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1 Matthew Morrow, Talk 1 (Thursday, July
15)

e 1.1 Intro ~

Abstract:

Motivic cohomology offers, at least in certain situa-
tions, a geometric refinement of algebraic K-theory
or its variants (G-theory, KH-theory, étale K-theory,
--+). We will overview some aspects of the subject,
ranging from the original cycle complexes of Bloch,
through Voevodsky’s work over fields, to more recent
p-adic developments in the arithmetic context where
perfectoid and prismatic techniques appear.

References/Background:

e Algebraic geometry, sheaf theory, cohomology.

— Comfort with derived techniques such as descent and the cotangent complex would be
helpful.

— Casual familiarity with K-theory, cyclic homology, and their variants would be motiva-
tional.

— Infinity-categories and spectra will appear, though probably not in a very essential way.

e Lecture Notes
Remark 1.1.1: Some things we’ve already seen that will be useful:

e Motivic complexes

e Milnor K-theory

o Their relations to étale cohomology (e.g. Bloch-Kato)
« Al-homotopy theory

o Categorical aspects (e.g. presheaves with transfer)

These have typically been for smVar ;. Our goals will be to study

e Motivic cohomology as a tool to analyze algebraic K-theory.
o Recent progress in mixed characteristic, with fewer smoothness/regularity hypothesis

— 1.2 K, and K; ~

Matthew Morrow, Talk 1 (Thursday, July 15) 3
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Remark 1.2.1: Some phenomena of K-theory to keep in mind:

e It encodes other invariants.
e It breaks into “simpler” pieces that are motivic in nature.

Definition 1.2.2 (The Grothendieck group (Grothendieck, 50s))
Let R € CRing, then define the Grothendieck group Ky(R) as the free abelian group:

Ko(R) = R-ModP™&=/ ~ .
where [P] ~ [P'] + [P"] when there is a SES

0—>P —-P—P'>0.

Remark 1.2.3: There is an equivalent description as a group completion:

Ko(R) = (R_Modproj,fg,gj@)gp'

The same definitions work for any X € Sch by replacing R-ModP™% with Bungr, /X the category
of (algebraic) vector bundles over X.

Example 1.2.4(?): For F € Field, the dimension induces an isomorphism:
dimp : Ko(F) — Z
[P] — dimF P.

Example 1.2.5(%): Let O € DedekindDom, e.g. the ring of integers in a number field, then any
ideal I 9 O is a finite projective module and defines some [I] € Ko(O). There is a SES

I—[I1-]0] rankp (—)

0 — CI(O) Ko(O) 7 - 0.

Thus Ko(O) breaks up as C1(OQ) and Z, where the class group is a classical invariant: isomorphism
classes of nonzero ideals.

Example 1.2.6(?): Let X € smAIgVar(/lgroj over a field, and let Z < X be an irreducible closed
subvariety. We can resolve the structure sheaf Oz by vector bundles:
00Oz Py« ---P;+ 0.

We can then define
d

2] =Y (=1)'[P] € Ko(X),

=0

which turns out to be independent of the resolution picked. This yields a filtration:

Fil;jKo(X) := <[Z] ‘ Z — X irreducible closed, codim(Z) < j>

= Ko(X) 2 FilgKo(X) 2 -+ 2 FilgKo(X) 2 0.

1.2 Ko and Ky 4
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Theorem 1.2.7(Part of Riemann-Roch).
There is a well-defined surjective map

Fil;Ko(X)
Fﬂj_l K(] (X)
Z (2],

CH;(X) = {j-dimensional cycles} /rational equivalence —

and the kernel is annihilated by (j — 1)!.

Slogan 1.2.8
Up to small torsion, Ko(X) breaks into Chow groups.

Definition 1.2.9 (Bass, 50s)
Set

Ki(R) = GL(R)/E(R) := | J GLn(R)/En(R)

n>1

where we use the block inclusion

GL,(R) — GLp4+1
g 0

and E,(R) C GL,(R) is the subgroup of elementary row and column operations performed on
I,.

Example 1.2.10(?): There exists a determinant map

det : K1 (R) — R*
g+ det(g),

which has a right inverse r — diag(r,1,1,--- ,1).

