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1 Preface

1 Preface

(DZG): These are just some lists and resources I jot-
ted down over the course of the week, relating to defi-
nitions to look up or topics/conjectures to read more
about. I’ve included them as a vague “word cloud”,
perhaps as a useful way to get some high-level view
of what ideas might show up.

Also, a disclaimer: most of these notes were live-tex’d,
and almost certainly contain errors or inaccuracies!
Such errors are most likely my own, due either to
hearing and typesetting incorrectly, or simply misun-
derstanding. For a much more accurate account of
the details for these talks, I’d recommend reading each
speaker’s own lecture notes, which I’ve linked in each
relevant section.

E 1.1 Some general resources e

• nLab’s entry on motivic homotopy theory

– Covering families and Grothendieck topologies
– All of the actual lecture notes from the authors

• Source code and raw files for this project

E 1.2 Definitions e

• K-theory
• Milnor K-theory
• Witt ring
• Period and index
• Symbols
• Brauer group
• Bloch’s higher Chow groups
• Mixed characteristic
• Weil Cohomology theory

– Betti cohomology
– Rigid cohomology
– Motivic cohomology
– Étale cohomology

Preface 5

https://ncatlab.org/nlab/show/motivic+homotopy+theory
https://ncatlab.org/nlab/show/Grothendieck+topology
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1 Preface

– Galois cohomology

• Sites

– The smooth site
– The étale site
– The Nisnevich site
– Difference between big and small sites

• Cartier divisors
• Henselian schemes
• Dévissage
• Purity theorems
• Fiber functor
• Transfers
• Torsors
• Discretely valued fields
• Cotangent complex
• Symbols

– Cohomological symbol
– Tate symbol
– Galois symbol

• Tate twist

E 1.3 Results/Conjectures e

• What is Kn(Z)?
• Kummer-Vandiver conjecture

– For hk the class number of the maximum real subfield K of the pth cyclotomic fields,
p
∣∣- hk.

• Milnor conjecture (proved)

– Relates HGal to to KM/2 and quadratic forms.

• Bloch-Kato conjecture, i.e. Norm-Residue isomorphism (proved?)

– There is an isomorphism induced by the norm-residue map

hn : KM
n (F )→ Hn(F ;µ`⊗

n).

– Generalized Milnor’s conjecture to odd primes.
– Closely related to Beilinson-Lichtenbaum

• Standard conjectures on algebraic cycles
• Beilinson-Soulé conjecture

– Support in degrees d < 0 for Zmot(j).

1.3 Results/Conjectures 6



1 Preface

– Currently unknown

• Gersten conjecture

– Support in degrees d ≤ 2j for Zmot(j).

• Beilinson-Lichtenbaum conjecture

– There is an isomorphism

Hp
mot(X;Z(q)) ∼−→ Hp

ét(X;Z(1)) p ≤ q.

• Vanishing and rigidity conjectures
• Kummer–Vandiver conjecture
• Tate conjecture
• Kato conjecture
• Bass’ finite generation conjecture

– Morrow: for R a regular ring of finite type over Z, Kn(R) is finitely generated.
– Wikipedia: the groups Gn(A) are finitely generated Z-modules when A is finitely gen-

erated as an Z-algebra, where Gn is the variant of the K-theory construction where one
takes finitely generated modules instead of projective modules.

– Generalizes Dirichlet’s unit theorem: K1(R) is finitely-generated for O the ring of integers
of a number field K.

• Parshin’s conjecture

– Vanishing of higher K-groups for smooth varieties over finite fields.

• Quillen-Lichtenbaum conjecture
• Hilbert 90

E 1.4 Generic Notes e

• KM has an explicit description and is easy to map out of. Hmot is difficult in general, but
usual K-theory is filtered by Hmot pieces.

• Some motivations for K-theory:

– Special values of L-functions
– K0:
♦ AG: Grothendieck-Riemann-Roch, intersection theory on algebraic varieties.
♦ NT: Pic(R), the class group Cl(R), class field theory

– Higher regulators
– Quadratic reciprocity
– Embeddings of number fields into R,C.
– Whitehead torsion, used in surgery classification of manifolds and the Poincaré conjecture

in dim ≥ 5.
– Sheaf cohomology of a K-theory sheaf recovers Chow (Bloch’s formula)

• The Dennis trace relates K→ HH, and THH yields an intermediate step.

1.4 Generic Notes 7



2 Danny Krashen, Talk 1 (Monday, July 12)

1.4.1 Major Objects

• HZ: motivic cohomology.

– Compare to Hmot?

• HZ̃: generalized motivic cohomology.
• CH∗: Chow groups, algebraic codimension n cycles mod rational equivalence.
• C̃H∗: Chow-Witt groups or oriented Chow, formal sums of codimension n subvarieties with

coefficients in GW(k) for k some field.
• qhyp := 〈1〉+ 〈−1〉, the hyperbolic form
• GW(k): the Grothendieck-Witt group of k, group completion of the semiring of nondegenerate

symmetric bilinear forms under orthogonal sum.
• W (k): the Witt group of k, GW (k)/Z 〈qhyp〉.

K-theory:

• K∗: K-theory.

– K0(F ) = Z, K1(F ) = F×.
– K0(R) = Hom

Top
(SpecR,Z). If R is a domain, K0(R) = Z.

– K0(O) ∈ Ext(Z,Cl(O)), K1(O) = O×.
– K1(R) = GL(R).
– For finite fields:

Kn(Fq) =


Z n = 0
0 n even
Z/
〈
q

n+1
2 −1

〉
n odd.

• KO∗: Hermitian K-theory.

Include known computations of K-theory, W (k), GW (k), etc.

2 Danny Krashen, Talk 1 (Monday, July 12)

E 2.1 Intro e

Missed first 12m

Abstract:

Danny Krashen, Talk 1 (Monday, July 12) 8



2 Danny Krashen, Talk 1 (Monday, July 12)

A fundamental question in field arithmetic is how one
can bound, in various senses, the complexity of alge-
braic objects such as algebras, quadratic forms, or co-
homology classes. This question is intimately related
to notions of essential dimension, symbol length, and
also to the construction of generic splitting varieties.
In these talks, I will describe some of the principal
questions of this sort, and various methods by which
they have been approached.

References:

• http://dkrashen.github.io/

Remark 2.1.1: Fix a field k0 ∈ Field, we’ll consider extensions k ∈ Field/k0 .

E 2.2 Galois Cohomology e

Definition 2.2.1 (Galois Cohomology)
For M ∈ Gk-Mod for Gk the Galois group of k ∈ Field/k0 , we can take invariants MGk . The
functor −Gk is left-exact, so we define

H∗Gal(Gk;−) := R∗(−)Gk .

Remark 2.2.2: Note that the tensor product on Gk-Mod induces a cup product on H∗Gal. An
important example of coefficients isM = µ⊗m` , where µ⊗0

` := Z/n. It is known that H∗Gal(Gk;µ⊗0) =
Z/n.

We’ll define symbols

(a1, · · · , an) := (a1) ^ · · ·^ (an) ∈ H∗Gal(k, µ⊗n` ),

which are in fact generators. To remember the `, we write (a1, a2, · · · , an)`.

Remark 2.2.3: Galois cohomology is a special case of étale cohomology, where for M ∈ Gk-Mod,

Hn
Gal(Gk;M) = Hn

ét(k;M) = Hn
ét(Spec k;M).

Étale cohomology works for schemes other than just Spec k.

E 2.3 Milnor K-Theory e

2.2 Galois Cohomology 9
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2 Danny Krashen, Talk 1 (Monday, July 12)

Definition 2.3.1 (?)
Given k ∈ Field, define

KM
∗ (k) :=

∞⊕
i=1

KM
i (k)

where

• KM
0 (k) = Z

• KM
1 (k) = km, written additively as elements {a} on the left-hand side, so {a}+{b} := {ab}.

• It’s generated by KM
1 (k), with products written by concatenation:

{a1, · · · , an} = {a1} {a2} · · · {an} .

• The only relations are {a, b} = 0 when a+ b = 1, motivated by

(a, b)` = 0 ∈ H2
Gal(k;µ⊗2

` ) ⇐⇒ a+ b = 1.

• There is a map

KM
0 (k)→ H∗ét(k;µ⊗0

` )
{a} 7→ (a),

and the Norm-Residue isomorphism (formerly the Bloch-Kato conjecture) states
that this is an isomorphism after modding out by `, i.e.

KM
0 (k)/` ∼−→ H∗ét(k;µ⊗0

` ).

E 2.4 Witt Ring e

Remark 2.4.1: Assume ch k 6= 2, so there is a correspondence between quadratic forms and
symmetric bilinear forms given by polarization:

Quadratic forms
 Symmetric bilinear forms
qb(x) := b(x, x) 7→b(x, y)

q 7→ bq(x, y) := 1
2 (q(x+ y)− q(x)− q(y)) .

