Res. Lett. 23 (2016), 81–104.

• J.S. Milne, Lectures on etale cohomology, https://www.jmilne.org/math/CourseNotes/LEC.pdf

• M. S. Raghunathan, A. Ramanathan, Principal bundles on the affine line. Proc. Indian Acad.
Sci. Math. Sci. 93 (1984), 137–145.

Notation:

• BunG is the category of G-bundles

– BunGLr(R) is the category of real vector bundles of rank r.
– BunGLr is the category of vector bundles of rank r over an unspecified field.

• C/R is an overcategory/slice category of objects over a fixed object R.
• Sch/S is the category of schemes over a fixed scheme S.

– AffSch is the category of affine schemes.
– Sch/R are the schemes over SpecR.

• sm denotes subcategories of smooth objects
• R [p−1] is the localization of R at p.
• cAlg denotes commutative algebras.
• An R-functor is an object in Fun(Alg/R, Set), which AffSch embeds into as representable
R-functors.

– Todo: so any presheaf on R-algebras..?
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E 1.1 Serre-Swan and Vector Group Schemes e

Remark 1.1.1: We’ll be looking at ways to go from the world of differential geometry to algebraic
geometry. Notably, in differential geometry we have notions of

• Vector bundles
• Principal G-bundles
• Principal homogeneous spaces

Serre-Grothendieck gave algebro-geometric analogs of these in 1958, extending these notions to
the setting of G-bundles over a scheme using the étale topology. Today we’ll work over rings, or
equivalently affine schemes, since most questions will be local. We’ll in fact restrict to smooth affine
curves over a field.

Remark 1.1.2: Recall the Serre-Swan correspondence between projective finite modules of finite
rank and smooth vector bundles: for X paracompact, there is an equivalence of categories induced
by taking global sections:

smBun/X
GLn(R)


 C∞(X;R)-Modfg,proj

(E → X) 7→ Γ(X; E).

We’ll upgrade this to a statement about affine schemes.

Definition 1.1.3 (Vector Group Scheme)
Let R ∈ CRing be unital and M ∈ R-Mod. Let V (M) denote the affine R-scheme V (M) :=
Spec (Sym•M), which represents

S 7→ Hom
S-Mod

(M ⊗R S, S).

We call V (M) the vector group scheme of M .

Remark 1.1.4: Note that V (−) commutes with arbitrary base change of rings.

Proposition 1.1.5(Serre-Swan for Vector Group Schemes).
V as a functor induces an antiequivalence of categories between R-Mod and vector group
schemes:

R-Mod
 VectGrpSch/R
M 7→ V (M)

Θ(R) 7→R.

Remark 1.1.6: If M ∈ R-ModlocFree,r<∞, we can consider its dual M∨. Then Sym•M is finitely
presented, and S →M ⊗R S is represented by W (M) := V (M∨). Note that finite locally free is a
necessary condition.

1.1 Serre-Swan and Vector Group Schemes 4
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E 1.2 Vector Bundles over Affine Schemes e

Definition 1.2.1 (Vector bundle over an affine scheme)
A vector bundle of rank r over the affine scheme SpecR is an X ∈ Sch/R with a partition
1 =

∑
i

fi along with isomorphisms

ϕi : V ((R [f−1
i ])r)→ X ×

R
R [f−1

i ]

where the transitions

ϕiϕ
−1
j : V ((R [(fi,fj)−1])r)	

are linear automorphisms.

Theorem 1.2.2(Swan-Serre).
M → V (M) induces an equivalence between the groupoid of locally free R-modules of rank r
and the groupoid of vector bundles over SpecR of rank r.

Grpd 3 R-ModlocFree,r 
 Bunr
SpecR

∈ Grpd.

Example 1.2.3(Tangent Bundles): Given a smooth1 map of affine schemes

(X → Y ) := (SpecS → SpecR) r := reldimX/Y ≥ 1,

take the tangent bundle, which is dimension r:

TX/Y = V (Ω1
S/R

) ∈ Bun
SpecR

.

Example 1.2.4(Tangent bundle of the real sphere): Consider the real sphere

Z := SpecR[x, y, z]/
〈
x2 + y2 + z2

〉
.

