Aspects of motivic cohomology

Matthew Morrow, IAS/PCMI GSS 2021

D. Zack Garza
University of Georgia
dzackgarza@gmail.com
Last updated: 2021-07-27

Table of Contents

Contents

Table of Contents 2
1 Matthew Morrow, Talk 1 (Thursday, July 15) 3
1.1 Intro 3
$1.2 \mathrm{~K}_{0}$ and K_{1} 3
1.3 Higher Algebraic K-theory 6
1.4 Arrival of Motivic Cohomology 7
1.5 Big Conjecture 8
1.6 Milnor K-theory and Bloch-Kato 10
2 Matthew Morrow, Talk 2 (Friday, July 16) 11
2.1 Mod p motivic cohomology in characteristic p 11
2.2 Variants on a theme 14
2.2.1 G-theory 14
2.2.2 $\quad \mathrm{K}^{\mathrm{H}}$-theory 14
2.2.3 Motivic cohomology with modulus 15
2.3 Étale K-theory 15
2.4 Recent Progress 16

1 Matthew Morrow, Talk 1 (Thursday, July
 15)

1.1 Intro

Abstract

: Motivic cohomology offers, at least in certain situations, a geometric refinement of algebraic K-theory or its variants (G-theory, KH-theory, étale K-theory, \cdots... We will overview some aspects of the subject, ranging from the original cycle complexes of Bloch, through Voevodsky's work over fields, to more recent p-adic developments in the arithmetic context where perfectoid and prismatic techniques appear.

References/Background:

- Algebraic geometry, sheaf theory, cohomology.
- Comfort with derived techniques such as descent and the cotangent complex would be helpful.
- Casual familiarity with K-theory, cyclic homology, and their variants would be motivational.
- Infinity-categories and spectra will appear, though probably not in a very essential way.
- Lecture Notes

Remark 1.1.1: Some things we've already seen that will be useful:

- Motivic complexes
- Milnor K-theory
- Their relations to étale cohomology (e.g. Bloch-Kato)
- \mathbb{A}^{1}-homotopy theory
- Categorical aspects (e.g. presheaves with transfer)

These have typically been for $s m V^{/ k}$. Our goals will be to study

- Motivic cohomology as a tool to analyze algebraic K-theory.
- Recent progress in mixed characteristic, with fewer smoothness/regularity hypothesis

$1.2 \mathrm{~K}_{0}$ and K_{1}

Remark 1.2.1: Some phenomena of K-theory to keep in mind:

- It encodes other invariants.
- It breaks into "simpler" pieces that are motivic in nature.

Definition 1.2.2 (The Grothendieck group (Grothendieck, 50s))
Let $R \in$ CRing, then define the Grothendieck group $\mathrm{K}_{0}(R)$ as the free abelian group:

$$
\mathrm{K}_{0}(R)=\mathrm{R}-\mathrm{Mod}^{\text {proj }, \mathrm{fg}}, \cong / \sim
$$

where $[P] \sim\left[P^{\prime}\right]+\left[P^{\prime \prime}\right]$ when there is a SES

$$
0 \rightarrow P^{\prime} \rightarrow P \rightarrow P^{\prime \prime} \rightarrow 0
$$

Remark 1.2.3: There is an equivalent description as a group completion:

$$
\mathrm{K}_{0}(R)=\left(\mathrm{R}-\mathrm{Mod}^{\mathrm{proj}, \mathrm{fg}, \cong}, \oplus\right)^{\mathrm{gp}}
$$

The same definitions work for any $X \in$ Sch by replacing R-Mod ${ }^{\text {proj,fg }}$ with $\operatorname{Bun}_{\mathrm{GL}_{r} / X}$, the category of (algebraic) vector bundles over X.

Example 1.2.4(?): For $F \in$ Field, the dimension induces an isomorphism:

$$
\begin{aligned}
\operatorname{dim}_{F}: \mathrm{K}_{0}(F) & \rightarrow \mathbb{Z} \\
{[P] } & \mapsto \operatorname{dim}_{F} P .
\end{aligned}
$$

Example 1.2.5(?): Let $\mathcal{O} \in$ DedekindDom, e.g. the ring of integers in a number field, then any ideal $I \unlhd \mathcal{O}$ is a finite projective module and defines some $[I] \in \mathrm{K}_{0}(\mathcal{O})$. There is a SES

$$
0 \rightarrow \mathrm{Cl}(\mathcal{O}) \xrightarrow{I \mapsto[I]-[\mathcal{O}]} \mathrm{K}_{0}(\mathcal{O}) \xrightarrow{\operatorname{rank}_{\mathcal{O}}(-)} \mathbb{Z} \rightarrow 0
$$

Thus $\mathrm{K}_{0}(\mathcal{O})$ breaks up as $\mathrm{Cl}(\mathcal{O})$ and \mathbb{Z}, where the class group is a classical invariant: isomorphism classes of nonzero ideals.