Example 1.2.11(?): For F € Field, we have E,(F) = SL,(F') by Gaussian elimination. Since
every g € SL,,(F) satisfies det(g) = 1, there is an isomorphism

det:Kl(F) l)FX

Remark 1.2.12: We can see a relation to étale cohomology here by using Kummer theory to
identify

Kummer,~

Ky(F)/m = F* [m Heo (F; pim)

for m prime to ch F', so this is an easy case of Bloch-Kato.

1.2 Ko and Ky 5
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Example 1.2.13(?): For O the ring of integers in a number field, there is an isomorphism
det : K1(O) = O,

but this is now a deep theorem due to Bass-Milnor-Serre, Kazhdan.

Example 1.2.14(?): Let D = R[z,y]/ <x2 +y? - 1> € DedekindDom, then there is a nonzero
class

lx y] € ker det,
so the previous result for O is not a general fact about Dedekind domains. It turns out that
Ki(D) = D* & L,

where £ encodes some information about loops which vanishes for number fields.

— 1.3 Higher Algebraic K-theory ~

Remark 1.3.1: By the 60s, it became clear that Ky, K; should be the first graded pieces in some
exceptional cohomology theory, and there should exist some K, (R) for all n > 0 (to be defined).
Quillen’s Fields was a result of proposing multiple definitions, including the following:

Definition 1.3.2 (The K-theory spectrum (Quillen, 73))
Define a K-theory space or spectrum (infinite loop space) by deriving the functor Ko(—):

K(R) = BGL(R)" x Ko(R)

where m,BGL(R) = GL(R) for * = 1. Quillen’s plus construction forces m, to be abelian
without changing the homology, although this changes homotopy in higher degrees. We then
define

Kn(R) = muK(R).

Remark 1.3.3: This construction is good for the (hard!) hands-on calculations Quillen originally
did, but a more modern point of view would be

o Setting K(R) to be the co-group completion of the E,, space associated to the category
R-ModP o=,

o Regarding K(—) as the universal invariant of StabCogt taking exact sequences in StabCOgt to
cofibers sequences in the category of spectra Sp, in which case one defines

K(R) := K(PerfCh (R-Mod))

as K(—) of perfect complexes of R-modules.

1.3 Higher Algebraic K-theory 6
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Both constructions output groups K, (R) for n > 0.

Example 1.3.4(Quillen, 73): The only complete calculation of K groups that we have is

Z n=20
Kn(Fg) =140 n even

n+1

7/ <qT_ > n odd.

Example 1.3.5(%): We know K groups are hard because K,>¢(Z) = 0 <= the Vandiver
conjecture holds, which is widely open.

Conjecture 1.3.6.
If R ¢ Algf/tireg then K, (R) should be a finitely generated abelian group for all n. This is
widely open, but known when dim R < 1.

Example 1.3.7(%): For F € Field with ch F' prime to m > 1, ten
TateSymb : Ko(F)/m = HE, (F; p2?),
which is a specialization of Bloch-Kato due to Merkurjev-Suslin.
Example 1.3.8(Lichtenbaum, Quillen 70s): Partially motivated by special values of zeta

functions, for a number field F' and m > 1, formulae for K,,(F; Z/m) were conjectured in terms of
Hy.

Remark 1.3.9: Here we're using K-theory with coefficients, where one takes a spectrum and
constructs a mod m version of it fitting into a SES
0 — Kn(F)/m — Ky (F;Z/m) — Kp—1(F)[m] — 0.

However, it can be hard to reconstruct K, (—) from K, (—,Z/m).

— 1.4 Arrival of Motivic Cohomology ~

Question 1.4.1
K-theory admits a refinement in the form of motivic cohomology, which splits into simpler pieces
such as étale cohomology. In what generality does this phenomenon occur?

Example 1.4.2(?): This is always true in topology: given X € Top, K;]rc’p can be defined using
complex vector bundles, and using suspension and Bott periodicity one can define K;';O"(X ) for all
n.

