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1 Frédéric Déglise, Talk 1 (Wednesday, July
14)

E 1.1 Intro e

References:

• http://deglise.perso.math.cnrs.fr/docs/2021/PCMI1.pdf

• PCMI Notes 1

• PCMI Notes 2

Abstract:

Building on initial conjectures due to Beilinson, Vo-
evodsky has initiated a rich variety of “motivic cat-
egories”, the universal one being Morel-Voevodsky’s
homotopy category. This world, that is now called
“motivic homotopy theory”, has produced a wide range
of results, settling older conjectures as well as opening
new tracks to follow.
This lecture series will aim at giving a survey of this
world, from the pure motivic origin, through the func-
toriality developments and then to some of the excit-
ing open questions.

Remark 1.1.1: Recall the Euler product expansion for the zeta function. General L-functions were
studied around the 20s, followed by the Weil conjectures in the 40s, and then étale `-adic shaves by
Grothendieck et al in the 60s. Letters from Grothendieck to Serre describe the notion of weights in
relation to the Weil conjectures, and served as an impetus in the early 70s for pure motives.

A second line of study considered number fields and class number formulas, along with special
values of L-functions, going back to Dirichlet. Lichtenbaum related special values to K-theory in
the 70s, and this along with the theory of perverse sheaves in the early 80s led to the Beilinson
conjecture and motivic complexes in the 90s.

As an aside, there is also a notion of p-adic L-functions and corresponding p-adic motives.

Remark 1.1.2: An outline for today:

1. Sheaves with transfers, which are modeled on étale homotopy sheaves

2. Homotopy sheaves over perfect fields
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3. Motivic complexes

Remark 1.1.3: There are three main notions for étale sheaves:

1. Sheaves with transfers (see algebraic cycles),
2. The (big) smooth Nisnevich site,
3. A1-homotopy invariance.

E 1.2 Setting up sheaves with transfers e

We’ll fix S a regular Noetherian scheme.

1.2.1 Finite Correspondences

Definition 1.2.1 (Finite Correspondences)
For X,Y ∈ smSch/S , a finite correspondence α from X to Y is a formal sum

α =
m∑
i=1

mi[Zi] with Zi ⊆ X ×
S
Y closed, integral

with Zi → X finite and dominant over a connected component of X, i.e. an algebraic cycle in
the product. These form an abelian group denoted c(X,Y ) ∈ AbGrp, and can be composed
without imposing any equivalence relation on algebraic cycles.
We can thus define a closed symmetric monoidal (additive) category enriched over abelian
groups, the category of finite correspondences over S:

C := CorSch/S
Ob(C) := Ob(smSch/S)

C(X,Y ) := c(X,Y ).

where the monoidal structure is the cartesian product over S on objects and on c(X,Y ) is
induced by the exterior product of algebraic cycles.

Remark 1.2.2: Writing XY Z := X×
S
Y×

S
Z, we have smooth projection maps

p : XY Z → XY

r : XY Z → XZ

q : XY Z → Y Z.

Given cycles α ∈ c(X,Y ), β ∈ c(Y,Z), these pull back to XY Z and intersect properly, with their
intersection product given by Serre’s Tor formula.

1.2 Setting up sheaves with transfers 4
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Definition 1.2.3 (Graph)
Let Y f−→ X ∈ smSch/S , and define the graph of f as the following pullback:

Γf Y×
S
X

X X×
S
Xδ

f×1

Link to Diagram
Here δ is the diagonal immersion of X/S .

Remark 1.2.4: Note that Γf ⊆ Y X is a closed subscheme, and there is an associated algebraic
cycle

[Γf ]XY ∈ c(Y,X).

Definition 1.2.5 (Transpose)
Letting ε : Y X → XY be the permutation of factors, ε∗[Γf ] ∈ c(X,Y ) is a finite correspondence
denoted f t, the transpose of f .