Its tangent bundle TZ/R is a nontrivial dimension 2 vector bundle, which is classical but can be
proven algebraically. As a consequence, Z can not be equipped with the structure of a nontrivial
algebraic group over R.

E 1.3 Linear Groups e

Remark 1.3.1: For M ∈ R-ModlocFree,r<∞, consider

End
R-Mod

(M) ∼−→M∨ ⊗RM ∈ Alg/R ∩ R-ModlocFree,r<∞,

1Since we’re in the flat and locally finitely presented case, it’s sufficient that all fibers are smooth

1.2 Vector Bundles over Affine Schemes 5
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and so V ( End
R-Mod

(M)) makes sense. Thus V is a functor

V : AssocAlgunital → VectGrpSch/R.

Consider S 7→ Aut
S

(M ⊗R S), which is representable by

W ( End
R-Mod

M) := GL(M) = GL1(M).

Note that there are left and right actions

W (M) x GL(M) y V (M).

If R is Noetherian, then M ∈ R-ModlocFree,r<∞ ⇐⇒ GL(M) is representable. Taking M := M r

recovers the usual GLn(R) for n := rankRM . Note that local freeness is necessary for representability
by a group scheme here.

Remark 1.3.2: Given M ∈ R-ModlocFree,r<∞ there is a partition 1 =
∑

fi and isomorphisms to
free R-modules

ϕi : R [f−1
i ]r →M ×

R
R [f−1

i ] ϕ−1
i ϕj  gij ∈ GLr (R [(fi,fj)−1]) .

These gij in fact satisfy a cocycle condition:

gijgjk = gik ∈ GLr(R [fifjf
−1
k

]).

Definition 1.3.3 (Čech Nonabelian Cohomology)
Take an affine cover

U := {SpecR [f−1
i ]}i∈I ⇒ SpecR

and define H1(U/R; GLr) to be 1-cocycles up to some notion of cohomological equivalence. This
attaches a vector bundle V (M) of rank r a class γ(M) ∈ H1(U/R; GLr). Conversely, by Zariski
gluing, for any such cocycle gij we can assign some Vg ∈ BunGLr

r
/R with a trivializations

satisfying ϕiϕ−1
j = gij .

By taking a limit over all covers, we can define

Ȟ
1
zar(R; GLr) := colim−−−−−→

U
H1(U/R; GLr),

the Čech nonabelian cohomology of GLr with respect to the Zariski topology on SpecR.

Remark 1.3.4: This classifies [V ] ∈ Bun/R
∼=,r which are trivialized by U . So there are induced

maps

f : GLr → GLs  f∗ : Vr ∈ Bunr/R → Vs ∈ Buns/R

which extend to functors

f∗ : Bun/Rr → Bun/Rs.

1.3 Linear Groups 6
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Slogan 1.3.5
Nice constructions for vector bundles arise from morphisms of group schemes.

E
1.4 Classification of Modules over a

Dedekind Ring e

Example 1.4.1(Direct sums): Write n =
∑

ni to get a block map

f :
∏
i

GLni → GLn

(A1, · · · , A`) 7→ A1 ⊕ · · · ⊕A`.

In general, the diagonal map obtained by setting ni = 1 for all i yields G×rm → GLr a decomposable
vector bundle, i.e. a direct sum of rank 1 bundles.

Example 1.4.2(Tensor products): Write n =
∏

ri to get a similar map, sometimes called the
Kronecker product:

f :
∏
i

GLri → GLn

(A1, · · · , A`) 7→ A1 ⊗R · · · ⊗R A`,

Example 1.4.3(Determinant): We set det(V ) := det∗(V ) :=
r∧
V , the determinant bundle.

Remark 1.4.4: The next result is a classical theorem in commutative algebra, and the goal is to
give a geometric proof.

Theorem 1.4.5(Classification of modules over a Dedekind ring).
Let R be a Dedekind ring a , then for any

R ∈ R-ModlocFree,r≥1 =⇒ R ∼= Rr−1 ⊕ I I = det(Rr−1 ⊕ I) ∈ R-Mod×,

where I is invertible and unique up to isomorphism. Thus vector bundles over R are decom-
posable and classified by their determinant.

aNoetherian domain where the localizations at maximal ideals are DVRs,

Corollary 1.4.6(Characterization of trivial modules).
A locally free R-module M of rank r ≥ 1 is trivial ⇐⇒ detM is trivial.