1.4 Arrival of Motivic Cohomology 7
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Theorem 1.4.3 (Atiyah-Hirzebruch).
There is a spectral sequence which degenerates rationally:

i -
By’ = Hgp(X;2) = K2 5(X).
Remark 1.4.4: So up to small torsion, topological K-theory breaks up into singular cohomology.

Motivated by this, we have the following

— 1.5 Big Conjecture ~

Conjecture 1.5.1 (Existence of motivic cohomology (Beilinson-Lichtenbaum, 80s)).
For any X € smVar ;, there should exist motivic complexes

Zmot(j)(X)v JZO

whose homology, the weight j; motivic cohomology of X, has the following expected
properties:

e There is some analog of the Atiyah-Hirzebruch spectral sequence which degenerates

rationally:

By’ = Hyd (X3 Z(=)) = K-i—(X),
where H}, (—) is taking kernels mod images for the complex Zpoi(®)(X) satisfying
descent.

e In low weights, we have

— Zimot (0)(X) = Z#™X)[0] in degree 0, supported in degree zero.
— Zmot(1)(X) = RTar(X; 0% )[—1], supported in degrees 1 and 2 for a normal scheme
after the right-shift.

o Range of support: Zmet(7)(X) is supported in degrees 0, --- ,27, and in degrees < j if
X = Spec R for R a local ring.

e Relation to Chow groups:

2j
H, mot

(X;Z(j)) = CH/(X).

» Relation to étale cohomology (Beilinson-Lichtenbaum conjecture): taking the complex
mod m and taking homology yields
Hi

mot

(X5 Z/m(j)) = He(X; )

if m is prime to ch k and ¢ < j.

Example 1.5.2(?): Considering computing K, (F") (mod m) for m odd and for number fields F,

1.5 Big Conjecture 8
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as predicted by Lichtenbaum-Quillen. The mod m AHSS is simple in this case, since cohdim F' < 2:

. . . .
. . . HE,(F;Z/m)
. . HEo(F; ) Heo(F; i)
. Heoy(F; p?) Hey(F; p?) HE,(F; py?)

Link to Diagram

The differentials are all zero, so we obtain

Koj—1(F;Z/m) = Hey(F; pi?)

and

Remark 1.5.4: Remarkably, one can write a definition somewhat easily which turns out to work

0— HCQ-IaI(Fa M?)iijrl) — KQJ(F7Z/m) — Hgal(F; ng) — 0.

Theorem 1.5.3 (Bloch, Levine, Friedlander, Rost, Suslin, Voevodsky, - -- ).
The above conjectures are true except for Beilinson-Soulé vanishing, i.e. the conjecture that
Zmot(7)(X) is supported in positive degrees n > 0.

in a fair amount of generality for schemes over a Dedekind domain.

Definition 1.5.5 (Higher Chow groups)
For X € Var, let 27 (X,n) be the free abelian group of codimension j irreducible closed
subschemes of X x A™ intersecting all faces properly, where
F
F(Ty,--- ,T}]
A" = Spec (”) =
(T - 1)

which contains “faces” A™ for m < n, and properly means the intersections are of the expected
codimension. Then Bloch’s complex of higher cycles is the complex 2/ (X, e) where the

n
fig

1.5 Big Conjecture 9
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boundary map is the alternating sum
Z(X,n) 3 9(Z) =Y (—1)'[Z N Face;(X x A" )],
i=0
Bloch’s higher Chow groups are the cohomology of this complex:
Ch/(X,n) = H,(2(X,e)),

and then the following complex has the expected properties:

Lot (])(X) = Zj(X7 .)[_2]]

Remark 1.5.6: Déglise’s talks present the machinery one needs to go through to verify this!

— 1.6 Milnor K-theory and Bloch-Kato ~

Remark 1.6.1: How is motivic cohomology related to the Bloch-Kato conjecture? Recall from
Danny’s talks that for F' € Field then one can form

KM(F) = (FX)®{”/ (Steinberg relations) ,
and for m > 1 prime to ch F' we can take Tate/Galois/cohomological symbols
TateSymb : Kévl(F)/m — HéaI(F; pE.

where u%j is the jth Tate twist. Bloch-Kato conjectures that this is an isomorphism, and it is a
theorem due to Rost-Voevodsky that the Tate symbol is an isomorphism. The following theorem
says that a piece of Hy,ot can be identified as something coming from KM.

