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1 Kirsten Wickelgren, Talk 1 (Wednesday,
July 14)

E 1.1 Intro e

Abstract:

Morel and Voevodsky’s A1 homotopy theory imports
tools from algebraic topology into the study of schemes,
or in other words, into the study of the solutions to
polynomial equations. This theory produces greater
understanding of arithmetic and geometric aspects
these solutions. We will introduce some of this theory
using as a guide questions such as “How many lines
meet 4 lines in 3-space?”

References/Background:

• Some algebraic topology or algebraic geometry, for example as described in Hatcher’s and
Hartshorne’s books

• Lecture Notes 1
• Lecture Notes 2
• Exercises

Remark 1.1.1: Enumerative geometry counts algebro-geometric objects over C. Example: how
many lines meet 4 generic lines in P3? The answer is 2, and our goal is to record this kind of
arithmetic information about geometric objects over a field k whose intersections are fixed over k
but not necessarily k itself. Our main tool will be A1-homotopy theory, due to Morel-Voevodsky.

E 1.2 Classical Theory e

Remark 1.2.1: First some classical homotopy theory. The sphere can be defined as

Sn :=
{
x1, x2, · · · , xn

∣∣∣ ∑x2
i = 1

}
' Pn(R)/Pn−1(R),

and we have a degree map [Sn, Sn] → Z. Given any f ∈ Top(Sn, Sn) and p ∈ Sn, we can write

f−1(p) = {q1, q2, · · · , qN} and compute deg f =
N∑
i=1

degqi
f in terms of local degrees. Letting V

be a ball containing p, we have F−1(V ) ⊇ U 3 qi another ball such that U ∩ f−1(p) = qi. Then
U/∂U ' Sn ' V/∂V , so we can define a map

f : U

U \ {qi}
→ V

V \ {p}
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and define degqi
f := deg f .

Letting [x1, x2, · · · , xn] be oriented coordinates about qi and [y1, y2, · · · , yn] about p, then f =
[f1, f2, · · · , fn] : Rn → Rn and we can consider Jf := det

(
∂fi
∂xi

)
. There is then a formula

degqi
(f) =

{
+1 Jf (qi) > 0
−1 Jf (qi) < 0.

,

and for all qi we have deg f = #f−1(pt), i.e. the number of solutions to the polynomial system
{f1 = f2 = · · · fn = 0}.

Example 1.2.2(?): If f ∈ C[x] of degree n, we can regard f as a function f : P1(C)→ P1(C) and
by the fundamental theorem of algebra,

deg f = n = # {f = 0} .

Remark 1.2.3: We can similarly count solutions to f = 0 when f is a section of a rank n vector
bundle

V

X

p
f

This count can be computed using the Euler class:

e(V ) = e(V, f) =
∑

qi∈{f=0}
deg qif.

Example 1.2.4(?): Let X := Gr(1, 3)/C, the Grassmannian parameterizing dimension 2 subspaces
W ⊆ C4, or equivalently lines in PW ⊆ P(C4) ∼= P3(C), where PW is defined as W \ {0} where
λw ∼ w for any λ ∈ C×. The tautological is a rank 2 bundle:

S[PW ] = W S

Gr(1, 3)/C

Let L1, · · · , L4 be four lines in P3, then {lines intersecting all Li} = {f = 0} where f is a section
(depending on the Li) of the bundle

1.2 Classical Theory 4
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E :=
(∧2

S∗
)⊕4

Gr(1, 3)

and the Euler number of this bundle counts the number of such intersections. In particular, e(E)
is independent of the choice of lines and section, provided they’re sufficiently generic (so the Li do
not pairwise intersect). Using the splitting principle and knowledge of H∗(Gr), one can compute
e(E) = 2.

E 1.3 Over arbitrary fields: Grothendieck-Witt e

Remark 1.3.1: We’d like to do this over arbitrary fields k. Lannes and Morel defined degrees
for rational maps f : P1 → P1. Above we only remembered the sign of Jf , and here we’ll allow
remembering more: deg f will be valued in GW(k). We can realize GW(k) as the group completion
of the semiring of nondegenerate symmetric bilinear forms under ⊥,⊗k, where we complete with
respect to ⊥. It is related to the Witt group by

W (K) ∼−→ GW(k)
Z 〈qhyp〉

:= GW(k)
Z[〈1〉+ 〈−1〉] .