So we’ll identify these going forward and write q for an arbitrary symmetric bilinear form or a
quadratic form. We say q is nondegenerate if there is an induced isomorphism:

V
∼−→ V ∨

v 7→ bq(v,−).

2.3 Milnor K-Theory 10



2 Danny Krashen, Talk 1 (Monday, July 12)

Note that a symmetric bilinear form q on V can be
regarded as an element of Sym2(V ∨).

Definition 2.4.2 (The Witt Ring)
Let QuadForm/k be the category of quadratic spaces: pairs (V, q) with V ∈ VectSp/k a
k-vector space and q ∈ Sym2(V ∨) representing a quadratic form on V . The Witt ring is
generated as a group by isomorphism representing a quadratic form on V .

W (k) =
Z
〈{

[(V, q)] ∈ QuadForm/k

}〉
〈qhyp, (q1 + q2)− (q1 ⊥ q2)〉 ∈ AbGrp.

where the hyperbolic form is defined as qhyp(x, y) = xy. The ring structure is given by the
tensor product (a.k.a. Kronecker product of forms).

Remark 2.4.3: Noting that Galois cohomology lives mod ` for various `, here KM
0 (k) lives over Z.

So Milnor K-theory relates all of the various mod ` Galois cohomologies together.

Definition 2.4.4 (Fundamental ideals and Pfister Forms)
The fundamental ideal I(k) E W (k) is the ideal of even dimensional forms, and set In(k) :=
(I(k))n. There is a map

KM
n (k)→ In(k)/In+1(k)

{a1, a2, · · · , an} 7→ 〈〈a1, a2, · · · , an〉〉 ,

which follows from Gram-Schmidt: any form can be diagonalized q ∼=
∑

aix
2
i , which we can

write as 〈a1, a2, · · · , an〉. We can define the n-fold Pfister forms

〈〈a〉〉 := 〈〈1,−a〉〉

〈〈a1, a2, · · · , an〉〉 :=
n∏
i=1
〈〈ai〉〉 .

Remark 2.4.5: The Milnor conjecture (proved by Voevodsky et al) states that the above map
is an isomorphism after modding out by 2, so

KM
n (k)/2 ∼−→ In(k)/In+1(k).

Moreover, the LHS is isomorphic to Hn(k, µ2). There are interesting maps going the other way

In(k)→ In(k)/In+1(k) ∼−→ Hn(k, µ2)

Upshot: this is surjective – any mod 2 cohomology class comes from a quadratic form, and thus we
can reason about cohomology by reasoning about quadratic forms.

E 2.5 Motivic Cohomology e

2.5 Motivic Cohomology 11



2 Danny Krashen, Talk 1 (Monday, July 12)

Remark 2.5.1: Motivic cohomology relates the various mod ` cohomologies together much like
KM
∗ , but additionally relates different twists. In particular, it relates various H i

ét(k;µ⊗j` ), where
Milnor K-theory interprets this “diagonally” when i = j. This works by constructing motivic
complexes

Z(m) ∈ Ch(Sh
pre

smSch/k),

which are complexes of presheaves on smooth k-schemes, usually considered in the Zariski, étale,
or Nisnevich topologies.

Remark 2.5.2: Zariski hypercohomology is defined as

Hn(X;Z(m)) = Hn,m(X;Z) = Hn
mot(X;Z(m)) for X := Spec k.

These relate to Galois cohomology in the following ways:

• There is a quasi-isomorphism µ⊗m`
∼W−−→ Z/`(n) in the étale topology.

• There is an isomorphism Hn
zar(k,Z(n)) ∼−→ KM

n (k).
• Bloch-Kato identifies H∗zar(X;Z/`(n)) ∼−→ Hn

ét(X;Z/`(n)).

E 2.6 Dimension e

Remark 2.6.1: There are a number of competing notions for the “dimension” of a field.

Definition 2.6.2 (Dimension of a field)
If k is finitely generated over either a prime field or an algebraically closed field, we say

dim(k) =


[k : k0]tr k0 = k0

[k : k0]tr + 1 k0 finite
[k : k0]tr + 2 k0 = Q.

Definition 2.6.3 (Cohomological dimension)
We define its cohomological dimension cohdim(k), which is at most n if Hn(Gk;M) = 0
for all m > n and M torsion,

cohdim(k) := min
{
n
∣∣∣ cohdim(k) ≤ n

}
.

Equivalently, cohdim(k) = n ⇐⇒ there exists a torsion M with Hn(Gk;M) 6= 0 and
Hm(Gk;M) = 0 for all m > n.

Remark 2.6.4: cohdim(k) = dim(k) if k is finitely generated or a finite extension of k0 = k0, or if
k is finitely generated over Q and has no real orderings. So if k has orderings, cohdim(k) =∞.

2.6 Dimension 12



2 Danny Krashen, Talk 1 (Monday, July 12)

Definition 2.6.5 (Diophantine Dimension)
We say k is Cn if for d > 0 and m > dn, then every homogeneous polynomials of degree d in
m variables has a nontrivial root.

ddim(k) := min
{
n
∣∣∣ k is Cn

}
.

Example 2.6.6(?): If k is finitely generated or finite over k0 = k0, then

ddim(k) = dim(k) = cohdim(k).

Definition 2.6.7 (Tn-rank)
We say k is Tn if for every d1, d2, · · · , dr > 0 and every system of polynomial equations
f1 = · · · = fr = 0 with deg fi = di in m variables, with m >

∑
dni . Then the Tn-rank is

defined as

Tn- rank(k) := min
{
n
∣∣∣ k is Tn

}
.

Question 2.6.8
Note that Tn =⇒ Cn, so Tn- rank(k) ≥ ddim(k), when are they equal? This is likely unknown.

Remark 2.6.9: There is a famous example of a field k with cohdim(k) = 1 but ddim(k) =∞.

Question 2.6.10
Is it true that ddim(k) ≥ cohdim(k)? Serre showed that this holds when cohdim is replaced by
cohdim2, the 2-primary part – does this hold for all p? These are both open.

Why would one expect this to be true?

Remark 2.6.11: A recent result: cohdimp grows at most linearly in ddim, with slope not 1 but
rather ≈ log2 p. These questions say that if an equation has enough variables then there is a solution,
but why should this be reflected in cohomology? To show this bound, one would want to show that
given some α ∈ H∗(k), there exists a polynomial fα where if fα has a root and α = 0 in homology.
In special cases, we were able to come up with such polynomials. When α is a symbol, this is closely
related to norm varieties which have a point iff α is split. One might optimistically hope these are
described as hypersurfaces, from which answers to the above would follow, but they turn out to not
have such a concrete realization.

E
2.7 Structural Problems in Galois

Cohomology e
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Remark 2.7.1: Here we’ll describe the problems we need help with! Perhaps insight from motivic
cohomology will lend insight to them. We’ll write H i(k) := H i(k;µ⊗j` ).

2.7.1 Period-Index Problems

Definition 2.7.2 (An extension splitting a cohomology class)
If α ∈ H i(k), we say L/k splits α if

α|L = 0 ∈ H i(L).

Definition 2.7.3 (?)
We define the index

indα := gcd
{

[L : k]
∣∣∣ L/k finite and splits α

}
.

and the period of α as its (group-theoretic) order H i(k). Note that perα ≤ `.

Remark 2.7.4: One can show that perα
∣∣ indα, and indα

∣∣ (perα)m for some m.

Question 2.7.5
For a fixed k and i, j, `, which is the minimum m such that

indα
∣∣ (perα)m?

Alternatively, what is the minimum m such that indα
∣∣ `m?

Conjecture 2.7.6.
If ddim(k) = n (or dim(k) = n since k is finitely generated) with α ∈ H2(k, µ`), then

indα
∣∣ (perα)n−1 .

Remark 2.7.7: Even in this case, no known bound is known for k = Q(t), for any choice of `. How
complicated can the cohomology class be? The rough idea is that for H i(k) with i near dim k, this
should have a small index and if i = dim k then per k = ind k.

Remark 2.7.8: We know per = ind for any number field for classes in H2(Spec k;µN ), with or
without roots.

2.7.2 Symbol Length Problem

Remark 2.7.9: We know Hn(k, µ⊗n` ) is generated by symbols (a1, a2, · · · , an). We can use symbol
length to measure complexity, leading to the following:

2.7 Structural Problems in Galois Cohomology 14
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Question 2.7.10
Given k, n, what is the minimal number m such that every α ∈ Hn(k) is a sum of no more than m
symbols. I.e. how easy is it to write α?

Remark 2.7.11: We’d like a bound in terms of ddim(k) and dim(k). One can construct fields
needing arbitrarily long symbols, but perhaps for finite dimensional fields, one feels there should
be a bound. Danny feels that there may not be such a bound once n ≥ 4.