Example 1.2.6(?): Let $X \in \operatorname{smAlg} \mathrm{Var}_{/ k}^{\mathrm{qproj}}$ over a field, and let $Z \hookrightarrow X$ be an irreducible closed subvariety. We can resolve the structure sheaf \mathcal{O}_{Z} by vector bundles:

$$
0 \leftarrow \mathcal{O}_{Z} \leftarrow P_{0} \leftarrow \cdots P_{d} \leftarrow 0
$$

We can then define

$$
[Z]:=\sum_{i=0}^{d}(-1)^{i}\left[P_{i}\right] \in \mathrm{K}_{0}(X)
$$

which turns out to be independent of the resolution picked. This yields a filtration:

$$
\begin{aligned}
\operatorname{Fil}_{j} \mathrm{~K}_{0}(X):= & \langle[Z]| Z \hookrightarrow X \text { irreducible closed, } \operatorname{codim}(Z) \leq j\rangle \\
& \Longrightarrow \mathrm{K}_{0}(X) \supseteq \operatorname{Fil}_{d} \mathrm{~K}_{0}(X) \supseteq \cdots \supseteq \operatorname{Fil}_{0} \mathrm{~K}_{0}(X) \supseteq 0 .
\end{aligned}
$$

Theorem 1.2.7(Part of Riemann-Roch).

There is a well-defined surjective map

$$
\begin{aligned}
\mathrm{CH}_{j}(X):=\{j \text {-dimensional cycles }\} / \text { rational equivalence } & \rightarrow \frac{\operatorname{Fil}_{j} \mathrm{~K}_{0}(X)}{\operatorname{Fil}_{j-1} \mathrm{~K}_{0}(X)} \\
Z & \mapsto[Z],
\end{aligned}
$$

and the kernel is annihilated by $(j-1)$!.

Slogan 1.2.8

Up to small torsion, $\mathrm{K}_{0}(X)$ breaks into Chow groups.

Definition 1.2.9 (Bass, 50s)
Set

$$
\mathrm{K}_{1}(R):=\mathrm{GL}(R) / E(R):=\bigcup_{n \geq 1} \operatorname{GL}_{n}(R) / E_{n}(R)
$$

where we use the block inclusion

$$
\begin{aligned}
\mathrm{GL}_{n}(R) & \hookrightarrow \mathrm{GL}_{n+1} \\
g & \mapsto\left[\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

and $E_{n}(R) \subseteq \mathrm{GL}_{n}(R)$ is the subgroup of elementary row and column operations performed on I_{n}.

Example 1.2.10(?): There exists a determinant map

$$
\begin{aligned}
\operatorname{det}: \mathrm{K}_{1}(R) & \rightarrow R^{\times} \\
g & \mapsto \operatorname{det}(g),
\end{aligned}
$$

which has a right inverse $r \mapsto \operatorname{diag}(r, 1,1, \cdots, 1)$.

Example 1.2.11(?): For $F \in$ Field, we have $E_{n}(F)=\mathrm{SL}_{n}(F)$ by Gaussian elimination. Since every $g \in \mathrm{SL}_{n}(F)$ satisfies $\operatorname{det}(g)=1$, there is an isomorphism

$$
\operatorname{det}: \mathrm{K}_{1}(F) \xrightarrow{\sim} F^{\times} .
$$

Remark 1.2.12: We can see a relation to étale cohomology here by using Kummer theory to identify

$$
\mathrm{K}_{1}(F) / m \xrightarrow{\sim} F^{\times} / m \xrightarrow{\text { Kummer }, \sim} H_{\mathrm{Gal}}^{1}\left(F ; \mu_{m}\right)
$$

for m prime to ch F, so this is an easy case of Bloch-Kato.

Example 1.2.13(?): For \mathcal{O} the ring of integers in a number field, there is an isomorphism

$$
\operatorname{det}: \mathrm{K}_{1}(\mathcal{O}) \xrightarrow{\sim} \mathcal{O}^{\times}
$$

but this is now a deep theorem due to Bass-Milnor-Serre, Kazhdan.

Example 1.2.14(?): Let $D:=\mathbb{R}[x, y] /\left\langle x^{2}+y^{2}-1\right\rangle \in$ DedekindDom, then there is a nonzero class

$$
\left[\begin{array}{cc}
x & y \\
-y & x
\end{array}\right] \in \text { ker det }
$$

so the previous result for \mathcal{O} is not a general fact about Dedekind domains. It turns out that

$$
\mathrm{K}_{1}(D) \xrightarrow{\sim} D^{\times} \oplus \mathcal{L}
$$

where \mathcal{L} encodes some information about loops which vanishes for number fields.