There is a rank map

rank : GW(k)→ Z

q : (V ⊗2
k → K) 7→ dimk V,

which can be realized by a pullback

GW(k) W (k)

Z Z/2

rankrank

y

Link to Diagram

We can also write GW(k) in terms of generators 〈a〉 where a ∈ k×/(k×)×2, where 〈a〉 is associated
to a bilinear form

〈a〉 : k×2 → k

(x, y) 7→ axy,

subject to relations

1.3 Over arbitrary fields: Grothendieck-Witt 5
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• 〈a〉 〈b〉 = 〈ab〉
• 〈u〉+ 〈v〉 = 〈uv(u+ v)〉+ 〈u+ v〉
• 〈u〉+ 〈−u〉 = 〈1〉+ 〈−1〉 = qhyp, which is the matrix

qhyp =
[
0 1
1 0

]
.

Example 1.3.2(of known GW groups): The signature is the difference between the numbers
of positive and negative ones in the associated matrix, and one can show

rank : GW(C) ∼−→Z
(rank, sig) : GW(R) ∼−→Z×2

(rank,disc) : GW(Fq)
∼−→Z× F×q /(F×q )×2

where the last is a situation where we can compute étale cohomology.

Example 1.3.3(Springer’s theorem): Let k ∈ Field be complete and discretely valued with
residue field κ, e.g. k = Qp or Fp((t)) with κ = Fp. Then if ch k 6= 2,

GW (k) ∼−→W (k)⊕2
.

Remark 1.3.4: For E/k a finite separable field extension, we’ll have transfers

TrE/k
: GW(E)→ GW(k)

(V ⊗2
k
β−→ E) 7→ (V ⊗2

k
β−→ E

TrE/k−−−−→ k),

which coincide with classical transfers for field extensions.

Remark 1.3.5: For Lannes/Morel’s formula, given P1
/k

f−→ P1
/k and p ∈ P1

/k, we can write f−1(p) =
{q1, q2, · · · , qN} and suppose J(qi) = f ′(qi) 6= 0 for all i. Then we remember the entire Jacobian
and set

deg f :=
N∑
i=1

Trk(qi)/k
〈J(qi)〉 ,

which in fact doesn’t depend on p. Morel defines an A1-degree

degA1 : [Pn/Pn+1,Pn/Pn+1]A1 → GW(k),

where we are taking unstable A1-homotopy classes of maps. Noting that an element of GW(R)
was determined by its rank and signature, we get a commutative diagram showing that degA1 is
compatible with rank, signature, and the classical algebraic topological degree. There are other
ways of computing this degree besides taking the above sum: Cazanave, Brazelton-McKean-Pauli
give formulas in terms of Bézoutians.

1.3 Over arbitrary fields: Grothendieck-Witt 6
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E 1.4 Homotopy e

Remark 1.4.1: Recall that

X ∧ Y := X × Y
(X × pt) ∪ (pt× Y ) ∈ Top∗,

and Sn ∧ Sm ∼−→ Sn+m and (S1)∧n ∼−→ Sn, so we define

ΣS1X := S1 ∧X.

In A1 homotopy theory we declare A1 ' pt.

Example 1.4.2(?): We can take a pushout of the following form:

z z

z Gm A1 ' pt

1/z pt ' A1 ∴ P1 ' ΣS1Gm

y

Link to Diagram

Here the formalism of homotopy pushouts allows us to conclude that in an appropriate A1-homotopy
category,

ΣS1Gm := S1 ∧Gm ' P1.

Remark 1.4.3(on motivic spheres): We have

Gm := Spec k[z, 1/z] = A1 \ {pt} .

By taking pushouts inductively we can realize

An \ {pt} ' ΣS1(A1 \ {pt}) ∧ (An \ {pt}) ' (S1)∧n−1 ∧ (Gm)∧n
.