Remark 2.7.12: What’s known: for number fields (or global fields, i.e. a reasonable notion of
dimension with dim k = 2) which lie over finitely generated or prime fields and have a primitive `th
root of unity, we know every class in H2 can be written as exactly one symbol.

Remark 2.7.13: A result of Malgri (?): assuming we have roots of unity, if ` = pt, then for H2

one needs at most t(pddim(k)−1− 1) symbols. If ddim(k) <∞ this yields a bound, and conjecturally
this shouldn’t depend on ???

For higher degree cohomology, we know almost nothing except for special cases of H4 for “3-
dimensional” p-adic curves.

Remark 2.7.14: If one can bound the symbol length, one can uniformly write down a generic
element in cohomology as a sum of at most n symbols. The inability to be able to write down
a general form of a cohomology class for a given field is what makes this difficult – they have
“complexity” that isn’t necessarily bounded in a known way.

3 Danny Krashen, Talk 2 (Tuesday, July 13)

E 3.1 Setup e

Remark 3.1.1: Fix a k0 ∈ Field.

Outline

• Arithmetic problems: consider “complexity” of cohomology or algebraic structures (Witt
group, symbol length, index of classes).

– Examples were ddim, cohdim, the period-index problem, the period-symbol length prob-
lem, which we saw last time.

• Algebraic structure problems: describe (algebraic) structural features of the class of all field
extensions k ∈ Field/k0 .

Danny Krashen, Talk 2 (Tuesday, July 13) 15
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Today we’ll describe a way to connect these using a notion of essential dimension. Computing this
is difficult in general, but finding lower/upper bounds can be tractable. We’ll get upper bounds
from canonical dimensions, and lower bounds from cohomological invariants.

E 3.2 Symbol Length e

Remark 3.2.1: For a particularly concrete problem, consider

α ∈ H2(k;µ`) ⊆ H2(k;Gm)[`] := Br(k)[`],

i.e. this is a subgroup of the `-torsion of the Brauer group. Suppose we know

indα := gcd
{

[L : k]
∣∣∣ αL = 0

}
= min

{
[L : K]

∣∣∣ αL = 0
}
,

where the last equality holds in the special case of Br(k). If k contains a primitive `th root of unity,
we can identify µ` = Z/` = µ⊗2

` , and thus identify

H2(k;µ`) = H2(k;µ⊗2
` ) = KM

2 (k)/`.

So we can write α = α1 + · · ·+ αr as a sum of symbols with αi = (bi, ci)` with bi, ci ∈ k×.

Question 3.2.2
How big does n have to be?

Remark 3.2.3: It follows from “the literature” (after stringing several results together) that there
almost exists an absolute bounds depending only on `, n but not k. However, we do not know what
this bound actually is. There are some known cases:

• ` = n = 2, 3: r ≤ 1, so only one symbol is needed.
• ` = n = 4: probably r ≤ 4.
• ` = 2, n = 4: r ≤ 2, a classical results on central simple algebras.
• ` = 2, n = 8 : r ≤ 4

Remark 3.2.4: It turns out that if k contains a field k0 with ddim k0 < ∞, one can produce
an explicit bound. Given some α ∈ H2(k;µ`) we can find some k0 ⊆ L ⊆ k with L finitely
generated over k0 and [L : k0]tr depending only on the period ` and index n, such that α ∈
im
(
H2(L;µ)→ H2(k;µ)

)
.

Slogan 3.2.5
Central simple algebras of a given period and index have finite essential dimension.

An important property is that

ddimL ≤ ddim k0 + [L : k0]tr.

3.2 Symbol Length 16
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Recall that we can bound the symbol length in H2(k;µ`) in terms of ddimL. The idea is that
we can bound the transcendence degree in terms of `, n. This bound can be made very explicit,
although it’s not tight: for ` = 2, n = 8, it’s 217+ddim k0 − 1. This is an improvement over k0 = Q
though, where it’s known there’s a bound but it can’t be written down. The lower bound is very
low: it is hard to show a symbol can not be written with very few symbols.

E 3.3 Pfister Forms e

Remark 3.3.1: RecallW (k), whose elements are isometry classes of nondegenerate quadratic forms
with addition given by perpendicular sum and the Kronecker product. There is a hyperbolic form xy,
or x2 − y2 in ch k 6= 2, which we can write as 〈1,−1〉, and a fundamental ideal of even-dimensional
forms 〈1,−a〉 = 〈〈a〉〉. We write

〈〈a1, a2, · · · , an〉〉 := 〈〈a1〉〉 〈〈a2〉〉 · · · 〈〈an〉〉 ∈ In(k),

which in fact generate In(k).

Question 3.3.2
Given q ∈ In(k) of dimension d, we know we can write q ∼ q1 ⊥ · · · ⊥ qr where qi are n-fold Pfister
forms. How many are needed? Is this number even bounded?

Theorem 3.3.3((Vishik)).
If d < 2n + 2n−1 then r is bounded by some small number.

Remark 3.3.4: For d ≥ 2n + 2n−1, it’s not so clear, although it is bounded when n ≥ 3. Why is
n ≤ 3 easy and n ≥ 4 hard?

Remark 3.3.5: Consider the following objects:

• H2(k;µ)
• Br(k)
• W (k)
• In(k)
• q ∈ In(k) with dim q = d

These can all be viewed as functors Field/k0 → Set taking field extensions to sets.

Definition 3.3.6 (Essential dimension of a functor)
Given a functor f and α ∈ F (k), define

essdim(α) = min
{

[L : k0]tr
∣∣∣ α ∈ im(F (L)→ F (k))

}
essdim(F ) = min

{
essdim(α)

∣∣∣ α ∈ F (k) ∀k/k0

}
.

3.3 Pfister Forms 17
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Definition 3.3.7 (Versal)
Given a functor F : Alg

/k0
→ Set, we say α ∈ F (R) is versal if for every β ∈ F (K), for any

k/k0 , there exists a morphism R→ k such that β is the image of α under F (R)→ F (k).

Observation 3.3.8
If there exists a versal α ∈ F (R) then krulldimR ≥ essdim(F ), so the essential dimension is bounded
above by the Krull dimension.

Example 3.3.9(?): Let F (k) be the set of quadratic forms of dimension n over k, then essdimF =
n. Every such q can be diagonalized to yields q ' 〈a1, a2, · · · , an〉 which is defined over L :=
k0(a1, a2, · · · , an). Alternatively,

q = 〈x1, x2, · · · , xn〉 /k0[x±1
1 , x±1

2 , · · · , x±1
n ]

is versal. Thus every such quadratic form comes from “specializing”.

Considering now the fundamental ideals, the Milnor conjectures yield an isomorphism In/In+1 ∼=
Hn(k;µ2), so there is a SES

1→ In+1 → In
en−→ Hn(k;µ2)→ 1.

Thus a quadratic form q of dimension d in In+1 is equivalent to q ∈ In such that en(q) = 0.

E 3.4 Canonical Dimension e

3.3 Pfister Forms 18
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Definition 3.4.1 (Canonical Dimension)
This is a generalization of essdim. Letting k/k0 , suppose F : Field/k → Set+ is a functor now
from extensions of k (not k0) into pointed sets. For α ∈ F (k), define a new functor

F̌α(L) :=
{
∅ αL 6= pt
{pt} αL = pt,

and define the canonical dimension

candim(α) = essdim(F̌ (α)).

Remark 3.4.2: This measures how many parameters are needed to trivialize/split α. To have
candim(α) ≤ r means that if α = pt means the following: if αL = pt then there exists an E with
k ⊆ E ⊆ L with [E : k]tr ≤ r such that αE = pt.

Definition 3.4.3 (Generic splitting scheme)
Given F as above and α ∈ F (k), we say an X ∈ Sch/k is a generic splitting scheme for α if

αL = 0 ⇐⇒ X(L) 6= ∅.

Remark 3.4.4: So this encodes triviality of α into polynomial equations.

Example 3.4.5(?): If X is a generic splitting scheme for α finite type over L implies candim(α) ≤
dimX.

E 3.5 Splitting Schemes e

Question 3.5.1
Does there exists a finite type generic splitting scheme for cohomology classes in H i(k;µ⊗j` )?

Remark 3.5.2: We do know this in special cases:

• i = 1: Yes, these are etale algebras, so finite schemes over k.
• i = 2: Yes, Danny shows these exist for all twists.

– j = 1: Classical, these are Severi-Brauer varieties.

• For symbols, i = 3, j = 2, ` a prime: see Merkurjev-Suslin
• For symbols, i = 4, j = 3, ` = 3: see Albert algebras
• For symbols, ` prime: this can be done up to prime-to-` extensions, see Rost’s “Norm Varieties”.