Remark 1.2.6: Several of the operations from the six functor formalism appear here:

• Base change can be defined for T f−→ S as

f∗ : CorSch/S → CorSch/T
X 7→ X×

S
T

using pullback for finite correspondences.
• Forgetting the base is given by

p] : CorSch/S → CorSch/T
Y/T 7→ Y/S

using direct images for finite correspondences.

We now enlarge CorSch/S to a larger abelian category. This uses the fact that the Yoneda embedding
will be a fully faithful functor

X 7→ c(−, X) := Ztr
/S(X)

landing in a cocomplete abelian category extending the 6 functors.

1.2.2 Presheaves with transfers

1.2 Setting up sheaves with transfers 5
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Definition 1.2.7 (Presheaf with transfers)
A presheaf with transfers F over S is an additive functor

F : CorSchop
/S → AbGrp.

We then define a category of presheaves with transfers over S:

C := trSh
pre/S

Ob(C) := Presheaves with transfers F
C(F ,G) := Natural transformations η : F → G.

Remark 1.2.8: Let f ∈ CorSch/S(Y,X). Note that by contravariance of presheaves F we always
get maps

F(f) ∈ AbGrp(F(X),F(Y )).

The data of a transfer is the additional following operation on F , yielding a “wrong way” map:

f∗ := F(f t) ∈ AbGrp(F(Y ),F(X)).

Example 1.2.9(of presheaves with transfers):
• Gm(−) : X/S → OX(X)× has transfers over S.
• For A ∈ AbVar/k, the functor Hom(−, A) has transfers over k.
• Hn(−) has transfers over S for any mixed Weil cohomology theory.
• K-theory does not form a presheaf with transfers. One instead needs unramified K-theory.

1.2.3 Nisnevich Sheaves

Definition 1.2.10 (Nisnevich Topology)
A Nisnevich cover of X ∈ Sch is a family of étale morphisms

{
Wi

pi−→ X
}
i∈I

where for x ∈ X,
pi(w) = x for some w ∈Wi inducing a trivial residual extension κ(w)/κ(x).

Lemma 1.2.11(Characterization of Nisnevich sheaves).
For F : smSchop

/S → AbGrp any abelian presheaf, F is a sheaf for the Nisnevich topology iff
F(∆) is a cartesian square for every distinguished square ∆ of the following form:

W V

∆

U X

q

k

j

p

Link to Diagram
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Here j is an open immersion, has reduced closed complement Z, p is étale, and p−1(Z) ∼−→ Z.

1.2.4 Sheaves with transfers

Definition 1.2.12 (Sheaf with transfers)
There is a canonical embedding

γ : smSch/S → CorSch/S
X 7→ X

(Y → X) 7→ [Γf ]XY ∈ c(Y,X).

A sheaf with transfers is a presheaf F ∈ trSh
pre/S

such that

F ◦ γ :∈ Sh
(

SchNis
/S ,AbGrp

)
,

i.e. the composition F ◦γ is a sheaf on the Nisnevich site of schemes (a Nisnevich sheaf ). These
form a category denoted trSh/S , and there is an adjunction

trSh/S
Forget−⇀⊥↽−
atr

trSh
pre/S

where atr(F)
∣∣∣
smSch/S

= (F ◦ γ)sh.

Remark 1.2.13: The smooth site on Sch/S is big in the following sense: to give a Nisnevich sheaf
in this site is equivalent to an assignment

smSch/S → Sh(smSch/S ,AbGrp)
X 7→ FX

(Y f−→ X) 7→ (f∗(FY )
τf−→ FX).

Noting that τf is not generally an isomorphism, it somehow measures a defect of base change. In
particular, Sh(smSch/S) is a much bigger category than Sh(SchNis

/S ).

Example 1.2.14(of sheaves with transfers):
• For X/S smooth: Ztr

s (X) := cS(−, X).
• Gm(−) : X/S → OX(X)×.
• For A ∈ AbVar/k, Hom(−, A).

As before, the last two examples don’t form sheaves with transfers:

• Hn(−)
• K-theory

1.2 Setting up sheaves with transfers 7
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Remark 1.2.15: We have f∗, p],⊗ on CorSch/S , and these can be extended to sheaves:

• f∗(F ) := F ◦ f∗, which yields a base change/direct image adjunction:

trSh/S
f∗−⇀⊥↽−
f∗

trSh/T .