1.3 Higher Algebraic K-theory

Remark 1.3.1: By the 60 s , it became clear that $\mathrm{K}_{0}, \mathrm{~K}_{1}$ should be the first graded pieces in some exceptional cohomology theory, and there should exist some $\mathrm{K}_{n}(R)$ for all $n \geq 0$ (to be defined). Quillen's Fields was a result of proposing multiple definitions, including the following:

Definition 1.3.2 (The K-theory spectrum (Quillen, 73))
Define a K-theory space or spectrum (infinite loop space) by deriving the functor $\mathrm{K}_{0}(-)$:

$$
K(R):=\mathrm{BGL}(R)^{+} \times \mathrm{K}_{0}(R)
$$

where $\pi_{*} \mathrm{BGL}(R)=\mathrm{GL}(R)$ for $*=1$. Quillen's plus construction forces π_{*} to be abelian without changing the homology, although this changes homotopy in higher degrees. We then define

$$
\mathrm{K}_{n}(R):=\pi_{n} \mathrm{~K}(R)
$$

Remark 1.3.3: This construction is good for the (hard!) hands-on calculations Quillen originally did, but a more modern point of view would be

- Setting $\mathrm{K}(R)$ to be the ∞-group completion of the \mathbb{E}_{∞} space associated to the category R-Mod ${ }^{\text {proj }, \cong}$.
- Regarding $K(-)$ as the universal invariant of StabCat taking exact sequences in StabCat to cofibers sequences in the category of spectra $S p$, in which case one defines

$$
\mathrm{K}(R):=\mathrm{K}(\operatorname{PerfCh}(\mathrm{R}-\mathrm{Mod}))
$$

as $\mathrm{K}(-)$ of perfect complexes of R-modules.

Both constructions output groups $\mathrm{K}_{n}(R)$ for $n \geq 0$.

Example 1.3.4(Quillen, 73): The only complete calculation of K groups that we have is

$$
\mathrm{K}_{n}\left(\mathbb{F}_{q}\right)= \begin{cases}\mathbb{Z} & n=0 \\ 0 & n \text { even } \\ \mathbb{Z} /\left\langle q^{\frac{n+1}{2}-1}\right\rangle & n \text { odd }\end{cases}
$$

Example 1.3.5(?): We know K groups are hard because $K_{n>0}(\mathbb{Z})=0 \Longleftrightarrow$ the Vandiver conjecture holds, which is widely open.

Check content of conjecture, maybe 4 n ?

Conjecture 1.3.6.

If $R \in \mathrm{Alg}_{/ \mathbb{Z}}^{\mathrm{ft} \text { reg }}$ then $\mathrm{K}_{n}(R)$ should be a finitely generated abelian group for all n. This is widely open, but known when $\operatorname{dim} R \leq 1$.

Example 1.3.7(?): For $F \in$ Field with ch F prime to $m \geq 1$, ten

$$
\text { TateSymb : } \mathrm{K}_{2}(F) / m \xrightarrow{\sim} H_{\mathrm{Gal}}^{2}\left(F ; \mu_{m}^{\otimes 2}\right),
$$

which is a specialization of Bloch-Kato due to Merkurjev-Suslin.

Example 1.3.8(Lichtenbaum, Quillen 70s): Partially motivated by special values of zeta functions, for a number field F and $m \geq 1$, formulae for $\mathrm{K}_{n}(F ; \mathbb{Z} / m)$ were conjectured in terms of $H_{\text {ét }}$.

Remark 1.3.9: Here we're using K-theory with coefficients, where one takes a spectrum and constructs a mod m version of it fitting into a SES

$$
0 \rightarrow \mathrm{~K}_{n}(F) / m \rightarrow \mathrm{~K}_{n}(F ; \mathbb{Z} / m) \rightarrow \mathrm{K}_{n-1}(F)[m] \rightarrow 0
$$

However, it can be hard to reconstruct $\mathrm{K}_{n}(-)$ from $\mathrm{K}_{n}(-, \mathbb{Z} / m)$.

1.4 Arrival of Motivic Cohomology

Question 1.4.1

K-theory admits a refinement in the form of motivic cohomology, which splits into simpler pieces such as étale cohomology. In what generality does this phenomenon occur?

Example 1.4.2(?): This is always true in topology: given $X \in$ Top, $\mathrm{K}_{0}^{\text {Top }}$ can be defined using complex vector bundles, and using suspension and Bott periodicity one can define $\mathrm{K}_{n}^{\mathrm{Top}}(X)$ for all n.

Theorem 1.4.3(Atiyah-Hirzebruch).