1.4 Homotopy 7
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Remark 1.4.4: We can use this to write

Pn/Pn−1 ' Pn

Pn \ {pt}

' An

An \ {pt}

' pt
An \ {pt}

' ΣS1 (An \ {pt})
' (S1)∧n ∧ (Gm)∧n

.

Remark 1.4.5: Stable homotopy shows that inverting Σ is useful, which we also do in the A1-setting
by inverting ΣP1(−) := P1 ∧ (−) to obtain a stable homotopy category SH(k).

Theorem 1.4.6(Morel, Hopkins-Morel).
For k ∈ Field, stably we have

[S0, S0] ∼−→ [Pn/Pn−1,Pn/Pn−1] ∼−→ GW(k).

Moreover, there is a ring structure on homotopy classes which yields an isomorphism of rings
into Milnor-Witt K-theory, ⊕

n∈Z
[S0,Gm

∧n ] ∼−→ KMW
∗ (k).

Remark 1.4.7: KMW
∗ is a graded associative algebra with generators [u] ∈ KMW

1 (k) for u ∈ k× and
η ∈ KMW

−1 (k), with relations

• [u][1− u] = 0, the Steinberg relations,
• [ab] = [a] + [b] + η[a][b],
• [a]η = η[a],
• ηqhyp = 0 for qhyp := η[−1] + 2

Remark 1.4.8: There is an isomorphism

GW(k) ∼−→ KMW
0 (k)

〈a〉
 1 + η[a]
qhyp := 〈1〉+ 〈−1〉
 1 + 1 + η[−1].

Remark 1.4.9(on the proof): [a] yields a map

[a] : S0 = (Spec k)
∐

2 → Gm

p 7→ a,

where p is the non-basepoint, and

η : A2 \ {pt} → P1

(x, y) 7→ [x : y].

1.4 Homotopy 8
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On C-points, C2 \{0} ' S3 maps to CP1 ' S2 by the Hopf map, but on R-points we get S1 deg=−2−−−−−→
S1 implying that η is not nilpotent, which is a new fact.

Remark 1.4.10: We can define

X ∨ Y = X × Y
ptX ∼ ptY

and get maps

X ∨ Y → X × Y → X ∧ Y.

which yields

Σ(X × Y ) ∼−→ ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

Lemma 1.4.11(?).
In SH(k),we get

Gm
×2 Gm

Gm
∧2 ∨Gm

∧2 Gm

mult

(1,1,η)

'

Link to Diagram

Lemma 1.4.12(?).
The map

f : P1 → P1

z 7→ az

is equal to 1 + η[a] in SH(k), since f = Σg where

g : Gm → Gm

z 7→ az,

which is equal to

Σ(Gm × k
1×a−−→ G×2

m
mult−−−→ Gm).

Remark 1.4.13: The lemma implies the relation [ab] = [a] + [b] + η[a][b], and it turns out there’s
an isomorphism to motivic homotopy groups of spheres:

KMW
∗ (k) ∼−→

⊕
n∈Z

[S0,Gm
∧n ].

1.4 Homotopy 9
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E 1.5 Big Problems e

Remark 1.5.1: Notation: we’ll write⊕
n∈Z

πn,nS :=
⊕
n∈Z

[S0,Gm
∧n ]

to be the zero line of the homotopy groups of spheres, and generally
⊕
n

πn+r,nS for the r-line.

Classical homotopy groups of spheres encode interesting geometric information, and we’re finding
that the corresponding motivic homotopy groups of spheres do as well. Röndigs-Spitzweck-Østvær
compute the 1-line for ch k 6= 2 in a 2019 Annals paper, and we have some information about the
2-line.

Question 1.5.2
What is [Pn/Pn−1,Pn/Pn−1] for more general rings? Bachmann-Østvær (2021) do this over Z[ 1

2 ]
and show

π0,0S⊗ Z2̂
∼−→ GW(Z[ 1

2 ])⊗ Z2̂.

Question 1.5.3
What is π∗,∗S in general?

Question 1.5.4
Is there a Freudenthal suspension theorem? I.e. which stable elements of π∗,∗S correspond to
unstable groups?