Related to Bloch-Kato conjecture.

3.4 Canonical Dimension 19
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• For symbols, ` = 2: see Pfister quadrics.

Remark 3.5.3: Upshot: if there exists generic splitting schemes for classes in H i(k;µ2) for i ≥ 3,
one could bound Pfister numbers and thus essdim. Write Ind (k) to be the set of quadratic forms of
dimension d in In, then essdim(Ind ) <∞ would imply that if q ∈ Ind (k) for k ⊇ k0 then q would be
defined over some L/k0 with [L : k0]tr <∞.

If we knew that ddim k0 <∞, e.g. if k0 contains a finite field, this yields a bound on ddimL and
thus on cohdimL. If there is a versal element in α ∈ Ind , then α needs some finite number m of
Pfister forms to be written. Everything else is a specialization of α, so the length m will almost
give an upper bound.

4! Warning 3.5.4
This may seem like a correct argument, but it is not! A problem arises where you may have
denominators – specialization can get worse, but only a finite number of times, which is how the
actual argument goes.

Remark 3.5.5: If you knew the essential dimensions were finite with some given bound, and some
general period-index conjecture were known, these would give bounds on symbol length in H i(L;µ2).
There’s an argument pushing things into higher powers of the fundamental ideal, thus higher degree
cohomology, which disappear at some point and yield a bound. Motives enter the picture in terms
of the tools used to attack these problems.
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E 4.1 Intro e

Abstract:

We shall present the theory of G-torsors (or
G-bundles) in algebraic geometry which includes
for example vector bundles and quadratic bundles
(Grothendieck-Serre, 1958). We focus on the case
of an affine smooth connected curve firstly over an al-
gebraically closed field k; we shall show that G-torsors
are trivial for a semisimple k-group G. Secondly we
will consider the case of a perfect field and discuss
the important case of the affine line (Raghunathan-
Ramanathan, 1984). This will be an opportunity to
deal with étale cohomology and patching techniques.

References:

• http://math.univ-lyon1.fr/homes-www/gille/
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• http://math.univ-lyon1.fr/homes-www/gille/prenotes/gille_pcmi_part1.pdf

• V. Chernousov, P. Gille, A. Pianzola, Three-point Lie algebras and Grothendieck’s dessins
d’enfants. Math. Res. Lett. 23 (2016), 81–104.

• J.S. Milne, Lectures on etale cohomology, https://www.jmilne.org/math/CourseNotes/
LEC.pdf

• M. S. Raghunathan, A. Ramanathan, Principal bundles on the affine line. Proc. Indian Acad.
Sci. Math. Sci. 93 (1984), 137–145.

Notation:

• BunG is the category of G-bundles

– BunGLr(R) is the category of real vector bundles of rank r.
– BunGLr is the category of vector bundles of rank r over an unspecified field.

• C/R is an overcategory/slice category of objects over a fixed object R.
• Sch/S is the category of schemes over a fixed scheme S.

– AffSch is the category of affine schemes.
– Sch/R are the schemes over SpecR.

• sm denotes subcategories of smooth objects
• R [p−1] is the localization of R at p.
• cAlg denotes commutative algebras.
• An R-functor is an object in Fun(Alg/R, Set), which AffSch embeds into as representable
R-functors.

– Todo: so any presheaf on R-algebras..?

E 4.2 Serre-Swan and Vector Group Schemes e

Remark 4.2.1: We’ll be looking at ways to go from the world of differential geometry to algebraic
geometry. Notably, in differential geometry we have notions of

• Vector bundles
• Principal G-bundles
• Principal homogeneous spaces

Serre-Grothendieck gave algebro-geometric analogs of these in 1958, extending these notions to
the setting of G-bundles over a scheme using the étale topology. Today we’ll work over rings, or
equivalently affine schemes, since most questions will be local. We’ll in fact restrict to smooth affine
curves over a field.

4.2 Serre-Swan and Vector Group Schemes 21
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Remark 4.2.2: Recall the Serre-Swan correspondence between projective finite modules of finite
rank and smooth vector bundles: for X paracompact, there is an equivalence of categories induced
by taking global sections:

smBun/X
GLn(R)


 C∞(X;R)-Modfg,proj

(E → X) 7→ Γ(X; E).

We’ll upgrade this to a statement about affine schemes.

Definition 4.2.3 (Vector Group Scheme)
Let R ∈ CRing be unital and M ∈ R-Mod. Let V (M) denote the affine R-scheme V (M) :=
Spec (Sym•M), which represents

S 7→ Hom
S-Mod

(M ⊗R S, S).

We call V (M) the vector group scheme of M .

Remark 4.2.4: Note that V (−) commutes with arbitrary base change of rings.

Proposition 4.2.5(Serre-Swan for Vector Group Schemes).
V as a functor induces an antiequivalence of categories between R-Mod and vector group
schemes:

R-Mod
 VectGrpSch/R
M 7→ V (M)

Θ(R) 7→R.

Remark 4.2.6: If M ∈ R-ModlocFree,r<∞, we can consider its dual M∨. Then Sym•M is finitely
presented, and S →M ⊗R S is represented by W (M) := V (M∨). Note that finite locally free is a
necessary condition.

E 4.3 Vector Bundles over Affine Schemes e
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Definition 4.3.1 (Vector bundle over an affine scheme)
A vector bundle of rank r over the affine scheme SpecR is an X ∈ Sch/R with a partition
1 =

∑
i

fi along with isomorphisms

ϕi : V ((R [f−1
i ])r)→ X ×

R
R [f−1

i ]

where the transitions

ϕiϕ
−1
j : V ((R [(fi,fj)−1])r)	

are linear automorphisms.

Theorem 4.3.2(Swan-Serre).
M → V (M) induces an equivalence between the groupoid of locally free R-modules of rank r
and the groupoid of vector bundles over SpecR of rank r.

Grpd 3 R-ModlocFree,r 
 Bunr
SpecR

∈ Grpd.

Example 4.3.3(Tangent Bundles): Given a smooth1 map of affine schemes

(X → Y ) := (SpecS → SpecR) r := reldimX/Y ≥ 1,

take the tangent bundle, which is dimension r:

TX/Y = V (Ω1
S/R

) ∈ Bun
SpecR

.

Example 4.3.4(Tangent bundle of the real sphere): Consider the real sphere

Z := SpecR[x, y, z]/
〈
x2 + y2 + z2

〉
.

Its tangent bundle TZ/R is a nontrivial dimension 2 vector bundle, which is classical but can be
proven algebraically. As a consequence, Z can not be equipped with the structure of a nontrivial
algebraic group over R.

E 4.4 Linear Groups e

Remark 4.4.1: For M ∈ R-ModlocFree,r<∞, consider

End
R-Mod

(M) ∼−→M∨ ⊗RM ∈ Alg/R ∩ R-ModlocFree,r<∞,

and so V ( End
R-Mod

(M)) makes sense. Thus V is a functor

V : AssocAlgunital → VectGrpSch/R.
1Since we’re in the flat and locally finitely presented case, it’s sufficient that all fibers are smooth

4.4 Linear Groups 23
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Consider S 7→ Aut
S

(M ⊗R S), which is representable by

W ( End
R-Mod

M) := GL(M) = GL1(M).

Note that there are left and right actions

W (M) x GL(M) y V (M).

If R is Noetherian, then M ∈ R-ModlocFree,r<∞ ⇐⇒ GL(M) is representable. Taking M := M r

recovers the usual GLn(R) for n := rankRM . Note that local freeness is necessary for representability
by a group scheme here.

Remark 4.4.2: Given M ∈ R-ModlocFree,r<∞ there is a partition 1 =
∑

fi and isomorphisms to
free R-modules

ϕi : R [f−1
i ]r →M ×

R
R [f−1

i ] ϕ−1
i ϕj  gij ∈ GLr (R [(fi,fj)−1]) .

These gij in fact satisfy a cocycle condition:

gijgjk = gik ∈ GLr(R [fifjf
−1
k

]).

Definition 4.4.3 (Čech Nonabelian Cohomology)
Take an affine cover

U := {SpecR [f−1
i ]}i∈I ⇒ SpecR

and define H1(U/R; GLr) to be 1-cocycles up to some notion of cohomological equivalence.
This attaches a vector bundle V (M) of rank r a class γ(M) ∈ H1(U/R; GLr). Conversely, by
Zariski gluing, for any such cocycle gij we can assign some Vg ∈ BunGLr

r
/R with a trivializations

satisfying ϕiϕ−1
j = gij .

By taking a limit over all covers, we can define

Ȟ
1
zar(R; GLr) := colim−−−−−→

U
H1(U/R; GLr),

the Čech nonabelian cohomology of GLr with respect to the Zariski topology on SpecR.