There is a spectral sequence which degenerates rationally:

$$
E_{2}^{i, j}=H_{\text {Sing }}^{i-j}(X ; \mathbb{Z}) \Rightarrow \mathrm{K}_{-i-j}^{\text {Top }}(X)
$$

Remark 1.4.4: So up to small torsion, topological K-theory breaks up into singular cohomology. Motivated by this, we have the following

1.5 Big Conjecture

Conjecture 1.5.1 (Existence of motivic cohomology (Beilinson-Lichtenbaum, 80s)). For any $X \in \operatorname{smVar}_{/ k}$, there should exist motivic complexes

$$
\mathbb{Z}_{\mathrm{mot}}(j)(X), \quad j \geq 0
$$

whose homology, the weight j motivic cohomology of X, has the following expected properties:

- There is some analog of the Atiyah-Hirzebruch spectral sequence which degenerates rationally:

$$
E_{2}^{i, j}=H_{\mathrm{mot}}^{i-j}(X ; \mathbb{Z}(-j)) \Rightarrow \mathrm{K}_{-i-j}(X)
$$

where $H_{\mathrm{mot}}^{*}(-)$ is taking kernels mod images for the complex $\mathbb{Z}_{\mathrm{mot}}(\bullet)(X)$ satisfying descent.

- In low weights, we have
$-\mathbb{Z}_{\text {mot }}(0)(X)=\mathbb{Z}^{\# \pi_{0}(X)}[0]$ in degree 0 , supported in degree zero.
$-\mathbb{Z}_{\mathrm{mot}}(1)(X)=\mathbb{R} \Gamma_{\mathrm{zar}}\left(X ; \mathcal{O}_{X}^{\times}\right)[-1]$, supported in degrees 1 and 2 for a normal scheme after the right-shift.
- Range of support: $\mathbb{Z}_{\operatorname{mot}}(j)(X)$ is supported in degrees $0, \cdots, 2 j$, and in degrees $\leq j$ if $X=\operatorname{Spec} R$ for R a local ring.
- Relation to Chow groups:

$$
H_{\mathrm{mot}}^{2 j}(X ; \mathbb{Z}(j)) \xrightarrow{\sim} \mathrm{CH}^{j}(X) .
$$

- Relation to étale cohomology (Beilinson-Lichtenbaum conjecture): taking the complex $\bmod m$ and taking homology yields

$$
H_{\mathrm{mot}}^{i}(X ; \mathbb{Z} / m(j)) \xrightarrow{\sim} H_{\mathrm{ett}}^{i}\left(X ; \mu_{m}^{\otimes j}\right)
$$

if m is prime to $\operatorname{ch} k$ and $i \leq j$.

Example 1.5.2 (?): Considering computing $\mathrm{K}_{n}(F)(\bmod m)$ for m odd and for number fields F,
as predicted by Lichtenbaum-Quillen. The mod m AHSS is simple in this case, since cohdim $F \leq 2$:

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	$H_{\text {Gal }}^{0}(F ; \mathbb{Z} / m)$	
\bullet	$H_{\text {Gal }}^{0}\left(F ; \mu_{m}\right)$	$H_{\text {Gal }}^{1}\left(F ; \mu_{m}\right)$
\vdots	$\left.H_{m}^{\otimes 2}\right)$	$H_{\text {Gal }}^{1}\left(F ; \mu_{m}^{\otimes 2}\right)$

Link to Diagram

The differentials are all zero, so we obtain

$$
\mathrm{K}_{2 j-1}(F ; \mathbb{Z} / m) \xrightarrow{\sim} H_{\mathrm{Gal}}^{1}\left(F ; \mu_{m}^{\otimes j}\right)
$$

and

$$
0 \rightarrow H_{\mathrm{Gal}}^{2}\left(F, \mu_{m}^{\otimes j+1}\right) \rightarrow \mathrm{K}_{2 j}(F ; \mathbb{Z} / m) \rightarrow H_{\mathrm{Gal}}^{0}\left(F ; \mu_{m}^{\otimes j}\right) \rightarrow 0
$$

Theorem 1.5.3(Bloch, Levine, Friedlander, Rost, Suslin, Voevodsky, ...).
The above conjectures are true except for Beilinson-Soulé vanishing, i.e. the conjecture that $\mathbb{Z}_{\text {mot }}(j)(X)$ is supported in positive degrees $n \geq 0$.

Remark 1.5.4: Remarkably, one can write a definition somewhat easily which turns out to work in a fair amount of generality for schemes over a Dedekind domain.

Definition 1.5.5 (Higher Chow groups)
For $X \in \operatorname{Var}_{/ k}$, let $z^{j}(X, n)$ be the free abelian group of codimension j irreducible closed subschemes of $X \underset{F}{ } \times \Delta^{n}$ intersecting all faces properly, where

$$
\Delta^{n}=\operatorname{Spec}\left(\frac{F\left[T_{0}, \cdots, T_{n}\right]}{\left\langle\sum T_{i}-1\right\rangle}\right) \cong \mathbb{A}_{/ F}^{n},
$$

which contains "faces" Δ^{m} for $m \leq n$, and properly means the intersections are of the expected codimension. Then Bloch's complex of higher cycles is the complex $z^{j}(X, \bullet)$ where the
boundary map is the alternating sum

$$
z^{j}(X, n) \ni \partial(Z)=\sum_{i=0}^{n}(-1)^{i}\left[Z \cap \operatorname{Face}_{i}\left(X \times \Delta^{n-1}\right)\right]
$$

Bloch's higher Chow groups are the cohomology of this complex:

$$
\mathrm{Ch}^{j}(X, n):=H_{n}\left(z^{j}(X, \bullet)\right)
$$

and then the following complex has the expected properties:

$$
\mathbb{Z}_{\mathrm{mot}}(j)(X):=z^{j}(X, \bullet)[-2 j]
$$

Remark 1.5.6: Déglise's talks present the machinery one needs to go through to verify this!