E 1.6 Counting Things e

Remark 1.6.1: Many people have used the A1-Euler class for interesting things! Let X ∈ smSch/k
with dimX = d and let V → X ∈ BunGLr/X be a vector bundle.

Definition 1.6.2 (Orientation of bundles)
A bundle V → X is oriented by the following data: (L,ϕ) where L→ X is a line bundle and
ϕ is a trivialization

ϕ : detV ∼−→L⊗2.

It is relatively oriented when Hom(detTX,detV ) is oriented, where det(−) =
∧top

(−).

1.5 Big Problems 10
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Example 1.6.3(?): For X = Pn or Gr(m,n) (parameterizing copies of Pm in Pn), then

ωx = detTnX = O(−n− 1),

and X is orientable iff n is odd. For P1, O(n) is relatively orientable iff n is even.

E 1.7 Euler Numbers e

Definition 1.7.1 (Euler Number in GW(k))
Suppose X ∈ smSch/k is proper with dimX = d and consider a vector bundle

GLd y F V

X

f

Suppose

• V is relatively oriented by (L,ϕ), and f is a section with isolated zeros, so {f = 0}
consists of zeros of multiplicity 1, or equivalently

• For all x ∈ {f = 0}, the composite map

Tf :=
(
TxX → Tf(x)V

∼−→ TxX ⊕ Vx
p2−→ Vx

)
f(x) := (x, 0)

has nonvanishing determinant.

Then the Euler number of (V, ϕ) with respect to f is defined as

n(V, ϕ, f) :=
∑

x∈{f=0}⊆X
degx f.

where degx f can be computed by

• Choosing local Nisnevich coordinates on X ,
• Choosing local trivializations of V which are “compatible” with ϕ,

Then locally writing

f : Ad → Ad =⇒ Jf := det
(
∂fi
∂xj

)
,

one has

For Jf (x) 6= 0 ∈ κ(x), degx f := Trκ(x)/k
〈Jf (x)〉 .

Remark 1.7.2: Equivalently, Txf ∈ Hom(TxX,Vx) and we can define

Jf (x) := detTxf ∈ Hom(detTxX,detVx) ∼−→Lx
⊗2

k ,

1.7 Euler Numbers 11
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where the orientation provides the isomorphism. Picking any basis for Lx⊗
2
k yields a number which

is well-defined in κ(x)/(κ(x)×)2 by choosing a trivialization of Lx.

Question 1.7.3
What happens if the zeros of f have multiplicity mi > 1? In the classical setting, we didn’t say
what happens when Jf (x) = 0. We’ll answer this next time.

Question 1.7.4
Why is the Euler number n(V, f) independent of the section f? Analogously, why is the number of
intersections in the original problem 2, not depending on which specific lines were chosen?

Answer 1.7.5
Sections with isolated zeros are often connected by 1-parameter A1-families of such sections, and
GW(k[x]) ∼−→ GW(k), although this is hard to show.

Alternatively, the Euler number is a pushforward of an Euler class taking values in interesting
cohomology theories, so n(V, f) = π∗e(V, f).

2 Kirsten Wickelgren, Talk 2 (Friday, July
16)

E 2.1 Intro e

Remark 2.1.1: Recall that we have a classical degree map

deg : [Sn, Sn]→ Z

which roughly counts preimages. Given f ∈ Hom
Top

(Sn, Sn) and p ∈ Sn, we write f−1(p) =

{q1, q2, · · · , qN} and have a formula deg f =
∑

degqi
f where the local degrees degqi

f can be com-
puted by picking orientation-compatible coordinates {x1, x2, · · · , xn} near qi and {y1, y2, · · · , yn}

near p. In these coordinates we can form the Jacobian Jf := det ∂fi
∂xj

and write

degx f =
{

+1 J(qi) > 0
−1 J(qi) < 0.

Question 2.1.2
What happens if the zeros of f are not of multiplicity 1, so Jf (qi) = 0?