Remark 4.4.4: This classifies [V ] ∈ Bun∼=,r/R which are trivialized by U . So there are induced maps

f : GLr → GLs  f∗ : Vr ∈ Bunr/R → Vs ∈ Buns/R

which extend to functors

f∗ : Bunr/R → Buns/R.

Slogan 4.4.5
Nice constructions for vector bundles arise from morphisms of group schemes.
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E
4.5 Classification of Modules over a

Dedekind Ring e

Example 4.5.1(Direct sums): Write n =
∑

ni to get a block map

f :
∏
i

GLni → GLn

(A1, · · · , A`) 7→ A1 ⊕ · · · ⊕A`.

In general, the diagonal map obtained by setting ni = 1 for all i yields G×rm → GLr a decomposable
vector bundle, i.e. a direct sum of rank 1 bundles.

Example 4.5.2(Tensor products): Write n =
∏

ri to get a similar map, sometimes called the
Kronecker product:

f :
∏
i

GLri → GLn

(A1, · · · , A`) 7→ A1 ⊗R · · · ⊗R A`,

Example 4.5.3(Determinant): We set det(V ) := det∗(V ) :=
∧r

V , the determinant bundle.

Remark 4.5.4: The next result is a classical theorem in commutative algebra, and the goal is to
give a geometric proof.

Theorem 4.5.5(Classification of modules over a Dedekind ring).
Let R be a Dedekind ring a , then for any

R ∈ R-ModlocFree,r≥1 =⇒ R ∼= Rr−1 ⊕ I I = det(Rr−1 ⊕ I) ∈ R-Mod×,

where I is invertible and unique up to isomorphism. Thus vector bundles over R are decom-
posable and classified by their determinant.

aNoetherian domain where the localizations at maximal ideals are DVRs,

Corollary 4.5.6(Characterization of trivial modules).
A locally free R-module M of rank r ≥ 1 is trivial ⇐⇒ detM is trivial.

Proof (of the classification theorem).
We’re given V (M) a vector bundle, which trivializes over an affine subset SpecR [f−1

i ]. Set

Σ := SpecR/SpecR [f−1
i ] = {pi}ci=1 pi ∈ mSpecR.

Let R̂ [p−1
i ] be the completion of the residue DVR and let K̂ [p−1

i ] := K ⊗R R̂ [p−1
i ] its fraction

field. By Nakayama, M ⊗R R̂ [p−1
i ] is free, so pick a trivialization. We can use this to produce
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a double coset:

cΣ (R; GLr) := GLr (Rf ) \
c∏
j=1

GLr
(
K̂ [p−1

i ]
)

/GLr
(
R̂ [p−1

i ]
)
.

Claim: The following map is injective:

ker
(
H1(R; GLr)→ H1 (R [f−1] ; GLr)

)
→ cΣ(R; GLr),

although we’ll only need that its kernel is trivial.
We can assume detV (M) is trivial to get

gi ∈ ker det∗ := ker (cΣ(R; GLr)→ cΣ(R;Gm)) .

Changing trivializations, we can assume gi ∈ SLn(K̂pi), which is generated by elementary
matrices. Using that Rf ⊆

∏
i

K̂ [p−1
i ] is dense, we get

SLn
(
K̂ [p−1

i ]
)
⊆
∏
i

SLn
(
K̂ [p−1

i ]
)

is dense.

But since each SLn
(
R̂ [p−1

i ]
)
is clopen in SLn

(
K̂ [p−1

i ]
)
, we obtain cΣ(R; SLr) = 1 and injec-

tivity allows us to conclude that V (M) is a trivial vector bundle.
�

Remark 4.5.7: This is a “strong approximation” argument.

E 4.6 Replacing the Zariski Topology e

Definition 4.6.1 (Quadratic Forms)
Given an M ∈ R-Mod, a map q : M → R is a quadratic form iff

• q(λx) = λ2q(x) for all λ ∈ R, x ∈M ,
• The associated form is symmetric and bilinear:

bq : M ⊗RM → R

(x, y) 7→ q(x+ y)− q(x)− q(y).

The form q is regular iff bq induces an isomorphism M
∼−→M∨.

Example 4.6.2(The hyperbolic form): For V ∈ R-ModlocFree,rank<∞, the hyperbolic form is
defined by

qhyp : V ⊕ V ∨ → R

v ⊗ ψ 7→ ψ(v).
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Remark 4.6.3: The definition of nonabelian cohomology will extend to arbitrary group schemes,
but the Zariski topology is not fine enough. One reason to try extending this theory will be
quadratic bundles. For a regular quadratic form (M, q) with M ∈ R-ModlocFree,rank<∞, we can draw
an analogy with usual quadratic forms. So for any R-ring S we could define a subgroup scheme

O(q,M) :=
{
g ∈ GL(M)(S)

∣∣∣ qS ◦ g = qS
}
≤ GL(M)

and similarly define H1(U/R; O(q,M)) for any open cover U ⇒ R.

Lemma 4.6.4(?).
H1

zar(U/R; O(q,M)) classifies isomorphism classes of regular quadratic forms (q′,M ′) which are
locally isomorphic over U to (q,M).

Remark 4.6.5: Upshot: not all regular quadratic forms over R of a fixed dimension r need be
locally isomorphic, noting that this already fails for R := R.

Remark 4.6.6: Given a morphism of group schemes f : G → H, we would like control over
H1

zar(R;G)→ H1
zar(R;H). Consider the Kummer map

fd : Gm → Gm

t 7→ td.

This induces ×d on Pic(R), and on R-Mod× corresponds to M → M⊗d. We’d like to understand
its kernel and image, which will generally involve higher Hét. Given

[M ] ∈ ker(Pic(R) ×d−−→ Pic(R)),

there is a trivialization θ : R→M⊗d. We’ll define a group

Ad(R) :=
{

(M, θ)
∣∣∣ M ∈ R-Mod×, θ a trivialization

}
/ ∼=,

which will correspond to something in Hét. There is an exact sequence

R×/(R×)d Ad(R) Pic(R) Pic(R)

a [R, θa : R→ R⊗d, x 7→ ax]

[M, θ] [M ]

ϕ Forget ×d

Link to Diagram

Remark 4.6.7: Grothendieck-Serre’s idea is to extend the notion of covers, first with étale covers,
and later with flat covers which are simpler as a first approach.
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Definition 4.6.8 (Flat Covers)
A flat (fppf) cover of R is a finite collection {Si} of R-rings where Si is a flat finitely presented
R-algebra and

SpecR =
⋃
i∈I

im(SpecSi → SpecR).

Remark 4.6.9: Setting S :=
∐
Si, this says S is a faithfully flat finitely presented R-algebra. Note

that the Zariski cover is a flat cover.

Remark 4.6.10: For G ∈ GrpSch/R, a 1-cocycle for G and S/R is an element g ∈ G(S⊗R S) where

q∗12(g)g∗2,3(g) = q∗1,3 ∈ G(S⊗R3).

We can use the finite presentation hypothesis to pass to a limit over all flat covers of SpecR and
define

H1
fppf(R;G) := colim−−−−−→H

1(S/R;G).

.

Definition 4.6.11 (Torsors)
A right G-torsor X ∈ Sch/R x G, so X is a scheme over R with a right G-action, where

• The following map is an isomorphism:

X×
R
G
∼−→ X×

R
X

(x, g) 7→ (x, x · g).

This says that G(T ) y X(T ) for all T ∈ Ring/R.

• There exists a flat cover
{
Ri/R

}
i
⇒ X with X(Ri) 6= 0.

This says X is locally trivial in the flat topology.

Morphisms of torsors are G-equivariant maps of schemes, and condition 1 forces these to all
be isomorphisms, so Torsor-G/R ∈ Grpd.

Definition 4.6.12 (Split torsor)
Setting X := G with Gy G by right-translation yields the split torsor.

Definition 4.6.13 (Trivial Torsor)
If X(R) 6= ∅, so X has an R-point, the point x ∈ X(R) defines an isomorphism

G
∼−→ X

g 7→ x · g.

In this case, we say that X is a trivial torsor.
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Example 4.6.14(?): G ∈ G-Torsor/R is a trivial G-torsor.

Definition 4.6.15 (First fppf cohomology)
The functor

R 7→ Aut
Torsor-G/R

(G).

of automorphisms of the trivial G-torsor G is representable by G, acting by left translation.
We formally define the first fppf cohomology to be isomorphism classes of G-torsors:

H1
fppf(R;G) := Torsor-G∼=/R for the flat topology,

and for S → R ∈ Covflat(R), we define the subset of G-torsors trivialized over S as

H1
fppf(S/R;G) ⊆ H1

fppf(R;G).

Definition 4.6.16 (Class map)
There is a class map

γ : H1
fppf(S/R;G)→ Ȟ

1
fppf(S/R;G).

How do you construct the class map..?