Proof (of the classification theorem).
We’re given V (M) a vector bundle, which trivializes over an affine subset SpecR [f−1

i ]. Set

Σ := SpecR/SpecR [f−1
i ] = {pi}ci=1 pi ∈ mSpecR.

1.4 Classification of Modules over a Dedekind Ring 7
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Let R̂ [p−1
i ] be the completion of the residue DVR and let K̂ [p−1

i ] := K ⊗R R̂ [p−1
i ] its fraction

field. By Nakayama, M ⊗R R̂ [p−1
i ] is free, so pick a trivialization. We can use this to produce

a double coset:

cΣ (R; GLr) := GLr (Rf ) \
c∏
j=1

GLr
(
K̂ [p−1

i ]
)

/GLr
(
R̂ [p−1

i ]
)
.

Claim: The following map is injective:

ker
(
H1(R; GLr)→ H1 (R [f−1] ; GLr)

)
→ cΣ(R; GLr),

although we’ll only need that its kernel is trivial.
We can assume detV (M) is trivial to get

gi ∈ ker det∗ := ker (cΣ(R; GLr)→ cΣ(R;Gm)) .

Changing trivializations, we can assume gi ∈ SLn(K̂pi), which is generated by elementary
matrices. Using that Rf ⊆

∏
i

K̂ [p−1
i ] is dense, we get

SLn
(
K̂ [p−1

i ]
)
⊆
∏
i

SLn
(
K̂ [p−1

i ]
)

is dense.

But since each SLn
(
R̂ [p−1

i ]
)
is clopen in SLn

(
K̂ [p−1

i ]
)
, we obtain cΣ(R; SLr) = 1 and injec-

tivity allows us to conclude that V (M) is a trivial vector bundle.
�

Remark 1.4.7: This is a “strong approximation” argument.

E 1.5 Replacing the Zariski Topology e

Definition 1.5.1 (Quadratic Forms)
Given an M ∈ R-Mod, a map q : M → R is a quadratic form iff

• q(λx) = λ2q(x) for all λ ∈ R, x ∈M ,
• The associated form is symmetric and bilinear:

bq : M ⊗RM → R

(x, y) 7→ q(x+ y)− q(x)− q(y).

The form q is regular iff bq induces an isomorphism M
∼−→M∨.

Example 1.5.2(The hyperbolic form): For V ∈ R-ModlocFree,rank<∞, the hyperbolic form is

1.5 Replacing the Zariski Topology 8
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defined by

qhyp : V ⊕ V ∨ → R

v ⊗ ψ 7→ ψ(v).

Remark 1.5.3: The definition of nonabelian cohomology will extend to arbitrary group schemes,
but the Zariski topology is not fine enough. One reason to try extending this theory will be
quadratic bundles. For a regular quadratic form (M, q) with M ∈ R-ModlocFree,rank<∞, we can draw
an analogy with usual quadratic forms. So for any R-ring S we could define a subgroup scheme

O(q,M) :=
{
g ∈ GL(M)(S)

∣∣∣ qS ◦ g = qS
}
≤ GL(M)

and similarly define H1(U/R; O(q,M)) for any open cover U ⇒ R.

Lemma 1.5.4(?).
H1

zar(U/R; O(q,M)) classifies isomorphism classes of regular quadratic forms (q′,M ′) which
are locally isomorphic over U to (q,M).

Remark 1.5.5: Upshot: not all regular quadratic forms over R of a fixed dimension r need be
locally isomorphic, noting that this already fails for R := R.

Remark 1.5.6: Given a morphism of group schemes f : G → H, we would like control over
H1

zar(R;G)→ H1
zar(R;H). Consider the Kummer map

fd : Gm → Gm

t 7→ td.