Kirsten Wickelgren, Talk 2 (Friday, July 16) 12
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Proposition 2.1.3(Eisenbud–H.Levine–Khimshiashvili signature formula).
Over k := R, any quadratic form can be diagonalized to diag(1, · · · , 1,−1, · · · ,−1), and there
is a formula

degx f = sigωEKL

where ωEKL is the isomorphism class of the bilinear form defined in the following way: for
f = (f1, · · · , fn), set

Q := R[x1, · · · , xn]0
〈f1, f2, · · · , fn〉

which is a finite dimensional local complete intersection. Since Q is Gorensteina, there is an
isomorphism Hom

k
(Q, k) ∼−→ Q, which we can take to be the bilinear form.b

aThe dualizing sheaf is locally free
bEven better, there is a distinguished isomorphism coming from a distinguished socle element (Scheja-Storch).

Remark 2.1.4: This form can be made very explicit: writing Jf = det ∂fi
∂xj

∈ Q, choose a k-linear

map η : Q→ k such that η(Jf ) = dimkQ and set

ωEKL :=
(
Q⊗

2
k

mult−−−→ Q
η−→ k

)

=⇒ ωEKL : Q⊗2 → k

(g, h) 7→ η(gh).

It turns out that the isomorphism class of ωEKL does not depend on the choice of η.

Example 2.1.5(?): Let f : A1 → A1 and f(z) = z2 with q = 0. Then

Q = k[x]0
〈x1〉

∼−→ k[x]
〈x2〉

and Jf = 2x. We then get ωEKL =
[
0 1
1 0

]
, which up to a change of basis is h :=

[
1 0
0 −1

]
.

Question 2.1.6
Eisenbud notes that ωEKL is defined over fields of arbitrary characteristic not equal to 2, does it
have a topological interpretation?

Remark 2.1.7: Yes! It comes from the A1-degree.

Theorem 2.1.8(Kass-W.).
ωEKL = degA1

q f is the local degree in GW(k) when κ(q) = k. Brazelton, Burklund, Mckean,

2.1 Intro 13
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Montoro, Opie handle the case when κ(q)/k is separable.

E 2.2 A1-Milnor numbers e

Definition 2.2.1 (Node, hypersurface singularity)
For ch k 6= 2, the simplest type of singularity is a node, defined over k as a point p ∈ X such
thata

ÔX,p
∼−→ k[x1, x2, · · · , xn]∑

x2
i + h.o.t.

,

A hypersurface singularity is a point p ∈ {f = 0} ⊆ X.
aHer OX,p is the stalk of the structure sheaf at p, which is a local ring with a unique maximal ideal mp, and

the LHS is completion at that ideal, so

ÔX,p := (OX,p)
m̂p

.

Definition 2.2.2 (Milnor number)
Let k := C. If you vary X in a family

X+ :=
{
f(x1, · · · , xn) +

∑
aixi = t

}
,

then the singularity p bifurcates into nodes. The number of nodes is given by the Milnor
number, defined as Mp, the number of nodes in the family X+ for any sufficiently small {ai}.
For R = C, this is explicitly described as

Mp := degTop
p grad f.

Remark 2.2.3: For other k with ch k 6= 2, nodes come in different types: given a residue field L at
a node p, the tangent directions defined over some extension L[

√
a] for a ∈ L×/(L×)×2 .

Example 2.2.4(?): Over k = R, one has examples like

• x2
1 + x2

2 = 0, yielding a non-split node and non-rational tangent directions

2.2 A1-Milnor numbers 14
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• x2
1 − x2

2 = 0, yielding a split node and rational tangent directions

Definition 2.2.5 (Type of a node)
Let p be a node with

ÔX,p
∼−→ L[[x1, x2, · · · , xn]]∑

aix2
i

, L := κ(p).

The type p is defined as

type(p) := TrL/k

〈
2n

n∏
i=1

ai

〉
∈ GW(k).

2.2 A1-Milnor numbers 15
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Definition 2.2.6 (A1-Milnor numbers)
The A1-Milnor number is defined as

Mp := degA1
p grad f =

∑
p∈N

type(p),

N is the set of nodes of f in a family for a generic {a1, a2, · · · , an}.
Note: the second equality is due to Kass-
Wickelgren.