• p : T → S yields a forget base/base change adjunction:

trSh/T
p]−⇀⊥↽−
p∗

trSh/S ,

where for open immersions, p] is p!, the exceptional direct image

• h⊗ on trSh/S yields a closed symmetric monoidal structure

trSh/S
−⊗trF−⇀⊥↽−

Homtr(F ,−)
trSh/S ,

where Homtr is an internal hom.

E 1.3 Homotopy and Cohomology e

1.3.1 A1-invariance and Homotopic Morphisms

Definition 1.3.1 (A1invariance and homotopy sheaves)
Let F ∈ trSh(S) and let p : A1

/X → X be the canonical projection. We say F is A1-invariant
or a homotopy sheaf if for any X ∈ smSch/S , there is an induced isomorphism

p∗ : F (X) ∼−→ F (A1
/X).

These form a category denote HItr(S).

Definition 1.3.2 (Homotopic morphisms)
Let α, β ∈ CorSch/S(X,Y ) be two morphisms. We then say α is homotopic to β and write
α ∼ β iff there exists a H satisfying the following:

H ∈ CorSch/S(A1 ×X,Y )
α = H ◦ s0

β = H ◦ s1,

where s0, s1 are the zero and unit sections of A1
/X ∈ RingSch/X . This yields an equivalence

relation, and we set

πS(X,Y ) := CorSch/S(X,Y )/ ∼ .

1.3 Homotopy and Cohomology 8
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Example 1.3.3(of A1-invariant sheaves): The sheaves Gm(−) and Hom(−, A) are A1-invariant.

Theorem 1.3.4(Suslin-Voevodsky).
Let S ∈ AffSch be regular and C ∈ AffSch/S an affine curve admitting a good compactifica-
tion C̃:

• C̃/S is proper and normal,
• C ⊆ C̃ is open/dense,
• C∞ := C̃ \ C admits an affine open neighborhood.

Then for any X ∈ smAffSch/S , there is a canonical isomorphism of groups:

πS(X,C) ∼−→ Pic(X×
S
C̃×

S
C∞)

α 7→ [O(α)],

where O(α) is the line bundle associated to α, viewed as a Cartier divisor in X×
S
C̃.

1.3.2 Cohomology of Perfect Fields

Definition 1.3.5 (Fiber functors)
Fix k ∈ PerfField, then a function field E over k is a separable finitely generated field
extension E/k. One can define the fiber of a homotopy sheaf F at E/k as a filtered colimit
over smooth finitely generated sub k-algebras A:

F (E/k) := colim−−−−−→
A/k≤E/k

F (SpecA).

This yields a fiber functor: it is exact and commutes with coproducts.

Remark 1.3.6: We define the category HItr(S) ≤ trSh(S) to be the category of all homotopy
sheaves, which is (Grothendieck) abelian and bicomplete. The forgetful functor is exact, so there is
an adjunction

trSh/k
h0−⇀⊥↽−

Forget
HItr/k.

Proposition 1.3.7(Dévissage/purity).
If F is a homotopy sheaf and Z i−→ X is a codimension 1 closed immersion in smSch/k with
j : X \ Z → X an open immersion, then there is a SES of Nisnevich sheaves over XNis:

0→ FX → j∗FX\Z → i∗F−1,Z → 0.

1.3 Homotopy and Cohomology 9
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1.3.3 Homotopy Invariance

Theorem 1.3.8(Main Theorem: homotopy invariance of homology).
If k ∈ PerfField and F ∈ HItr/k, then for all m and all X ∈ smSch/k, there is an isomorphism

p∗ : Hn
Nis(X;F) ∼−→ Hn

Nis(A1
/X ;F),

so the presheaf Hn
Nis(−,F) is homotopy invariant.

Corollary 1.3.9(Purity theorem).
For Z ↪→ X smooth closed of codimension m, then

Hn
Z(X;F) ∼−→ Hn−m

Nis (Z;F−m).