This induces ×d on Pic(R), and on R-Mod× corresponds to M → M⊗d. We’d like to understand
its kernel and image, which will generally involve higher Hét. Given

[M ] ∈ ker(Pic(R) ×d−−→ Pic(R)),

there is a trivialization θ : R→M⊗d. We’ll define a group

Ad(R) :=
{

(M, θ)
∣∣∣ M ∈ R-Mod×, θ a trivialization

}
/ ∼=,

which will correspond to something in Hét. There is an exact sequence

R×/(R×)d Ad(R) Pic(R) Pic(R)

a [R, θa : R→ R⊗d, x 7→ ax]

[M, θ] [M ]

ϕ Forget ×d

1.5 Replacing the Zariski Topology 9
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Link to Diagram

Remark 1.5.7: Grothendieck-Serre’s idea is to extend the notion of covers, first with étale covers,
and later with flat covers which are simpler as a first approach.

Definition 1.5.8 (Flat Covers)
A flat (fppf) cover of R is a finite collection {Si} of R-rings where Si is a flat finitely presented
R-algebra and

SpecR =
⋃
i∈I

im(SpecSi → SpecR).

Remark 1.5.9: Setting S :=
∐
Si, this says S is a faithfully flat finitely presented R-algebra. Note

that the Zariski cover is a flat cover.

Remark 1.5.10: For G ∈ GrpSch/R, a 1-cocycle for G and S/R is an element g ∈ G(S⊗R S) where

q∗12(g)g∗2,3(g) = q∗1,3 ∈ G(S⊗R3).

We can use the finite presentation hypothesis to pass to a limit over all flat covers of SpecR and
define

H1
fppf(R;G) := colim−−−−−→H

1(S/R;G).

.

Definition 1.5.11 (Torsors)
A right G-torsor X ∈ Sch/R x G, so X is a scheme over R with a right G-action, where

• The following map is an isomorphism:

X×
R
G
∼−→ X×

R
X

(x, g) 7→ (x, x · g).

This says that G(T ) y X(T ) for all T ∈ Ring/R.

• There exists a flat cover
{
Ri/R

}
i
⇒ X with X(Ri) 6= 0.

This says X is locally trivial in the flat topology.

Morphisms of torsors are G-equivariant maps of schemes, and condition 1 forces these to all
be isomorphisms, so Torsor-G/R ∈ Grpd.

Definition 1.5.12 (Split torsor)
Setting X := G with Gy G by right-translation yields the split torsor.

Definition 1.5.13 (Trivial Torsor)

1.5 Replacing the Zariski Topology 10
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If X(R) 6= ∅, so X has an R-point, the point x ∈ X(R) defines an isomorphism

G
∼−→ X

g 7→ x · g.

In this case, we say that X is a trivial torsor.

Example 1.5.14(?): G ∈ G-Torsor/R is a trivial G-torsor.

Definition 1.5.15 (First fppf cohomology)
The functor

R 7→ Aut
Torsor-G/R

(G).

of automorphisms of the trivial G-torsor G is representable by G, acting by left translation.
We formally define the first fppf cohomology to be isomorphism classes of G-torsors:

H1
fppf(R;G) := Torsor-G∼=/R for the flat topology,

and for S → R ∈ Covflat(R), we define the subset of G-torsors trivialized over S as

H1
fppf(S/R;G) ⊆ H1

fppf(R;G).

Definition 1.5.16 (Class map)
There is a class map

γ : H1
fppf(S/R;G)→ Ȟ

1
fppf(S/R;G).

How do you construct the class map..?

Remark 1.5.17: For X ∈ G-Torsor/R with a trivialization

ϕ : G×
R
S
∼−→ X×

R
S,

there are two trivializations over S⊗R2:

G×
R
S⊗R2

G×
R
S⊗R2 X×

R
S⊗R2

ϕ⊗1

p∗1(ϕ)

p∗2(ϕ)=ϕ⊗1
1⊗τ12

Link to Diagram

1.5 Replacing the Zariski Topology 11
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Thus p1(ϕ)−1 ◦ p2(ϕ) ∈ Aut
G-Torsor

(G)/S⊗R2 is an automorphism of the trivial torsor, thus acts by left

translation by some g ∈ G(S⊗R2). An argument shows that g is a 1-cocycle and that changing ϕ
only changes g by a coboundary, so the class map is well-defined.