Example 2.2.7(?): Let f(x, y) := x3 − y2 with ch k 6= 2, 3, then

• p = (0, 0) ∈ {f = 0},
• ∇f = (3x2,−2y), and

degA1 ∇f = degA1(x 7→ 3x2) degA1(y 7→ −2y)

=
[

0 1/3
1/3 0

]
〈−2〉

= 〈1〉+ 〈−1〉
= qhyp,

which has rank 2 and thus M = 2. This yields a cusp.

The family y2 = x3 + ax+ t for a 6= 0 yields a family:

• In the first term, the cusp bifurcates into 2 nodes, yields rankMA1(C) = M(C) for C the
cusp curve

• In the second, there are singular fibers when x3 + ax + t has double roots, which happens
when the discriminant is zero, so this occurs iff −4a3 − 27b2 = 0.

2.2 A1-Milnor numbers 16
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This yields a bifurcation into two nodes, and for example,

• Over F5: 〈1〉 = 〈−1〉, so this can not bifurcate into 1 split and 1 non-split rational node.
• Over F7: 〈1〉 6= 〈−1〉, so this can not bifurcate into 2 split or 2 non-split nodes.

Remark 2.2.8: The classical Milnor number appears in conductor formulas and are related to the
Euler characteristic χ of the Milnor fiber. M. Levine-Lehalleur-Srinivas and R. Azouri have subtle
quadratic enrichments to GW(k).

E 2.3 A1-Euler characteristic χA1
e

Definition 2.3.1 (Relatively oriented bundles)
For X ∈ smVarproj

/k , we saw last time that a vector bundle V → X is relatively oriented by
(L,ϕ) where L→ X is a line bundle and

ϕ : L⊗2
k
∼−→ Hom(det TX,detV ).

Remark 2.3.2: The tangent bundle TX has a canonical relative orientation since

Hom(det TX,det TX) ∼−→ O ∼−→ O⊗2

where O is a trivial bundle of rank 1. It follows that we may define the Euler number of tangent
bundle:

χA1(X) := n(TX) ∈ GW(k),

where n is the Euler number.

Theorem 2.3.3(M. Levine).
χA1(X) is equal to the categorical Euler characteristic. The definition is omitted here, see
Levine’s “Enumerative geometry with quadratic forms”.

Example 2.3.4(M. Levine-Lehalleur-Srinivas):
See https: // arxiv. org/ abs/ 2101. 00482 .

Let X ⊆ Pn+1 for n even, written X := {F = 0} for f ∈ R[x0, · · · , xn]e homogeneous of degree e.
Take

ωEKL : Q⊗2 → k Q := k[x0, · · · , xn]〈
∂f
∂x0

, · · · , ∂f∂xn

〉 .

Define BJac to be the restriction of ωEKL to
n⊕
q=0

Q(q+1)e−n−2, then

χA1(X) = 〈e〉+ 〈−e〉BJac + n

2 qhyp.

2.3 A1-Euler characteristic χA1
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Example 2.3.5(Clebsch surface): Take the Clebsch surface

C :=
{

[x1, x2, · · · , x3]
∣∣∣ ∑x3

i =
(∑

xi
)3
}
⊆ P3

/Q.

Then χ(C) = 9, and

χA1(C) = 2qhyp + 〈−10〉+ 〈−6〉+ 〈−21〉+ 〈−14〉+ 〈−2〉 ,

which can be computed with Macaulay2!

E 2.4 Cohomology and the Euler Class e

Remark 2.4.1: Note that we have a stable A1-homotopy category SH(k), so we can take cohomology
theories on X ∈ smSch/k:

• Hmot or HZ: motivic cohomology
• H̃mot or HZ̃: extended motivic cohomology
• K: K-theory
• KO: Hermitian K-theory

It turns out that

Hn(X) = π−n Hom
SH(k)

(X,H) = [X,ΣnH],

and it’s useful to allow twisting the second term by shifts.

Definition 2.4.2 (Twisted suspension)
Letting V → X be a vector bundle, we can define the twisted suspension

HV (X) := [X,Th(V ) ∧H] where Th(V ) := V ∨

V ∨ \ {0} = P(V ∨ ⊕O)
P(V ∨)

where taking the dual is a condition needed for K-theory. This reduces to a usual suspension
for the trivial bundle.