Theorem 1.6.2 (Nesterenko-Suslin, Totaro).
For any F' € Field, for each j > 1 there is a natural isomorphism

K (F) & Hipo(F3 Z(7))-

Remark 1.6.3: Taking things mod m yields

~ ; ~\ ~,BL ; ,
KI'(F)/m = Hiyo(F; Z)/m(j)) —— HL(F; pi?),

mot
where the conjecture is that the obstruction term for the first isomorphism coming from H’™! van-
ishes for local objects, and Beilinson-Lichtenbaum supplies the second isomorphism. The composite
is the Bloch-Kato isomorphism, so Beilinson-Lichtenbaum =— Bloch-Kato, and it turns out that
the converse is essentially true as well. This is also intertwined with the Hilbert 90 conjecture.

Tomorrow: we’ll discard coprime hypotheses, look at p-adic phenomena, and look at what happens
étale locally.

1.6 Milnor K-theory and Bloch-Kato 10
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Remark 2.0.1: A review of yesterday:

e K-theory can be refined by motivic cohomology, i.e. it breaks into pieces. More precisely we
have the Atiyah-Hirzebruch spectral sequence, and even better, the spectrum K(X) has a
motivic filtration with graded pieces Zmot (j)(X)[27].

o The Zmot(7)(X) correspond to algebraic cycles and étale cohomology mod m, where m is
prime to ch k, due to Beilinson-Lichtenbaum and Beilinson-Bloch.

Today we’ll look at the classical mod p theory, and variations on a theme: e.g. replacing K-theory
with similar invariants, or weakening the hypotheses on X. We'll also discuss recent progress in the
case of étale K-theory, particularly p-adically.

2.1 Mod p motivic cohomology in
characteristic p

Remark 2.1.1: For F € Field and m > 1 prime to ch F', the Atiyah-Hirzebruch spectral sequence
mod m takes the following form:
. . HiijF; ®j ;<0
5 = gz 2 { e (60250
7> U.

Thus Es is supported in a quadrant four wedge:

Matthew Morrow, Talk 2 (Friday, July 16) 11
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‘We know the axis:

HI(F: p7) = KY(F) fm.

What happens if m > p = ch F for ch F > 07

Theorem 2.1.2(Izhbolidin (90), Bloch-Kato-Gabber (86), Geisser-Levine (2000)).
Let F € Field™™ P, then
. K;VI(F) and K;(F) are p-torsionfree.

dLog

o« Ki(F)/p+ KN(E)/p =25 0,

Definition 2.1.3 (dLog)
The dLog map is defined as

dLog : Ki\/I(F)/p — Qic

@aiH/\i

dOéi

)
0%}

and we write Q%’log = im dLog.

2.1 Mod p motivic cohomology in characteristic p 12
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Remark 2.1.4: So the above theorem is about showing the injectivity of dLog. What Geisser-
Levine really prove is that

Zmot(])(F)/p 1> QJF,log[_j]'
Thus the mod p Atiyah-Hirzebruch spectral sequence, just motivic cohomology lives along the axis

0
= Ki—;(F;Z/p)

g = | rlog 1=
0 else

and K;(F)/p = ngog‘

Remark 2.1.5: So life is much nicer in p matching the characteristic! Some remarks:

o The isomorphism remains true with F replaced any F € Alg;%gz;bc’Noeth:

~

Ki(F)/p = Q%’log.

e The hard part of the theorem is showing that mod p, there is a surjection K?/I (F) = K;(F).
The proof goes through using 27 (F,e) and the Atiyah-Hirzebruch spectral sequence, and seems
to necessarily go through motivic cohomology.

Question 2.1.6
Is there a direct proof? Or can one even just show that

K;(F)/p=0for j > [F : Fpl?

Conjecture 2.1.7(Beilinson).
This becomes an isomorphism after tensoring to Q, so

KI(F) @z Q = K;(F) 9z Q.