1.6 Milnor K-theory and Bloch-Kato

Remark 1.6.1: How is motivic cohomology related to the Bloch-Kato conjecture? Recall from Danny's talks that for $F \in$ Field then one can form

$$
\mathrm{K}_{j}^{\mathrm{M}}(F)=\left(F^{\times}\right)^{\otimes_{F}^{j}} /\langle\text { Steinberg relations }\rangle
$$

and for $m \geq 1$ prime to ch F we can take Tate/Galois/cohomological symbols

$$
\text { TateSymb : } \mathrm{K}_{j}^{\mathrm{M}}(F) / m \rightarrow H_{\mathrm{Gal}}^{j}\left(F ; \mu_{m}^{\otimes j}\right)
$$

where $\mu_{m}^{\otimes j}$ is the j th Tate twist. Bloch-Kato conjectures that this is an isomorphism, and it is a theorem due to Rost-Voevodsky that the Tate symbol is an isomorphism. The following theorem says that a piece of $H_{\text {mot }}$ can be identified as something coming from K^{M} :

Theorem 1.6.2(Nesterenko-Suslin, Totaro).
For any $F \in$ Field, for each $j \geq 1$ there is a natural isomorphism

$$
\mathrm{K}_{j}^{\mathrm{M}}(F) \xrightarrow{\sim} H_{\mathrm{mot}}^{j}(F ; \mathbb{Z}(j))
$$

Remark 1.6.3: Taking things mod m yields

$$
\mathrm{K}_{j}^{\mathrm{M}}(F) / m \xrightarrow{\sim} H_{\mathrm{mot}}^{j}(F ; \mathbb{Z} / m(j)) \xrightarrow{\sim, \mathrm{BL}} H_{\text {ét }}^{j}\left(F ; \mu_{m}^{\otimes j}\right),
$$

where the conjecture is that the obstruction term for the first isomorphism coming from H^{j+1} vanishes for local objects, and Beilinson-Lichtenbaum supplies the second isomorphism. The composite is the Bloch-Kato isomorphism, so Beilinson-Lichtenbaum \Longrightarrow Bloch-Kato, and it turns out that the converse is essentially true as well. This is also intertwined with the Hilbert 90 conjecture.

Tomorrow: we'll discard coprime hypotheses, look at p-adic phenomena, and look at what happens étale locally.

$2 \mid$ Matthew Morrow, Talk 2 (Friday, July 16)

Remark 2.0.1: A review of yesterday:

- K-theory can be refined by motivic cohomology, i.e. it breaks into pieces. More precisely we have the Atiyah-Hirzebruch spectral sequence, and even better, the spectrum $\mathrm{K}(X)$ has a motivic filtration with graded pieces $\mathbb{Z}_{\text {mot }}(j)(X)[2 j]$.
- The $\mathbb{Z}_{\text {mot }}(j)(X)$ correspond to algebraic cycles and étale cohomology mod m, where m is prime to ch k, due to Beilinson-Lichtenbaum and Beilinson-Bloch.

Today we'll look at the classical mod p theory, and variations on a theme: e.g. replacing K-theory with similar invariants, or weakening the hypotheses on X. We'll also discuss recent progress in the case of étale K-theory, particularly p-adically.

2.1 Mod p motivic cohomology in characteristic p

Remark 2.1.1: For $F \in$ Field and $m \geq 1$ prime to ch F, the Atiyah-Hirzebruch spectral sequence $\bmod m$ takes the following form:

$$
E_{2}^{i, j}=H_{\mathrm{mot}}^{i, j}(F, \mathbb{Z} / m(-j)) \stackrel{B L}{=}\left\{\begin{array}{ll}
H_{\mathrm{Gal}}^{i-j}\left(F ; \mu_{m}^{\otimes j}\right) & i \leq 0 \\
0 & i>0 .
\end{array} .\right.
$$

Thus E_{2} is supported in a quadrant four wedge:

We know the axis:

$$
H^{j}\left(F ; \mu_{m}^{\otimes j}\right) \xrightarrow{\sim} \mathrm{K}_{j}^{\mathrm{M}}(F) / m
$$

What happens if $m>p=\operatorname{ch} F$ for $\operatorname{ch} F>0$?