Example 2.4.3(?): For V := (OX)⊕n the trivial rank n bundle on X, we have HV = Hn.

Example 2.4.4(?):

HZn(X) ∼= H2n
mot(X;Z(n)) ∼= H2n,n

mot (X) ∼= CHn(X),

the Chow group of codimension n cycles modulo rational equivalence. These are the geometric
gradings.

Example 2.4.5(?): H̃Zn(X) ∼= C̃Hn(X) the Chow-Witt group, also called the oriented Chow
group. Using the Gersten resolution, these can be expressed as formal sums of codimension n
subvarieties with coefficients in GW(k(Z)), where k(Z) are the rational functions of Z, subject to
some conditions, modulo equivalence.

2.4 Cohomology and the Euler Class 18
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Example 2.4.6(?): K0(X) is the group completion of vector bundles on X, and KO0(X) addition-
ally remembers the data of a nondegenerate symmetric bilinear form. These are “representable” in
a sense because they are related to Thom spectra.

Definition 2.4.7 (Cohomology with support)
Let Z ↪→ X be a closed subscheme, then define the cohomology with support

HV
Z (X) :=

[
X

X \ Z
,Th(V ) ∧H

]
SH(k)

.

Definition 2.4.8 (Euler class)
For H a cohomology theory and S|toH a ring? and a vector bundle V → X with a section f
(for example, the zero section), then the Euler class

eH(V, f) ∈ HV ∨

{f=0}(X)

is the class of the map

X

X \ {f = 0}
f−→ V

V \ {0} ∧H.

Definition 2.4.9 (Euler Number)
For f : X → S is a local closed immersion (lci) if it locally factors as U i−→ P

p−→ S with p
smooth and i a closed immersion determined by a Koszul regular sequence (so modding out
doesn’t yield a zero divisor, and the higher cohomology of the Koszul complex is zero).

Remark 2.4.10: Some properties:

• This has a well-behaved cotangent complex Lf .

• For a regular embedding, Li ' Nu
∨P [1] is conormal bundle.1

• Lp ' ΩP/S ' Tp∨.

• Lpi is determined by i∗Lp → Lpi → Li,

• There is a coherent Serre duality related to Lf .

There is also a good notion of pushforward: let p : X → S be proper 2 and lci.

Then there is a Becker-Gottlieb transfer

TrBG : Σ∞+ S → Th(Lp),

and the cartoon is the following:

1I.e. the dual of the normal bundle.
2Here proper means that the preimage of a compact set is compact.
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Here we embed X → S into the trivial bundle over S and take a neighborhood. Letting B be the
trivial bundle over S, then Th(B) ∼= Σ∞+ S and collapsing fiberwise quotients by the complement of
the neighborhood:

This yields p∗ : HLp(X)→ H0(S).

E
2.5 Oriented Cohomology Theories and

Euler Numbers
e

Remark 2.5.1:
• H is GL -oriented if Hn

Z(X) ∼−→ HV
Z (X) with n := rank V .

2.5 Oriented Cohomology Theories and Euler Numbers 20
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An example is HZ,K, but non examples are HZ̃,KO.

• H is SL-oriented if

– HV
Z (X) ∼−→ HV ′

Z (X),
– rank V = rank V ′ and
– detV ∼−→ detV ′ ⊗ L⊗2 for L→ X a line bundle.

An example is HZ̃,KO.

Remark 2.5.2: For V → X a relatively oriented vector bundle on X
p−→ k with p smooth and

proper, and H an SLc-oriented cohomology theory. Then

HV ∨(X) ∼−→ HT∨X(X).

Letting f be any section of V , e.g. the zero section, then

eH(V, f) ∈ HV ∨

{f=0}(X) HV ∨(X)

X → X

X \ {f = 0} Th(V ) ∧H

z: forget support

Link to Diagram

Letting f : X → Th(V ) ∧H, any two sections f1, f2 of V are connected by copies of A1 in H0(V ),
so

eH(V ) := z(eH(V, f1)) = z(eH(V, f2)).