This is known to be true for finite fields.

Conjecture 2.1.8.

)
H, mot

(F;Z(j)) is torsion unless i = j.

This is wide open, and would follow from the following:

Conjecture 2.1.9 (Parshin).

If X € smVarI;,rgoj over k a finite field, then

7
H, mot

(X;Z(j)) is torsion unless ¢ = 2j.

2.1 Mod p motivic cohomology in characteristic p 13
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" 2.2 Variants on a theme ~

Question 2.2.1
What things (other than K-theory) can be motivically refined?

2.2.1 G-theory

Remark 2.2.2: Bloch’s complex zj(X, e) makes sense for any X € Sch, and for X finite type over
R a field or a Dedekind domain. Its homology yields an Atiyah-Hirzebruch spectral sequence

E%j = CH_j(X7 —i—j)= G—i—j(X)v
where G-theory is the K-theory of Coh(X). See Levine’s work.

Then 27 (X, o) defines motivic Borel-Moore homology' which refines G-theory. -

2.2.2 K"-theory

Remark 2.2.3: This is Weibel’s “homotopy invariant K-theory”, obtained by forcing homotopy
invariance in a universal way, which satisfies

KH(R[T]) < KY(R) YR.

One defines this as a simplicial spectrum

K'(R) =

R[TOV" 7Tq]
qHK(l_Z?OTi .

Remark 2.2.4: One hopes that for (reasonable) schemes X, there should exist an A'-invariant
motivic cohomology such that

e There is an Atiyah-Hirzebruch spectral sequence converging to KZH,J. (X).
e Some Beilinson-Lichtenbaum properties.
e Some relation to cycles.

For X Noetherian with krulldim X < oo, the state-of-the-art is that stable homotopy machinery
can produce an Atiyah-Hirzebruch spectral sequence using representability of K" in SH(X) along
with the slice filtration. Vi

!'Note that this is homology and not cohomology!

2.2 Variants on a theme 14
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2.2.3 Motivic cohomology with modulus

Remark 2.2.5: Let X € smVar and D — X an effective (not necessarily reduced) Cartier divisor
— thought of where X \ D is an open which is compactified after adding D. Then one constructs
27 (X|D, e) which are complexes of cycles in “good position” with respect to the boundary D.

Conjecture 2.2.6.
There is an Atiyah-Hirzebruch spectral sequence

By = CH (X|D, (=i — j)) = K_;_;(X, D),

where the limiting term involves relative K-groups. So there is a motivic (i.e. cycle-theoretic)
description of relative K-theory.

— 2.3 Etale K-theory ~

Remark 2.3.1: K-theory is simple étale-locally, at least away from the residue characteristic.

Theorem 2.3.2(Gabber, Suslin).
If A € locRing is strictly Henselian with residue field k£ and m > 1 is prime to ch k, then

Qn
Kn(A;Z/m) AN Ky (k; Z/m) = m(k)®2  n even
0 n odd.

Remark 2.3.3: The problem is that K-theory does not satisfy étale descent!

For B € GalField{#<>, K(B)"(B/a) 2 K (A).

View K-theory as a presheaf of spectra (in the sense of infinity sheaves), and define étale K-theory
K*® to be the universal modification of K-theory to satisfy étale descent. This was considered by
Thomason, Soulé, Friedlander.

Remark 2.3.4: Even better than K is Clausen’s Selmer K-theory, which does the right thing
integrally. Up to subtle convergence issues, for any X € Sch and m prime to ch X (the characteristic
of the residue field) one gets an Atiyah-Hirzebruch spectral sequence

By = H,7 (X3 p4577) = K (X5 Z/m).

Letting F' be a field and m prime to ch F', the spectral sequence looks as follows:

2.3 Etale K-theory 15
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. Hgy(F;Z/m) H'(F;Z/m)
HO(F; pghy Hey(F; 1) H*(F; i)
HO(F; "

!