Here the LHS is Nisnevich cohomology with support.

Corollary 1.3.10(The Gersten resolution computes Nisnevich cohomology).
For X smooth, Fx is Cohen-Macaulay and there is a Cousin complex C∗(X;F), also called
the Gersten complex of F , and one can compute Nisnevich cohomology as

Hn
Nis(X;F) ∼−→ Hn(C∗(X;F)).

1.3.4 Relation to Chow

Theorem 1.3.11(Nisnevich cohomology to Chow comparison).
Write Sn := Gm

h⊗n , then for a function field E/k, there is an isomorphism of sheaves

Sn(E) ∼−→ KM
n (E),

so this identifies with the nth unramified K-theory of E. Using the Gersten resolution of Sn,
one obtains an isomorphism of groups

Hn
Nis(X;Sn) ∼−→ CHn(X),

the Chow group of codimension n cycles modulo rational equivalence.

2 Frédéric Déglise, Talk 2 (Thursday, July
15)

E 2.1 Intro e

Frédéric Déglise, Talk 2 (Thursday, July 15) 10
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Remark 2.1.1: Recall the Beilinson conjectures (84/86), and Bloch’s higher Chow groups (86).
Today we’ll discuss the A1-homotopy category hoA1

∗ and the category of motives DM/S . We’ll be
working Top∗, the infinity category of pointed spaces, and DAb, the (infinity) derived category of
abelian groups.

E 2.2 The homotopy category e

Definition 2.2.1 (The homotopy category)
Consider infinity functors

F : smSchop
/S → Top∗

and define

F (X,Z) := hofib(F (X)→ F (X \ Z)).

Then the (pointed) A1 homotopy category of S, denoted hoA1
∗ /S , consists of such functors

F that satisfy

• Excision: for all (Y, T )→ (X,Z) excisive, there is a weak equivalence

F (Y, T )→
W
F (X,Z).

• Homotopy invariance: The canonical projection A1
/X induces a weak equivalence

F (X)→
W
F (A1

/X).

This category admits a monoidal structure, which we’ll denote by the smash product X ∧ Y .

Remark 2.2.2: The excision axiom can be replaced by the following condition: for distinguished
squares ∆, the image F (∆) is homotopy cartesian:

W+ V+

U+ X+

y

Link to Diagram

We can similarly ask for (infinity additive) functors K : smSchop
/S → DAb satisfying these properties.

2.2 The homotopy category 11
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Remark 2.2.3: We can use infinity categorical localization theory to build this category. For a
scheme S, view a pointed space over S as a presheaf valued in pointed simplicial sets, viewed as an
infinity category. We can then construct

hoA1
∗ /S = Sh

pre
(smSch/S , sSet∗) [W−1] := C [W−1]

W :=
{
Z∗S(A1

/X)→ Z∗S(X)
∣∣∣ X ∈ Ob(C)

}
.

Remark 2.2.4: One can similarly do this for trSh
pre

(CorSch/S ,DAb) = DtrSh
pre/S

. Effective motives

DMeff
/S can be constructed by replacing presheaves with DShtr

/S and localizing at Ztr
S (A1

/X)→ Ztr
S (X).

E 2.3 A1-locality e

Definition 2.3.1 (A1-local spaces)
A1-local spaces are those S-spaces for which the realization induces a weak equivalence on
mapping spaces:∣∣∣A1

/X

∣∣∣
+
→ X+  Hom(X+, Y )→

W
Hom(

(
A1
/X

)
+
, Y ) ∀Y ∈ Ob(C).

Remark 2.3.2: Fix k ∈ PerfField and consider complexes of sheaves K ∈ Ch
(

Shtr
/S

)
. We can define

cohomology sheaves H∗(K) by taking kernels mod images in Sh
pre

tr
/S

and Nisnevich-sheafifying to get

a sheaf

H i(K) :=
(
H i(K)

)sh
∈ Shtr

/S .

This gives a way to take cohomology of complexes of sheaves with transfers.