Remark 4.6.17: For X ∈ G-Torsor/R with a trivialization

ϕ : G×
R
S
∼−→ X×

R
S,

there are two trivializations over S⊗R2:

G×
R
S⊗R2

G×
R
S⊗R2 X×

R
S⊗R2

ϕ⊗1

p∗1(ϕ)

p∗2(ϕ)=ϕ⊗1
1⊗τ12

Link to Diagram

Thus p1(ϕ)−1 ◦ p2(ϕ) ∈ Aut
G-Torsor

(G)/S⊗R2 is an automorphism of the trivial torsor, thus acts by left

translation by some g ∈ G(S⊗R2). An argument shows that g is a 1-cocycle and that changing ϕ
only changes g by a coboundary, so the class map is well-defined.

Definition 4.6.18 (Amitsur Resolution)
If X ∈ G-Torsor has a trivialization ϕ, then over S⊗R2 we have two trivializations:
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Let T be a faithfully flat descent of R, then the Amitsur complex is defined as

0→M →M ⊗R T →M ⊗R T⊗R2 → · · ·  M →M ⊗R T•(T ),

where T denotes the tensor algebra. This has a differential given by

∂(m⊗ t) =
∑
i

(−1)im⊗ ψi(t),

where ψi is the ith face map inserting a 1 between the i and i+ 1st tensor factors.

Remark 4.6.19: An important theorem is that the Amitsur complex is exact for each M ∈ R-Mod,
which for any X ∈ AffSch/R allows an identification

X(R) =
{
x ∈ X(T )

∣∣∣ p∗1(x) = p∗2(x) ∈ X
(
T⊗R2

)}
.

Definition 4.6.20 (Descent data)
For N ∈ T-Mod, consider

p∗1(N) := T ⊗RM, p∗2(N) := M ⊗R T ∈ T⊗R2-Mod.

A descent datum on N is an isomorphism

ϕ : p∗1(N) ∼−→ p∗2(N) ∈ T⊗R2-Mod.

of T⊗R2-modules making the following diagram commute:

T⊗R2 ⊗R N N ⊗R T⊗R2

T ⊗R N ⊗R T

ϕ2=(1⊗ϕ)◦τ12

ϕ3=(ϕ⊗1)◦τ23

ϕ1=1⊗ϕ

Link to Diagram
Here τij is the map that swaps the i and jth tensor factors, so e.g. ϕ3(t1⊗t2⊗n) := ϕ(t1⊗n)⊗t2.
There is a category of T -modules with descent data, where objects are pairs (T, ϕ) and mor-
phisms are clear, and I’ll write this as T-ModDesc. For M ∈ R-Mod, there is a canonical
descent datum

canM : p∗1(M ⊗R T ) ∼−→ p∗2(M ⊗R T ).

Theorem 4.6.21((Grothendieck) Faithfully flat descent).
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There is a functor inducing an equivalence of categories:

F : R-Mod
 T-ModDesc
M 7→ (M ⊗R T, canM ){

n ∈ N
∣∣∣ n⊗ 1 = ϕ(1⊗ n)

}
7→(N,ϕ).

This induces an equivalence of categories

cAlgunital
/R 
 cAlgunital

/T Desc.

Remark 4.6.22: This theorem is a good reason to focus on the affine setting. Faithfully flat descent
implies the following:

Theorem 4.6.23(?).
Let M ∈ R-ModlocFree,r then the functor

S-Mod→ Set
S 7→ Isom

S-Mod
(Sr,M ⊗R S)

is representable by an object XM . This induces an equivalence of categories

Grpd 3 X(−) : R-ModlocFree,r 
 GLr-Torsor/R ∈ Grpd.

Corollary 4.6.24(Hilbert=Grothendieck 90).

H1
zar(R; GLr) ∼= H1

fppf(R; GLr).

Remark 4.6.25: In particular, if R is local or semilocal, H1
fppf(R; GLr) = 1. This also holds for R

replaced by any B ∈ Alg/Rsep, e.g. a finite étale or Azumaya algebra.

Lemma 4.6.26(The class map is injective).

H1
fppf(S/R;G) ↪→ Ȟ

1
fppf(S/R;G).

Remark 4.6.27: By passing to the limit over flat covers, we get an isomorphism on H1
fppf(R;G)→

Ȟ
1
fppf(R;G), and we can descend torsors under an affine scheme. The proof involves the following

construction:

Definition 4.6.28 (Twisting)
If Y ∈ Gy AffSch/R has a left G-action, then the action map

G×
R
S⊗R2 ∼−→ Y ×

R
S⊗R2

4.6 Replacing the Zariski Topology 31



5 Phillippe Gille, Talk 2 (Tuesday, July 13)

is an isomorphism that defines a descent datum. If G acts on itself by inner automorphism,
Gg is called that twisted R-group scheme, which acts on Yg. So for any E ∈ G-Torsor, we can
define the twists YE and GE. In general, we can twist G-schemes equipped with an amply
invertible G-linearized line bundle.

Theorem 4.6.29(?).
If G is affine, the class map γ is an isomorphism.

5 Phillippe Gille, Talk 2 (Tuesday, July 13)

E 5.1 Intro e

Remark 5.1.1: Let M ∈ R-Mod. Reminders of notation

• V (M) := Spec Sym•M which represents

S 7→ hom(S)-Mod(M ⊗R S, S),

is the vector group scheme of M .
• W (M) := V (M∨) which represents M ⊗R − (and doesn’t seem to have a name).
• For Y ∈ G-AffSch/R (affine schemes with a left G-action), Yg ∈ AffSch/R is the twist of Y by

the 1-cocycle g defined by the action map:

g : Y ×
R
S⊗R2 ∼−→ Y ×

R
S⊗R2.

– For any G-torsor E and any Y ∈ G-Sch with an ample invertible G-linearized bundle2 ,
one can similarly define twists EY .

• For T a faithfully flat extension of R, the Amitsur resolution is given by

M →M ⊗R T(T )• where T(V )• := V ⊕ V ⊗2 ⊕ · · · .

I.e., this resolves M by the tensor algebra (or free algebra) on T .

We’ll now discuss some important special cases of G-torsors. The following claim is in analogy to
Coh(X) for X ∈ AffSch:

Fact 5.1.2 (Vector group schemes have trivial cohomology)
If M ∈ FinR-ModlocFree,r<∞, then Ȟ1(R;W (M)) = 0 and every W (M)-torsor is trivial.

The following are some important special cases:

2This holds for example if Y ∈ AffSch.
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Definition 5.1.3 (Finite Constant Group Scheme)
For any Γ ∈ FinGrp, ΓR is the finite constant group scheme attached to any Γ, and is
defined by

ΓR(S) :=
{
f : SpecS → Γ

∣∣∣ f is locally constant
}
∈ Grp.

E 5.2 Galois Covers e

Definition 5.2.1 (Galois Cover)
A ΓR-torsor of the form SpecS → SpecR is equivalently a Galois Γ-algebra S and is referred
to as a Galois cover.

Example 5.2.2(?): A finite Galois extension L/k with Galois group Γ := Gal(L/k) yields a Galois
cover SpecL→ Spec k.

Example 5.2.3(?): Another nice case is when Γ is the automorphism group associated to some
algebraic structure, i.e. when one has forms. For example, take Γ := O2n = Aut(qhyp) for the
hyperbolic form qhyp on Rn. Descent gives an equivalence of categories

Grpd 3
{

Regular quadratic forms q
with rank q=2n

}

 H1

fppf(R; O2n),

which uses that all forms appearing on the left-hand side are locally isomorphic to qhyp in the flat
topology.

Example 5.2.4(?): Take Γ := Sn the symmetric group, so

Sn(X) = Aut
Grp

(X×n) ∀S ∈ Alg/R.

The same yoga shows there is a categorical equivalence

Sn-torsors
 FinAlgét
/R,

where we use that every X ∈ FinAlgét of degree n is locally isomorphism to Rn. The inverse is given
by descent.

E 5.3 Flat Quotients e

Definition 5.3.1 (Flat Quotient)
For X,H ∈ GrpSch/R, a map H → X is a flat quotient of H by G iff

• For each S ∈ Alg/R the map H(S) → X(S) induces an injection H(S)/G(S) ↪→ X(S),
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and
• For each x ∈ X(S) there exists a flat cover S′ → S with xS′ ∈ im(H(S′)→ X(S′)) (so f

is couvrant en français).

Example 5.3.2(of flat quotients):
• Gm = GLr /Flat SLr.
• Gm = Gm/Flat µd.

Lemma 5.3.3(?).
Let X be the flat quotient of H by G.

1. H → X is a G-torsor
2. There is an exact sequence of pointed sets:

1→ G(R)→ H(R)→ X(R) ϕ(x)=[f−1(x)]−−−−−−−−−→ H1
fppf(R;G)→ H1

fppf(R;H),

where ϕ is denoted the characteristic map, which arises naturally from base change.