Theorem 2.1.2 (Izhbolidin (90), Bloch-Kato-Gabber (86), Geisser-Levine (2000)). Let $F \in$ Field $^{\text {ch }=p}$, then

- $\mathrm{K}_{j}^{\mathrm{M}}(F)$ and $\mathrm{K}_{j}(F)$ are p-torsionfree.
- $\mathrm{K}_{j}(F) / p \hookleftarrow \mathrm{~K}_{j}^{\mathrm{M}}(F) / p \xrightarrow{\mathrm{dLog}} \Omega_{F}^{j}$

Definition 2.1.3 (dLog)
The dLog map is defined as

$$
\begin{aligned}
\mathrm{d} \log : \mathrm{K}_{j}^{\mathrm{M}}(F) / p & \rightarrow \Omega_{f}^{j} \\
\bigotimes_{i} \alpha_{i} & \mapsto \bigwedge_{i} \frac{d \alpha_{i}}{\alpha_{i}}
\end{aligned}
$$

and we write $\Omega_{F, \log }^{j}:=\mathrm{im}$ dLog.

Remark 2.1.4: So the above theorem is about showing the injectivity of dLog. What GeisserLevine really prove is that

$$
\mathbb{Z}_{\operatorname{mot}}(j)(F) / p \xrightarrow{\sim} \Omega_{F, \log }^{j}[-j]
$$

Thus the mod p Atiyah-Hirzebruch spectral sequence, just motivic cohomology lives along the axis

$$
E_{2}^{i, j}=\left\{\begin{array}{ll}
\Omega_{F, \log }^{-j} & i=0 \\
0 & \text { else }
\end{array} \Rightarrow \mathrm{K}_{i-j}(F ; \mathbb{Z} / p)\right.
$$

and $\mathrm{K}_{j}(F) / p \xrightarrow{\sim} \Omega_{F, \mathrm{log}}^{j}$.

Remark 2.1.5: So life is much nicer in p matching the characteristic! Some remarks:

- The isomorphism remains true with F replaced any $F \in \mathrm{Alg}_{/ \mathbb{F}_{p}}^{\text {reg,loc,Noeth }}$:

$$
\mathrm{K}_{j}(F) / p \xrightarrow{\sim} \Omega_{F, \log }^{j}
$$

- The hard part of the theorem is showing that mod p, there is a surjection $\mathrm{K}_{j}^{\mathrm{M}}(F) \rightarrow \mathrm{K}_{j}(F)$. The proof goes through using $z^{j}(F, \bullet)$ and the Atiyah-Hirzebruch spectral sequence, and seems to necessarily go through motivic cohomology.

Question 2.1.6

Is there a direct proof? Or can one even just show that

$$
\mathrm{K}_{j}(F) / p=0 \text { for } j>\left[F: \mathbb{F}_{p}\right]_{\mathrm{tr}} ?
$$

Conjecture 2.1.7 (Beilinson).

This becomes an isomorphism after tensoring to \mathbb{Q}, so

$$
\mathrm{K}_{j}^{\mathrm{M}}(F) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim} \mathrm{K}_{j}(F) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

This is known to be true for finite fields.

Conjecture 2.1.8.

$$
H_{\mathrm{mot}}^{i}(F ; Z(j)) \text { is torsion unless } i=j
$$

This is wide open, and would follow from the following:

Conjecture 2.1.9(Parshin).

If $X \in \operatorname{smVar}{ }_{/ k}^{\mathrm{proj}}$ over k a finite field, then

$$
H_{\mathrm{mot}}^{i}(X ; Z(j)) \text { is torsion unless } i=2 j
$$

2.2 Variants on a theme

Question 2.2.1

What things (other than K-theory) can be motivically refined?

2.2.1 G-theory

Remark 2.2.2: Bloch's complex $z^{j}(X, \bullet)$ makes sense for any $X \in$ Sch, and for X finite type over R a field or a Dedekind domain. Its homology yields an Atiyah-Hirzebruch spectral sequence

$$
E_{2}^{i, j}=\mathrm{CH}^{-j}(X,-i-j) \Rightarrow \mathrm{G}_{-i-j}(X)
$$

where G-theory is the K-theory of $\operatorname{Coh}(X)$. See Levine's work.
Then $z^{j}(X, \bullet)$ defines motivic Borel-Moore homology ${ }^{1}$ which refines G-theory.

2.2.2 K^{H}-theory

Remark 2.2.3: This is Weibel's "homotopy invariant K-theory", obtained by forcing homotopy invariance in a universal way, which satisfies

$$
\mathrm{K}^{\mathrm{H}}(R[T]) \xrightarrow{\sim} \mathrm{K}^{\mathrm{H}}(R) \quad \forall R .
$$

One defines this as a simplicial spectrum

$$
\mathrm{K}^{\mathrm{H}}(R):=\left|q \mapsto \mathrm{~K}\left(\frac{R\left[T_{0}, \cdots, T_{q}\right]}{1-\sum_{i=0}^{q} T_{i}}\right)\right|
$$

Remark 2.2.4: One hopes that for (reasonable) schemes X, there should exist an \mathbb{A}^{1}-invariant motivic cohomology such that

- There is an Atiyah-Hirzebruch spectral sequence converging to $\mathrm{K}_{i-j}^{\mathrm{H}}(X)$.
- Some Beilinson-Lichtenbaum properties.
- Some relation to cycles.