Theorem 2.3.3(Characterization of A1-local complexes of sheaves).
K is A1-local iff for all Hn(K) is A1-local in HItr/k for all n

Definition 2.3.4 (Suslin Complex)
Define standard cosimplicial scheme as

∆n := Spec
(
k[x0, · · · , xn]
〈
∑
xi〉

)
∈ Sch/k

and for K ∈ Ch
(
trSh/k

)
a complex of sheaves with transfers, the Suslin singular complex

is the complex of sheaves defined as

CS∗ (K), Γ
(
X/S

)
:= TotΠK(∆•×

k
X).

for X ∈ smSch/S .

2.3 A1-locality 12
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Corollary 2.3.5(The Suslin complex is A1-local).
The Suslin singular complex CS∗ (K) is A1-local, and the functor CS∗ (−) is an isomorphism in
DM?

E 2.4 Motives e

Definition 2.4.1 (Motives)
The homological motive of a smooth scheme X ∈ smSch/k is

M(X) := C∗(S)Ztr
/k(X).

Definition 2.4.2 (Tate twist)
The Tate twist is defined as

Z(1) := coker (M {1} →M(Gm)) [−1].

What is {1}? Maybe Spec k...

Example 2.4.3(of identifying a Tate twist): Z(1) = Gm[−1] ∈ [0, 1] is supported in homotopy
degree 0 and 1 (and in fact just in degree 1), and generally Z(n) = Z(1)⊗n

k ∈ (−∞, n] is supported
in degree at most n.

Conjecture 2.4.4(Reinforced Beilinson-Soulé).
For all n > 0, Z(n) ∈ [1, n], so it is in fact only supported in positive degrees. Moreover, for
E/k ∈ fnField,

H i>n (CE(∆∗E ,Gn
m)Q) = 0.

By Bloch-Kato, the integral and rational cases are equivalent.

E 2.5 Motivic Cohomology e

Definition 2.5.1 (Motivic cohomology)
For X ∈ smSch/k, the motivic cohomology is given by

Hn,i
mot(X) := Hn

Nis(X;Z(i)).

The grading n is the degree, and i is the twist.

2.4 Motives 13
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Remark 2.5.2: Let Z(m) ∈ DShtr
/k, then for X ∈ smSch/k we have

Hn,i
M (X) = Hom

DMeff
(M(X),Z(i)[n]).

Taking the sheaf defined in top diagonal bidegree, this can be identified with unramified Milnor
K-theory:

Hn(−;Z(n)) = KMn(−).

E 2.6 Stable Six Functors e

Remark 2.6.1: Let X : smSchop
/S → Top∗, which is a “space” in an infinity categorical sense, and

consider f : T → S a morphisms of schemes. We can form f∗ : smSch/S → smSch/T which induces
an adjunction

hoA1
∗ /S

f∗−⇀⊥↽−
f∗

hoA1
∗ /T .

For p : T → S smooth, we can define p] and p∗ similarly, yielding

hoA1
∗ /S

p]−⇀⊥↽−
p∗

hoA1
∗ /T .

There is also a stable lift of the tensor product to a smash product − ∧−, yielding

hoA1
∗ /S

−∧−−⇀⊥↽−
Hom(−,−)

hoA1
∗ /S .

Not precise, need to apply a space as an argument...?

There are also formulas for things like f∗(K ∧X+), as well as (smooth) base change and projection.

Theorem 2.6.2(Morel-Voevodsky Localization).
Let i : Z ↪→ S be closed and U := S \ Z with j : U ↪→

O
S an open immersion. Then for all

X ∈ hoA1
∗ /S , there is a homotopy cofiber sequence

j]j
∗(X)→ X → i∗i

∗X,

where the maps are given by units/counits of the corresponding adjunctions.

Remark 2.6.3: This can be restated as a geometric version of A1-homotopy equivalence: that
there is a weak equivalence

X

X \ (X×
S
Z) →W i∗((XZ)+).

We don’t have the 6 functor formalism unstably.