Remark 5.3.4: When G E H, then X ∈ GrpSch/R, and

{G-torsors over SpecR}

{

(F,ϕ)
∣∣∣ F∈H-torsors,

ϕ a local trivialization of FX

}
.

Example 5.3.5(?): SLn-torsors are equivalent to (M, θ) with M ∈ R-ModlocFree,r and θ : R ∼−→∧r
(M) is a trivialization of det(M).

Example 5.3.6(?): Using the Kummer exact sequence

1→ µd → Gm
×d−−→ Gm → 1,

µd-torsors are equivalent to pairs (M, θ) with M ∈ R-Mod× and θ : R ∼−→M⊗Rm is a trivialization.

Definition 5.3.7 (étale morphism)
An étale morphism of rings R → S is a smooth morphism of reldim = 0. Alternatively,
S ∈ R-ModFlat such that for every R-field F , S ⊗R F ∈ Algét

/F , where étale algebras are finite
and geometrically reduced.

Example 5.3.8(?): • Localization R→ R [f−1] is étale.
• If d−1 ∈ R then the Kummer morphism t 7→ td is étale.
• If d−1 ∈ R and r ∈ R×, then R[x]/

〈
xd − r

〉
∈ FinAlgét

/R.

Proposition 5.3.9(?).
For G affine smooth, there is an equivalence of torsors

H1
ét(R;G) ∼= H1

fppf(R;G).
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Proof (?).
See notes. This uses that in the flat topology, smoothness is local.

�

E 5.4 Galois Cohomology e

Remark 5.4.1: Galois descent is a special case of faithfully flat descent, and takes the form

R-Mod

{

(N,ρ)
∣∣∣ N∈S-Mod

ϕ a semilinear action ΓyN

}
,

where semilinear means that

ϕ(σ)(λ · n) = σ(λ) · ρ(σ)(n).

Definition 5.4.2 (Isotrivial torsors (very important!))
A torsor X over GrpSch/R is isotrivial if it is split (trivialized) by a finite Galois étale cover
R′ → R.

Remark 5.4.3: These are the torsors that can be made explicit in Galois cohomology.

Example 5.4.4(?): Let ch k = 0, then the ring of Laurent polynomials k((x)), this is isotrivial
and a reductive group scheme. A special case is that of loop torsors, which are closely related to
representation theory in AlgGrp.

Remark 5.4.5: The main topic is affine curves, and these are special cases of Dedekind rings. Let
R be Dedekind with K := ff(R) and G ∈ AffGrpSch, then as in the proof for GLn yesterday we
have an injective class map

ker(H1
fppf → H1

fppf × · · · )→ cΣ(· · · ).

In particular, if cΣ(R;G) = 1, and in particular G(R [f−1]) is dense in
∏
· · ·, the kernel appearing

here is trivial.

Corollary 5.4.6(?).
If G is a semisimple simply connected a and split in GrpSch/R, then

ker
(
H1(R;G)→ H1 (R [f−1] ;G)

)
= 1.

aHere “simply connected” is in the sense of semisimple algebraic groups or group schemes, and over C coincides
with the topological notion.

Remark 5.4.7: This simplification comes from the injectivity of the following:

H1(R̂ [p−1
i ] ;G) ↪→ H1(K̂ [p−1

i ] ;R).
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In the limit, this says that many torsors are actually trivial. We find that H1
zar(R; SLn) = 1 and

H1
zar(R;E8) = 1.

E
5.5 Curves Over an Algebraically Closed

Field
e

Theorem 5.5.1(?).
Let k = k and G ∈ AlgGrp

/k
be semisimple and C a smooth connected curve. Then

H1
fppf(C;G) = 1.

Remark 5.5.2: The main ingredient is Steinberg’s theorem that H1(K(C);G) = 1. A special case
is PGLn and rephrases that central simple algebras over k(C) are matrix algebras (using Tsen’s
theorem). This also uses that Pic(C) is divisible, which follows from the structure of Pic(Cc) for
Cc a smooth compactification.

Remark 5.5.3: We have a degree map and moreover an exact sequence involving the Jacobian (an
abelian variety):

0→ JCc(k)→ Pic(Cc) deg−−→ Z→ 0.

If C is Cc minus finitely many points, Pic(Cc) � Pic(C) induces JCc(k) � Pic(C). We’ll sketch
the proof first in the case G is simply connected. In this case, given γ ∈ H1(C;G), and according
to Steinberg’s theorem there exists f ∈ k[C] with γCc =?. In the general case, we can take a simply
connected cover f : G̃→ G, e.g. SLn → PGLn or Spinn → SOn. Let T̃ be its maximal torus, then
T := T̃/ ker f is a maximal torus in G, so let B ⊆ G be a Borel containing T .

Claim:

H1(C;B)� H1(C;G).

Letting E be a C-torsor under G, then the idea is to introduce the twisted C-scheme Y := E(G/B),
a projective variety of flags. By Steinberg’s theorem, Y (k(C)) 6= ∅. Applying the valuative criterion
of properness shows that Y has a C-point, so E(G) has a Borel subgroup scheme. By functoriality,

[E] ∈ im(H1(C;B)→ H1(C;G)).

We thus have B = U o T where U admits a T -equivariant filtration with associated quotients
isomorphic to copies of Ga, and we apply a dévissage argument. Since T̃ → T is an isogeny (finite
kernel) and Pic(C) is a divisible group, a commutative diagram shows surjectivity H1(C;T ) �
H1(C;G) and thus the latter is trivial.

The reductive case is similar, letting S = G/DG be the coradial torus of G and showingH1(C;G) ∼−→
H1(C;S) generalizing the bijection from yesterday:

H1(C; GLr)→ H1(C;Gm) = Pic(C).
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E 5.6 Affine Line e

Theorem 5.6.1(?).
Let k ∈ Field be not necessarily algebraically closed and G ∈ GrpSch

/k
reductive. We have a

bijection

H1(k;G) ∼−→ ker
(
H1(k[t];G)→ H1(ks[t];G)

)
.

If k is perfect or ch k = p where p is “good” for G, we have H1(ks[t];G) = 1 and so H1(k;G) =
H1(k[t];G) and we say G-torsors over k[t] are constant.

Remark 5.6.2: This doesn’t hold for G = PGLp over k(t) with ch k = p imperfect. Our next goal
is to prove this theorem – a common ingredient to all proofs is the following theorem on bundles
over P1:

Theorem 5.6.3(Grothendieck-Harder).
For G a reductive k-group, let S be a maximal k-split torus of G and consider its constant
associated Weyl group

WG(S) = NG(S)/CG(S).

Then there is a bijection

H1
zar(P1

/k
;S)/WG(S) ∼−→ ker

(
H1(P1

/k
;G) ev0−−→ H1(k;C)

)
.

In particular if a G-torsor over k[t] is trivial at t = 0 and extends to a G-torsor over P1
/k
, then

it is trivial.

Remark 5.6.4: Given a G-torsor over k[t], without loss of generality, we can assume X is trivial
on t = 0 – the original method to extend X to P1 is to use Bruhat-Tits theory. The idea is to find
an integer d ≥ 1 where γk[td] extends to P1. The statement is local at ∞, i.e. it’s enough to find d
where γk((t−d)) comes from H1(· · · ).

The following map is surjective:

H1(k((t−1));S)→ H1(k((t−1));G),

and we can write the absolute Galois group of k
((
t−1
))

as

lim
n
µn(ks) oG(ks/k) = I oG(ks/k).

A restriction of a cocycle to the inertia group is a group morphism, so factors through µd(ks) for
some finite d, which we can take to be the order of S(ks). We have some γ ∈ H1(k[t];G) satisfying
γ(0) = 1, and a trick is to introduce a new indeterminate u and to extend to F := k(u).

The upshot is that

ff
(
k(u, t, (ut)

1
d )
)
∼= k(t, x).
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by a k(t)-linear isomorphism. The kernel is trivial by a specialization argument, so γ is rationally
trivial and extends to infinity.

Remark 5.6.5: Noting that A1 = P1 \ {pt}, we have Gm = P1 \ {pt0, pt1}, which is much more
difficult.

Theorem 5.6.6(?).
Let G be a reductive k-group over ch k = 0, then there is a bijection

H1(k[t, t−1];G) ∼−→ H1(k((t));G).

Remark 5.6.7: Surjectivity is easy, coming from reduction to a finite subgroup, and injectivity
is hard. A crucial step is to show existence of a maximal torus for the relevant twisted group
scheme, using again Bruhat-Tits theory and now twin buildings. So we have a good understanding
of Gm-torsors, and a next step would be understanding Pn with more deleted points.