Definition 1.5.18 (Amitsur Resolution)
If X ∈ G-Torsor has a trivialization ϕ, then over S⊗R2 we have two trivializations:
Let T be a faithfully flat descent of R, then the Amitsur complex is defined as

0→M →M ⊗R T →M ⊗R T⊗R2 → · · ·  M →M ⊗R T•(T ),

where T denotes the tensor algebra. This has a differential given by

∂(m⊗ t) =
∑
i

(−1)im⊗ ψi(t),

where ψi is the ith face map inserting a 1 between the i and i+ 1st tensor factors.

Remark 1.5.19: An important theorem is that the Amitsur complex is exact for each M ∈ R-Mod,
which for any X ∈ AffSch/R allows an identification

X(R) =
{
x ∈ X(T )

∣∣∣ p∗1(x) = p∗2(x) ∈ X
(
T⊗R2

)}
.

Definition 1.5.20 (Descent data)
For N ∈ T-Mod, consider

p∗1(N) := T ⊗RM, p∗2(N) := M ⊗R T ∈ T⊗R2-Mod.

A descent datum on N is an isomorphism

ϕ : p∗1(N) ∼−→ p∗2(N) ∈ T⊗R2-Mod.

of T⊗R2-modules making the following diagram commute:

T⊗R2 ⊗R N N ⊗R T⊗R2

T ⊗R N ⊗R T

ϕ2=(1⊗ϕ)◦τ12

ϕ3=(ϕ⊗1)◦τ23

ϕ1=1⊗ϕ

Link to Diagram
Here τij is the map that swaps the i and jth tensor factors, so e.g. ϕ3(t1⊗t2⊗n) := ϕ(t1⊗n)⊗t2.
There is a category of T -modules with descent data, where objects are pairs (T, ϕ) and mor-
phisms are clear, and I’ll write this as T-ModDesc. For M ∈ R-Mod, there is a canonical
descent datum

canM : p∗1(M ⊗R T ) ∼−→ p∗2(M ⊗R T ).

1.5 Replacing the Zariski Topology 12
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Theorem 1.5.21((Grothendieck) Faithfully flat descent).
There is a functor inducing an equivalence of categories:

F : R-Mod
 T-ModDesc
M 7→ (M ⊗R T, canM ){

n ∈ N
∣∣∣ n⊗ 1 = ϕ(1⊗ n)

}
7→(N,ϕ).

This induces an equivalence of categories

cAlg/Runital 
 cAlgunital
/TDesc.

Remark 1.5.22: This theorem is a good reason to focus on the affine setting. Faithfully flat descent
implies the following:

Theorem 1.5.23(?).
Let M ∈ R-ModlocFree,r then the functor

S-Mod→ Set
S 7→ Isom

S-Mod
(Sr,M ⊗R S)

is representable by an object XM . This induces an equivalence of categories

Grpd 3 X(−) : R-ModlocFree,r 
 GLr-Torsor/R ∈ Grpd.

Corollary 1.5.24(Hilbert=Grothendieck 90).

H1
zar(R; GLr) ∼= H1

fppf(R; GLr).

Remark 1.5.25: In particular, if R is local or semilocal, H1
fppf(R; GLr) = 1. This also holds for R

replaced by any B ∈ Alg/Rsep, e.g. a finite étale or Azumaya algebra.

Lemma 1.5.26(The class map is injective).

H1
fppf(S/R;G) ↪→ Ȟ

1
fppf(S/R;G).

Remark 1.5.27: By passing to the limit over flat covers, we get an isomorphism on H1
fppf(R;G)→

Ȟ
1
fppf(R;G), and we can descend torsors under an affine scheme. The proof involves the following

construction:

Definition 1.5.28 (Twisting)

1.5 Replacing the Zariski Topology 13
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If Y ∈ Gy AffSch/R has a left G-action, then the action map

G×
R
S⊗R2 ∼−→ Y ×

R
S⊗R2

is an isomorphism that defines a descent datum. If G acts on itself by inner automorphism,
Gg is called that twisted R-group scheme, which acts on Yg. So for any E ∈ G-Torsor, we can
define the twists YE and GE. In general, we can twist G-schemes equipped with an amply
invertible G-linearized line bundle.

Theorem 1.5.29(?).
If G is affine, the class map γ is an isomorphism.