22 HY(Fyps?) HE (85 15?) HE\(F;u2?)
|
:

Link to Diagram

The whole thing converges to K, ;(F;Z/m), and the sector conjecturally converges to K_;_;(F; Z/m)
by the Beilinson-Lichtenbaum conjecture. 4

— 2.4 Recent Progress ~

Remark 2.4.1: We now focus on
o Etale K-theory, K&
o mod p coefficients, even period

o p-adically complete rings

The last is not a major restriction, since there is an arithmetic gluing square

2.4 Recent Progress 16
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L

B =
[E—"

e =

=)

B =
[ER—

Link to Diagram

Here the bottom-left is the p-adic completion, and the right-hand side uses classical results when p
is prime to all residue characteristic classes.

Theorem 2.4.2(Bhatt-M-Scholze, Antieau-Matthew-M-Nikolaus, Liiders—M, Kel-
ly-M).

For any p-adically complete ring R (or in more generality, derived p-complete simplicial rings)
one can associate a theory of p-adic étale motivic cohomology — p-complete complexes
Zp(j)(R) for j > 0 satisfying an analog of the Beilinson-Lichtenbaum conjectures:

1. An Atiyah-Hirzebruch spectral sequence:

By = H(Z,(j)(R)) = K&,_;(R; Z)s.

2. Known low weights:

Z,(0)(R) = RT¢(R; Zyp)

—

Zp(1)(R) = RT&(R; Gp)[—1].

3. Range of support: Zp(j)(R) is supported in degrees d < j + 1, and even in degrees
d < n+ 1 if the R-module Q}% /pR 18 generated by n’ < n elements. It is supported in
non-negative degrees if R is quasisyntomic, which is a mild smoothness condition that
holds in particular if R is regular.

4. An analog of Nesterenko-Suslin: for R € locRing,

~

KY(R) = H(Zy(j)(R)),
where KM is the “improved Milnor K-theory” of Gabber-Kerz.
5. Comparison to Geisser-Levine: if R is smooth over a perfect characteristic p field, then
Z,(j)(R)/p = RTex(Spec B; ) [,
where [—j] is a right-shift.

Remark 2.4.3: For simplicity, we’ll write H'(j) := H"(Z,(j)(R)). The spectral sequence looks like
the following:

2.4 Recent Progress 17
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—

——
It converges to Kiti_j(R;Z/ p). The 0-column is K%(R) , and we understand the 1-column: we
have

H7* 2 lim 0, () (R).

where 0,(j)(R) are the mod p" weight j Artin-Schreier obstruction. For example,

1 j Qg‘%/pR R
91(j)(R) == coker [ 1 —C~": Q%/pR - —0 | = :
8QR/pR pR—i—{a,p—a‘aeR}
These are weird terms that capture some class field theory and are related to the Tate and Kato
conjectures.

Theorem 2.4.4((continued)).
If R is local, then the 3rd quadrant of the above spectral sequence gives an Atiyah-Hirzebruch
spectral sequence converging to K_;_;(R; Zy).

Remark 2.4.5: So we get things describing étale K-theory, and after discarding a little bit we get
something describing usual K-theory. Moreover, for any local p-adically complete ring R, we have
broken K, (R;Z,) into motivic pieces.

Example 2.4.6(?): We same that for number fields, cohdim < 2 yields a simple spectral sequence
relating K groups to Galois cohomology. Consider now a truncated polynomial algebra A = k[T]|/T"
for k € PerfField™ P and let 7 > 1. Then by the general bounds given in the theorem, H'(j) = 0
unless 0 < ¢ < 2, using that €2 can be generated by one element. Slightly more work will show
H° H? vanish unless i = j =0 (so higher weights vanish), since they’re p-torsionfree and are killed
by p.

So the spectral sequence collapses:

2.4 Recent Progress 18
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HY0) HY(0) 0 0

HY(1) H(1) H*(1) 0 0

HO(2) HY(2) HQ(Q)} H3(2) 0 0
H(3) H?(3) H3(3) H4(3) 0 0

Link to Diagram

So the Atiyah-Hirzebruch spectral sequence collapses to

When r = 2, one can even valuation these nontrivial terms.

Question 2.4.7
What is the motivic cohomology for regular schemes not over a field? We’d like to understand this
in general.
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