Definition 2.5.3 (Euler number)
The Euler number nH(V ) of V in H0(S) is

nH(V ) := p∗e
H(V ).

Remark 2.5.4: This agrees with

n(V, f) =
∑

x∈{f=0}⊆X
degx f, degx f ∈ GW(k),

for H = HZ̃,KO over S := Spec k. Moreover, n(V, f) is independent of the choice of section.

See Déglise-Jin-Khan, Bachmann-Wickelgren.

2.5 Oriented Cohomology Theories and Euler Numbers 21
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E
2.6 Arithmetic count of lines on a smooth

cubic surface (joint with Jesse Kass) e

Definition 2.6.1 (Cubic surface)
A cubic surface is given by X ⊆ P3 where X = {f = 0} with f ∈ k[w, x, y, z]3 homogeneous
of degree 3.

Theorem 2.6.2(Salmon-Cayley, 1849).
Any smooth cubic surface over C contains exactly 27 lines.

Example 2.6.3(?): Consider the Fermat cubic:

f(x, y, z, w) = x2 + y2 + z2 + w2.

The lines are given by {
[S,−S, T,−T ]

∣∣∣ [S, T ] ∈ P1(C) ⊆ X
}
.

For ω3, λ3 = 1, we can take {
[S, λS, T, ωT ]

∣∣∣ [S, T ] ∈ P1(C)
}
.

Permuting the variables in
(

4
2

)
/2 = 3 ways, then there are 3 · 3 · 3 = 27 total lines.

Proof (?).
Let Gr(1, 3) be the Grassmannian parameterizing W ⊆ C4 with dimW = 2, or equivalently
copies of P1 in P3. Take the tautological S → Gr(1, 3) whose fiber over [PW ] is W itself.
Then Sym3 S∨[PW ] = Sym3(W∨) are cubic polynomials in W , and f determines a section σf of
Sym3 S∨ given by

σf ([PW ) = f |W ,

which is zero iff the line PW is contained in X. So we’ve reduced to counting zeros of a section:

n(V ) =
∑

lines L⊆X
degL σf .

Fact
For a smooth cubic surface, all zeroes of σf have multiplicity one.

Over C, the classical differential topological degree is 1, so n(V ) is the number of lines, and
n(V ) = 27.
Consider now the situation over R:

• Schläfli (1861): Over R, there can only be 3, 7, 15, or 27 lines.
• Segre (1942): These lines break into two classes: hyperbolic, or elliptic.

2.6 Arithmetic count of lines on a smooth cubic surface (joint with Jesse Kass) 22
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For L ⊆ X a real line, L gives an involution I : L→ L where I(p) is defined by consider TpX,
which contains a line L along with a curve C of degree 2 since the total degree is 3:

In particular, there is another point in the intersection of L∩C ∩X, so I(p) is defined as that
point where TI(p)X = TpX. If I yields a C-conjugate pair, say L is elliptic, and otherwise if I
yields two R-point say L is hyperbolic. Taking a path p→ I(p), if the tangent space undergoes
a full twist, this is the elliptic situation.

�

Theorem 2.6.5(Segre + many authors in the 2010s).
The number of hyperbolic lines minus the number of elliptic lines is exactly 3.

Question 2.6.6
What about other fields, like k = Fp,Qp,Q?

Answer 2.6.7
The above proof works in A1-homotopy theory. Letting X ⊆ X ⊆ P3

/k a cubic surface.

Definition 2.6.8 (Type of a line)
The type of a line L is an element

〈D〉 ∈ GW(k(L)), D ∈ k(L)×/(k(L)×)×2

such that the fixed points Fix(I) form a conjugate pair of points defined over k(L)
[√
D
]
.

2.6 Arithmetic count of lines on a smooth cubic surface (joint with Jesse Kass) 23
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Theorem 2.6.9(Kass-Wickelgren).
let k ∈ Fieldch 6=2 and X ⊆ P3

/k, then∑
lines

L⊆k(X)

Trk(L)/k type(D) = 15 〈1〉+ 12 〈−1〉 ∈ GW(k).

2.6 Arithmetic count of lines on a smooth cubic surface (joint with Jesse Kass) 24
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