2 Tuesday, July 13

Talk: Phillippe Gilles, Talk 2

Remark 2.0.1: Let M ∈ R-Mod. Reminders of notation

• V (M) := Spec Sym•M which represents

S 7→ hom(S)-Mod(M ⊗R S, S),

is the vector group scheme of M .
• W (M) := V (M∨) which represents M ⊗R − (and doesn’t seem to have a name).
• For Y ∈ G-AffSch/R (affine schemes with a left G-action), Yg ∈ AffSch/R is the twist of Y by

the 1-cocycle g defined by the action map:

g : Y ×
R
S⊗R2 ∼−→ Y ×

R
S⊗R2.

– For any G-torsor E and any Y ∈ G-Sch with an ample invertible G-linearized bundle2 ,
one can similarly define twists EY .

• For T a faithfully flat extension of R, the Amitsur resolution is given by

M →M ⊗R T(T )• where T(V )• := V ⊕ V ⊗2 ⊕ · · · .

I.e., this resolves M by the tensor algebra (or free algebra) on T .

We’ll now discuss some important special cases of G-torsors. The following claim is in analogy to
Coh(X) for X ∈ AffSch:

Fact 2.0.2 (Vector group schemes have trivial cohomology)
If M ∈ FinR-ModlocFree,r<∞, then Ȟ1(R;W (M)) = 0 and every W (M)-torsor is trivial.

The following are some important special cases:
2This holds for example if Y ∈ AffSch.
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Definition 2.0.3 (Finite Constant Group Scheme)
For any Γ ∈ FinGrp, ΓR is the finite constant group scheme attached to any Γ, and is
defined by

ΓR(S) :=
{
f : SpecS → Γ

∣∣∣ f is locally constant
}
∈ Grp.

Definition 2.0.4 (Galois Cover)
A ΓR-torsor of the form SpecS → SpecR is equivalently a Galois Γ-algebra S and is referred
to as a Galois cover.

Example 2.0.5(?): A finite Galois extension L/k with Galois group Γ := Gal(L/k) yields a Galois
cover SpecL→ Spec k.

Example 2.0.6(?): Another nice case is when Γ is the automorphism group associated to some
algebraic structure, i.e. when one has forms. For example, take Γ := O2n = Aut(qhyp) for the
hyperbolic form qhyp on Rn. Descent gives an equivalence of categories

Grpd 3
{

Regular quadratic forms q
with rank q=2n

}

 H1

fppf(R; O2n),

which uses that all forms appearing on the left-hand side are locally isomorphic to qhyp in the flat
topology.

Example 2.0.7(?): Take Γ := Sn the symmetric group, so

Sn(X) = Aut
Grp

(X×n) ∀S ∈ Alg/R.

The same yoga shows there is a categorical equivalence

Sn-torsors
 FinAlgét
/R,

where we use that every X ∈ FinAlgét of degree n is locally isomorphism to Rn. The inverse is given
by descent.

Definition 2.0.8 (Flat Quotient)
For X,H ∈ GrpSch/R, a map H → X is a flat quotient of H by G iff

• For each S ∈ Alg/R the map H(S) → X(S) induces an injection H(S)/G(S) ↪→ X(S),
and

• For each x ∈ X(S) there exists a flat cover S′ → S with xS′ ∈ im(H(S′)→ X(S′)) (so f
is couvrant en français).

Example 2.0.9(of flat quotients):
• Gm = GLr /Flat SLr.
• Gm = Gm/Flat µd.
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Lemma 2.0.10(?).
Let X be the flat quotient of H by G.

1. H → X is a G-torsor
2. There is an exact sequence of pointed sets:

1→ G(R)→ H(R)→ X(R) ϕ(x)=[f−1(x)]−−−−−−−−−→ H1
fppf(R;G)→ H1

fppf(R;H),

where ϕ is denoted the characteristic map, which arises naturally from base change.

Remark 2.0.11: When G E H, then X ∈ GrpSch/R, and

{G-torsors over SpecR}

{

(F,ϕ)
∣∣∣ F∈H-torsors,

ϕ a local trivialization of FX

}
.

Example 2.0.12(?): SLn-torsors are equivalent to (M, θ) with M ∈ R-ModlocFree,r and θ : R ∼−→
r∧

(M) is a trivialization of det(M).