2.6 Stable Six Functors 14
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E 2.7 Stabilization e

Remark 2.7.1: One can take spheres in hoA1
∗ /S to be the pointed space

(P1,∞) ' S1 ∧ (Gm, 1).

This yields a definition of loop spaces:

ΩP1(−) := RHom(P1,−),

where one needs to derive this construction.

Definition 2.7.2 (Stable homotopy category)
The stable homotopy category SH/S is defined as the limit

· · ·
ΩP1−−→ hoA1

∗ /S

ΩP1−−→ hoA1
∗ /S

ΩP1−−→ hoA1
∗ /S ,

which is a construction that works for presentable monoidal infinity categories.

Remark 2.7.3: This makes P1 a monoidally invertible object, and it turns out to invert Gm and
the classical sphere S1. This is because if we define Sn,m := Sn ∧Gm

m, we have

P1 ' S1,1 := S1 ∧Gm

An \ {0} ' Sn−1,n := Sn ∧Gm
⊗n

k .

Remark 2.7.4: A concrete model is given by sequences of objects, called P1-spectra. These are
sequences of pointed spaces X := (Xm) with A1-homotopy equivalences

Xm →
W

ΩP1(Xm+1).

This is somehow related to P1 ∧Xm
σm−−→ Xm+1. SH/S satisfies the following universal property: it

is the universal presentable monoidal infinity category receiving a functor

Σ∞ : hoA1
∗ /S → SH/S

such that P1 ∧ (−) is invertible. It turns out that the category SH/S admits a diagram relating it
to all of the categories that have appeared thus far.

Theorem 2.7.5(?-Voevodsky).
For f : T → S a morphism of schemes, separated of finite type, there is a triangulated
adjunction

SH/S

f!−⇀⊥↽−
f !

SH/T

such that

2.7 Stabilization 15
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1. f! is compatible with composition.
2. If f is proper then there is am isomorphism η : f!

∼−→ f∗.
3. If f is smooth, then

f! = f](Th(Tf )⊗ (−))

where Tf is the tangent bundle and

Th(Tf ) := Σ∞(Tf/Tf∨)

is its associated Thom space.

Moreover Th(Tf ) is tensor-invertible in SH/S with inverse Th(−Tf ).

Remark 2.7.6: There is a base change formula, and p∗f! ∼= g!q
∗ for cartesian squares:

Y T

X S

g

f

q p

Link to Diagram

There is a projection formula

f!(C ⊗ f∗(F )) ∼= f!(C)⊗ F.

Moreover, SH(−) satisfies a generalized Beilinson formalism.

E 2.8 Rational Homotopy e

Remark 2.8.1: SH/S is triangulated, and there are several ways to construct a triangulated
rationalization SH/S ⊗Q. This decomposes as

SH/S ⊗Q ∼−→
(

SH/S

)
Q+
×
(

SH/S

)
Q−

.

• The plus part is characterized by the algebraic Hopf map η acting by zero, ε = −1
• The minus by η being invertible and ε = +1

For S regular, the plus part is equivalent to
(

DM/S

)
Q
. Writing S0 := S ⊗Z Q, the minus part is

equivalent to the Witt sheaf WQ
S0 , which is connected to quadratic forms. Reindexing and setting

2.8 Rational Homotopy 16
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S̃n,i := Sn−i ∧Gm
⊗i

k , one can define cohomotopy groups(
πn,i/S

)
Q

:= [S, Sn−i ∧Gi
m](SH/S)Q

= [S, S̃n,i](SH/S)Q
= [1,1(s)[i]]
∼−→ gr iγ

(
(K2i−n)/S

)
Q
⊕Hn−i

Nis (S0;W),

where gr is a grading.

For E ∈ Field, this yields

πn,i(E)Q = Hmot(E)Q ⊕W (E)Q.

Remark 2.8.2: There is a Grothendieck-Verdier duality: for f : X → S smooth finite type
with S regular, then f !(1S) ' Th(Lf). If E is a compact (constructible) object of SH/S the
E∨ = Hom(E, D∗) and there is an isomorphism E→ (E∨)∨.

2.8 Rational Homotopy 17
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