For X Noetherian with krulldim $X<\infty$, the state-of-the-art is that stable homotopy machinery can produce an Atiyah-Hirzebruch spectral sequence using representability of K^{H} in $\mathrm{SH}(X)$ along with the slice filtration.

[^0]
2.2.3 Motivic cohomology with modulus

Remark 2.2.5: Let $X \in \operatorname{smVar}$ and $D \hookrightarrow X$ an effective (not necessarily reduced) Cartier divisor - thought of where $X \backslash D$ is an open which is compactified after adding D. Then one constructs $z^{j}(X \mid D, \bullet)$ which are complexes of cycles in "good position" with respect to the boundary D.

Conjecture 2.2.6.

There is an Atiyah-Hirzebruch spectral sequence

$$
E_{2}^{i, j}=\mathrm{CH}^{j}(X \mid D,(-i-j)) \Rightarrow \mathrm{K}_{-i-j}(X, D),
$$

where the limiting term involves relative K-groups. So there is a motivic (i.e. cycle-theoretic) description of relative K-theory.

2.3 Étale K-theory

Remark 2.3.1: K-theory is simple étale-locally, at least away from the residue characteristic.
Theorem 2.3.2(Gabber, Suslin).
If $A \in \operatorname{locRing}$ is strictly Henselian with residue field k and $m \geq 1$ is prime to ch k, then

$$
\mathrm{K}_{n}(A ; \mathbb{Z} / m) \xrightarrow{\sim} \mathrm{K}_{n}(k ; \mathbb{Z} / m) \xrightarrow{\sim} \begin{cases}\mu_{m}(k)^{\otimes \frac{n}{2}} & n \text { even } \\ 0 & n \text { odd } .\end{cases}
$$

Remark 2.3.3: The problem is that K-theory does not satisfy étale descent!

$$
\text { For } B \in \text { GalField }_{/ A}^{\operatorname{deg}<\infty}, \quad K(B)^{h \mathrm{Gal}\left(B_{/ A}\right)} \neq K(A) .
$$

View K-theory as a presheaf of spectra (in the sense of infinity sheaves), and define étale K-theory $K^{\text {ét }}$ to be the universal modification of K-theory to satisfy étale descent. This was considered by Thomason, Soulé, Friedlander.

Remark 2.3.4: Even better than $K^{\text {et }}$ is Clausen's Selmer K-theory, which does the right thing integrally. Up to subtle convergence issues, for any $X \in$ Sch and m prime to ch X (the characteristic of the residue field) one gets an Atiyah-Hirzebruch spectral sequence

$$
E_{2}^{i, j}=H_{\text {êt }}^{i-j}\left(X ; \mu_{m}^{\otimes-j}\right) \Rightarrow \mathrm{K}_{i-j}^{\text {et }}(X ; \mathbb{Z} / m) .
$$

Letting F be a field and m prime to ch F, the spectral sequence looks as follows:

The whole thing converges to $\mathrm{K}_{-i-j}^{\text {ét }}(F ; \mathbb{Z} / m)$, and the sector conjecturally converges to $\mathrm{K}_{-i-j}(F ; \mathbb{Z} / m)$ by the Beilinson-Lichtenbaum conjecture.

2.4 Recent Progress

Remark 2.4.1: We now focus on

- Étale K-theory, K ${ }^{\text {ét }}$
- mod p coefficients, even period
- p-adically complete rings

The last is not a major restriction, since there is an arithmetic gluing square

Link to Diagram

Here the bottom-left is the p-adic completion, and the right-hand side uses classical results when p is prime to all residue characteristic classes.

Theorem 2.4.2(Bhatt-M-Scholze, Antieau-Matthew-M-Nikolaus, Lüders-M, Kel$l y-M)$.
For any p-adically complete ring R (or in more generality, derived p-complete simplicial rings) one can associate a theory of p-adic étale motivic cohomology - p-complete complexes $\mathbb{Z}_{p}(j)(R)$ for $j \geq 0$ satisfying an analog of the Beilinson-Lichtenbaum conjectures:

1. An Atiyah-Hirzebruch spectral sequence:

$$
E_{2}^{i, j}=H^{i-j}\left(\mathbb{Z}_{p}(j)(R)\right) \Rightarrow \mathrm{K}_{-i-j}^{\text {ét }}(R ; \mathbb{Z})_{\widehat{p}} .
$$