Example 2.0.13(?): Using the Kummer exact sequence

1→ µd → Gm
×d−−→ Gm → 1,

µd-torsors are equivalent to pairs (M, θ) with M ∈ R-Mod× and θ : R ∼−→M⊗Rm is a trivialization.

Definition 2.0.14 (étale morphism)
An étale morphismof rings R → S is a smooth morphism of reldim = 0. Alternatively,
S ∈ R-ModFlat such that for every R-field F , S ⊗R F ∈ Algét

/F , where étale algebras are finite
and geometrically reduced.

Example 2.0.15(?): • Localization R→ R [f−1] is étale.
• If d−1 ∈ R then the Kummer morphism t 7→ td is étale.
• If d−1 ∈ R and r ∈ R×, then R[x]/

〈
xd − r

〉
∈ FinAlgét

/R.

Proposition 2.0.16(?).
For G affine smooth, there is an equivalence of torsors

H1
ét(R;G) ∼= H1

fppf(R;G).

Proof (?).
See notes. This uses that in the flat topology, smoothness is local.

�

E 2.1 Galois Cohomology e
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Remark 2.1.1: Galois descent is a special case of faithfully flat descent, and takes the form

R-Mod

{

(N,ρ)
∣∣∣ N∈S-Mod

ϕ a semilinear action ΓyN

}
,

where semilinear means that

ϕ(σ)(λ · n) = σ(λ) · ρ(σ)(n).

Definition 2.1.2 (Isotrivial torsors (very important!))
A torsor X over GrpSch/R is isotrivial if it is split (trivialized) by a finite Galois étale cover
R′ → R.

Remark 2.1.3: These are the torsors that can be made explicit in Galois cohomology.

Example 2.1.4(?): Let ch k = 0, then the ring of Laurent polynomials k((x)), this is isotrivial
and a reductive group scheme. A special case is that of loop torsors, which are closely related to
representation theory in AlgGrp.

Remark 2.1.5: The main topic is affine curves, and these are special cases of Dedekind rings. Let
R be Dedekind with K := ff(R) and G ∈ AffGrpSch, then as in the proof for GLn yesterday we
have an injective class map

ker(H1
fppf → H1

fppf × · · · )→ cΣ(· · · ).

In particular, if cΣ(R;G) = 1, and in particular G(R [f−1]) is dense in
∏
· · ·, the kernel appearing

here is trivial.

Corollary 2.1.6(?).
If G is a semisimple simply connected a and split in GrpSch/R, then

ker
(
H1(R;G)→ H1 (R [f−1] ;G)

)
= 1.

aHere “simply connected” is in the sense of semisimple algebraic groups or group schemes, and over C coincides
with the topological notion.

Remark 2.1.7: This simplification comes from the injectivity of the following:

H1(R̂ [p−1
i ] ;G) ↪→ H1(K̂ [p−1

i ] ;R).

In the limit, this says that many torsors are actually trivial. We find that H1
zar(R; SLn) = 1 and

H1
zar(R;E8) = 1.

E
2.2 Curves Over an Algebraically Closed

Field
e
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Theorem 2.2.1(?).
Let k = k and G ∈ AlgGrp

/k
be semisimple and C a smooth connected curve. Then

H1
fppf(C;G) = 1.

Remark 2.2.2: The main ingredient is Steinberg’s theorem that H1(K(C);G) = 1. A special case
is PGLn and rephrases that central simple algebras over k(C) are matrix algebras (using Tsen’s
theorem). This also uses that Pic(C) is divisible, which follows from the structure of Pic(Cc) for
Cc a smooth compactification.

Remark 2.2.3: We have a degree map and moreover an exact sequence involving the Jacobian (an
abelian variety):

0→ JCc(k)→ Pic(Cc) deg−−→ Z→ 0.

If C is Cc minus finitely many points, Pic(Cc) � Pic(C) induces JCc(k) � Pic(C). We’ll sketch
the proof first in the case G is simply connected. In this case, given γ ∈ H1(C;G), and according
to Steinberg’s theorem there exists f ∈ k[C] with γCc =?. In the general case, we can take a simply
connected cover f : G̃→ G, e.g. SLn → PGLn or Spinn → SOn. Let T̃ be its maximal torus, then
T := T̃/ ker f is a maximal torus in G, so let B ⊆ G be a Borel containing T .

Claim:

H1(C;B)� H1(C;G).

Letting E be a C-torsor under G, then the idea is to introduce the twisted C-scheme Y := E(G/B),
a projective variety of flags. By Steinberg’s theorem, Y (k(C)) 6= ∅. Applying the valuative criterion
of properness shows that Y has a C-point, so E(G) has a Borel subgroup scheme. By functoriality,

[E] ∈ im(H1(C;B)→ H1(C;G)).

We thus have B = U o T where U admits a T -equivariant filtration with associated quotients
isomorphic to copies of Ga, and we apply a dévissage argument. Since T̃ → T is an isogeny (finite
kernel) and Pic(C) is a divisible group, a commutative diagram shows surjectivity H1(C;T ) �
H1(C;G) and thus the latter is trivial.

The reductive case is similar, letting S = G/DG be the coradial torus of G and showingH1(C;G) ∼−→
H1(C;S) generalizing the bijection from yesterday:

H1(C; GLr)→ H1(C;Gm) = Pic(C).

E 2.3 Affine Line e
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Theorem 2.3.1(?).
Let k ∈ Field be not necessarily algebraically closed and G ∈ GrpSch

/k
reductive. We have a

bijection

H1(k;G) ∼−→ ker
(
H1(k[t];G)→ H1(ks[t];G)

)
.

If k is perfect or ch k = p where p is “good” for G, we have H1(ks[t];G) = 1 and so H1(k;G) =
H1(k[t];G) and we say G-torsors over k[t] are constant.

Remark 2.3.2: This doesn’t hold for G = PGLp over k(t) with ch k = p imperfect. Our next goal
is to prove this theorem – a common ingredient to all proofs is the following theorem on bundles
over P1:

Theorem 2.3.3(Grothendieck-Harder).
For G a reductive k-group, let S be a maximal k-split torus of G and consider its constant
associated Weyl group

WG(S) = NG(S)/CG(S).

Then there is a bijection

H1
zar(P1

/k
;S)/WG(S) ∼−→ ker

(
H1(P1

/k
;G) ev0−−→ H1(k;C)

)
.

In particular if a G-torsor over k[t] is trivial at t = 0 and extends to a G-torsor over P1
/k
, then

it is trivial.

Remark 2.3.4: Given a G-torsor over k[t], without loss of generality, we can assume X is trivial
on t = 0 – the original method to extend X to P1 is to use Bruhat-Tits theory. The idea is to find
an integer d ≥ 1 where γk[td] extends to P1. The statement is local at ∞, i.e. it’s enough to find d
where γk((t−d)) comes from H1(· · · ).

The following map is surjective:

H1(k((t−1));S)→ H1(k((t−1));G),

and we can write the absolute Galois group of k
((
t−1
))

as

lim
n
µn(ks) oG(ks/k) = I oG(ks/k).

A restriction of a cocycle to the inertia group is a group morphism, so factors through µd(ks) for
some finite d, which we can take to be the order of S(ks). We have some γ ∈ H1(k[t];G) satisfying
γ(0) = 1, and a trick is to introduce a new indeterminate u and to extend to F := k(u).

The upshot is that

ff
(
k(u, t, (ut)

1
d )
)
∼= k(t, x).

by a k(t)-linear isomorphism. The kernel is trivial by a specialization argument, so γ is rationally
trivial and extends to infinity.
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Remark 2.3.5: Noting that A1 = P1 \ {pt}, we have Gm = P1 \ {pt0, pt1}, which is much more
difficult.

Theorem 2.3.6(?).
Let G be a reductive k-group over ch k = 0, then there is a bijection

H1(k[t, t−1];G) ∼−→ H1(k((t));G).

Remark 2.3.7: Surjectivity is easy, coming from reduction to a finite subgroup, and injectivity
is hard. A crucial step is to show existence of a maximal torus for the relevant twisted group
scheme, using again Bruhat-Tits theory and now twin buildings. So we have a good understanding
of Gm-torsors, and a next step would be understanding Pn with more deleted points.
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