2. Known low weights:

$$
\begin{aligned}
& \mathbb{Z}_{p}(0)(R) \xrightarrow{\sim} \mathbb{R} \Gamma_{\text {ét }}\left(R ; \mathbb{Z}_{p}\right) \\
& \mathbb{Z}_{p}(1)(R) \xrightarrow{\sim} \overbrace{\mathbb{R} \Gamma_{\text {ét }}\left(R ; \mathbb{G}_{m}\right)}[-1] .
\end{aligned}
$$

3. Range of support: $\mathbb{Z}_{p}(j)(R)$ is supported in degrees $d \leq j+1$, and even in degrees $d \leq n+1$ if the R-module $\Omega_{R / p R}^{1}$ is generated by $n^{\prime}<n$ elements. It is supported in non-negative degrees if R is quasisyntomic, which is a mild smoothness condition that holds in particular if R is regular.
4. An analog of Nesterenko-Suslin: for $R \in$ locRing,

$$
\widehat{\mathrm{K}}_{j}^{\mathrm{M}}(R) \xrightarrow{\sim} H^{j}\left(\mathbb{Z}_{p}(j)(R)\right),
$$

where $\widehat{\mathrm{K}}^{\mathrm{M}}$ is the "improved Milnor K-theory" of Gabber-Kerz.
5. Comparison to Geisser-Levine: if R is smooth over a perfect characteristic p field, then

$$
\mathbb{Z}_{p}(j)(R) / p \xrightarrow{\sim} \mathbb{R} \Gamma_{\text {ét }}\left(\operatorname{Spec} R ; \Omega_{\log }^{j}\right)[-j],
$$

where $[-j]$ is a right-shift.
Remark 2.4.3: For simplicity, we'll write $H^{i}(j):=H^{i}\left(\mathbb{Z}_{p}(j)(R)\right)$. The spectral sequence looks like the following:

It converges to $K_{-i-j}^{\text {ét }}(R ; \mathbb{Z} / p)$. The 0 -column is $\overbrace{\mathrm{K}_{-j}^{\mathrm{M}}(R)}$, and we understand the 1-column: we have

$$
H^{j+1} \xrightarrow{\sim} \underset{\varliminf_{r}}{\lim _{r}} \tilde{v}_{r}(j)(R) .
$$

where $\tilde{v}_{r}(j)(R)$ are the $\bmod p^{r}$ weight j Artin-Schreier obstruction. For example,

$$
\tilde{v}_{1}(j)(R):=\operatorname{coker}\left(1-C^{-1}: \Omega_{R / p R}^{j} \rightarrow \frac{\Omega_{R / p R}^{j}}{\partial \Omega_{R / p R}^{j-1}}\right)=\frac{R}{p R+\left\{a^{p}-a \mid a \in R\right\}}
$$

These are weird terms that capture some class field theory and are related to the Tate and Kato conjectures.

Theorem 2.4.4((continued)).
If R is local, then the 3rd quadrant of the above spectral sequence gives an Atiyah-Hirzebruch spectral sequence converging to $\mathrm{K}_{-i-j}\left(R ; \mathbb{Z}_{p}\right)$.

Remark 2.4.5: So we get things describing étale K-theory, and after discarding a little bit we get something describing usual K-theory. Moreover, for any local p-adically complete ring R, we have broken $\mathrm{K}_{*}\left(R ; \mathbb{Z}_{p}\right)$ into motivic pieces.

Example 2.4.6(?): We same that for number fields, cohdim ≤ 2 yields a simple spectral sequence relating K groups to Galois cohomology. Consider now a truncated polynomial algebra $A=k[T] / T^{r}$ for $k \in$ PerfField ${ }^{\text {ch }=p}$ and let $r \geq 1$. Then by the general bounds given in the theorem, $H^{i}(j)=0$ unless $0 \leq i \leq 2$, using that Ω can be generated by one element. Slightly more work will show H^{0}, H^{2} vanish unless $i=j=0$ (so higher weights vanish), since they're p-torsionfree and are killed by p.

So the spectral sequence collapses:

	$H^{0}(0)$	$H^{1}(0)$	0	0	
	$H^{0}(1)$	$H^{1}(1)$	$H^{2}(1)$	0	0
	$H^{0}(2)$	$H^{1}(2)$	$H^{2}(2)$	$H^{3}(2)$	0

Link to Diagram

So the Atiyah-Hirzebruch spectral sequence collapses to

$$
\mathrm{K}_{n}\left(\frac{K[T]}{\left\langle T^{r}\right\rangle},\langle T\rangle\right)= \begin{cases}H^{1}\left(\mathbb{Z}_{p}\left(\frac{n+1}{2}\right)\right)(R) & n \text { odd } \\ 0 & n \text { even }\end{cases}
$$

When $r=2$, one can even valuation these nontrivial terms.

Question 2.4.7
What is the motivic cohomology for regular schemes not over a field? We'd like to understand this in general.

[^0]: ${ }^{1}$ Note that this is homology and not cohomology!