6 Frédéric Déglise, Talk 1 (Wednesday, July
14)

E 6.1 Intro e

References:

• http://deglise.perso.math.cnrs.fr/docs/2021/PCMI1.pdf

• PCMI Notes 1

• PCMI Notes 2

Abstract:

Building on initial conjectures due to Beilinson, Vo-
evodsky has initiated a rich variety of “motivic cat-
egories”, the universal one being Morel-Voevodsky’s
homotopy category. This world, that is now called
“motivic homotopy theory”, has produced a wide range
of results, settling older conjectures as well as opening
new tracks to follow.
This lecture series will aim at giving a survey of this
world, from the pure motivic origin, through the func-
toriality developments and then to some of the excit-
ing open questions.
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Remark 6.1.1: Recall the Euler product expansion for the zeta function. General L-functions were
studied around the 20s, followed by the Weil conjectures in the 40s, and then étale `-adic shaves by
Grothendieck et al in the 60s. Letters from Grothendieck to Serre describe the notion of weights in
relation to the Weil conjectures, and served as an impetus in the early 70s for pure motives.

A second line of study considered number fields and class number formulas, along with special
values of L-functions, going back to Dirichlet. Lichtenbaum related special values to K-theory in
the 70s, and this along with the theory of perverse sheaves in the early 80s led to the Beilinson
conjecture and motivic complexes in the 90s.

As an aside, there is also a notion of p-adic L-functions and corresponding p-adic motives.

Remark 6.1.2: An outline for today:

1. Sheaves with transfers, which are modeled on étale homotopy sheaves

2. Homotopy sheaves over perfect fields

3. Motivic complexes

Remark 6.1.3: There are three main notions for étale sheaves:

1. Sheaves with transfers (see algebraic cycles),
2. The (big) smooth Nisnevich site,
3. A1-homotopy invariance.

E 6.2 Setting up sheaves with transfers e

We’ll fix S a regular Noetherian scheme.

6.2.1 Finite Correspondences

Definition 6.2.1 (Finite Correspondences)
For X,Y ∈ smSch/S , a finite correspondence α from X to Y is a formal sum

α =
m∑
i=1

mi[Zi] with Zi ⊆ X ×
S
Y closed, integral

with Zi → X finite and dominant over a connected component of X, i.e. an algebraic cycle in
the product. These form an abelian group denoted c(X,Y ) ∈ AbGrp, and can be composed
without imposing any equivalence relation on algebraic cycles.
We can thus define a closed symmetric monoidal (additive) category enriched over abelian
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groups, the category of finite correspondences over S:

C := CorSch/S
Ob(C) := Ob(smSch/S)

C(X,Y ) := c(X,Y ).

where the monoidal structure is the cartesian product over S on objects and on c(X,Y ) is
induced by the exterior product of algebraic cycles.

Remark 6.2.2: Writing XY Z := X×
S
Y×

S
Z, we have smooth projection maps

p : XY Z → XY

r : XY Z → XZ

q : XY Z → Y Z.

Given cycles α ∈ c(X,Y ), β ∈ c(Y,Z), these pull back to XY Z and intersect properly, with their
intersection product given by Serre’s Tor formula.

Definition 6.2.3 (Graph)
Let Y f−→ X ∈ smSch/S , and define the graph of f as the following pullback:

Γf Y×
S
X

X X×
S
Xδ

f×1

Link to Diagram
Here δ is the diagonal immersion of X/S .

Remark 6.2.4: Note that Γf ⊆ Y X is a closed subscheme, and there is an associated algebraic
cycle

[Γf ]XY ∈ c(Y,X).

Definition 6.2.5 (Transpose)
Letting ε : Y X → XY be the permutation of factors, ε∗[Γf ] ∈ c(X,Y ) is a finite correspondence
denoted f t, the transpose of f .

Remark 6.2.6: Several of the operations from the six functor formalism appear here:

• Base change can be defined for T f−→ S as

f∗ : CorSch/S → CorSch/T
X 7→ X×

S
T
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using pullback for finite correspondences.
• Forgetting the base is given by

p] : CorSch/S → CorSch/T
Y/T 7→ Y/S

using direct images for finite correspondences.

We now enlarge CorSch/S to a larger abelian category. This uses the fact that the Yoneda embedding
will be a fully faithful functor

X 7→ c(−, X) := Ztr
/S(X)

landing in a cocomplete abelian category extending the 6 functors.

6.2.2 Presheaves with transfers

Definition 6.2.7 (Presheaf with transfers)
A presheaf with transfers F over S is an additive functor

F : CorSchop
/S → AbGrp.

We then define a category of presheaves with transfers over S:

C := trSh
pre/S

Ob(C) := Presheaves with transfers F
C(F ,G) := Natural transformations η : F → G.

Remark 6.2.8: Let f ∈ CorSch/S(Y,X). Note that by contravariance of presheaves F we always
get maps

F(f) ∈ AbGrp(F(X),F(Y )).

The data of a transfer is the additional following operation on F , yielding a “wrong way” map:

f∗ := F(f t) ∈ AbGrp(F(Y ),F(X)).

Example 6.2.9(of presheaves with transfers):
• Gm(−) : X/S → OX(X)× has transfers over S.
• For A ∈ AbVar/k, the functor Hom(−, A) has transfers over k.
• Hn(−) has transfers over S for any mixed Weil cohomology theory.
• K-theory does not form a presheaf with transfers. One instead needs unramified K-theory.

6.2.3 Nisnevich Sheaves
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Definition 6.2.10 (Nisnevich Topology)
A Nisnevich cover of X ∈ Sch is a family of étale morphisms

{
Wi

pi−→ X
}
i∈I

where for x ∈ X,
pi(w) = x for some w ∈Wi inducing a trivial residual extension κ(w)/κ(x).

Lemma 6.2.11(Characterization of Nisnevich sheaves).
For F : smSchop

/S → AbGrp any abelian presheaf, F is a sheaf for the Nisnevich topology iff
F(∆) is a cartesian square for every distinguished square ∆ of the following form:

W V

∆

U X

q

k

j

p

Link to Diagram
Here j is an open immersion, has reduced closed complement Z, p is étale, and p−1(Z) ∼−→ Z.

6.2.4 Sheaves with transfers

Definition 6.2.12 (Sheaf with transfers)
There is a canonical embedding

γ : smSch/S → CorSch/S
X 7→ X

(Y → X) 7→ [Γf ]XY ∈ c(Y,X).

A sheaf with transfers is a presheaf F ∈ trSh
pre/S

such that

F ◦ γ :∈ Sh
(

SchNis
/S ,AbGrp

)
,

i.e. the composition F ◦γ is a sheaf on the Nisnevich site of schemes (a Nisnevich sheaf ). These
form a category denoted trSh/S , and there is an adjunction

trSh/S
Forget−⇀⊥↽−
atr

trSh
pre/S

where atr(F)
∣∣∣
smSch/S

= (F ◦ γ)sh.

Remark 6.2.13: The smooth site on Sch/S is big in the following sense: to give a Nisnevich sheaf
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in this site is equivalent to an assignment

smSch/S → Sh(smSch/S ,AbGrp)
X 7→ FX

(Y f−→ X) 7→ (f∗(FY )
τf−→ FX).

Noting that τf is not generally an isomorphism, it somehow measures a defect of base change. In
particular, Sh(smSch/S) is a much bigger category than Sh(SchNis

/S ).

Example 6.2.14(of sheaves with transfers):
• For X/S smooth: Ztr

s (X) := cS(−, X).
• Gm(−) : X/S → OX(X)×.
• For A ∈ AbVar/k, Hom(−, A).

As before, the last two examples don’t form sheaves with transfers:

• Hn(−)
• K-theory

Remark 6.2.15: We have f∗, p],⊗ on CorSch/S , and these can be extended to sheaves:

• f∗(F ) := F ◦ f∗, which yields a base change/direct image adjunction:

trSh/S
f∗−⇀⊥↽−
f∗

trSh/T .

• p : T → S yields a forget base/base change adjunction:

trSh/T
p]−⇀⊥↽−
p∗

trSh/S ,

where for open immersions, p] is p!, the exceptional direct image

• h⊗ on trSh/S yields a closed symmetric monoidal structure

trSh/S
−⊗trF−⇀⊥↽−

Homtr(F ,−)
trSh/S ,

where Homtr is an internal hom.

E 6.3 Homotopy and Cohomology e

6.3.1 A1-invariance and Homotopic Morphisms
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Definition 6.3.1 (A1invariance and homotopy sheaves)
Let F ∈ trSh(S) and let p : A1

/X → X be the canonical projection. We say F is A1-invariant
or a homotopy sheaf if for any X ∈ smSch/S , there is an induced isomorphism

p∗ : F (X) ∼−→ F (A1
/X).

These form a category denote HItr(S).

Definition 6.3.2 (Homotopic morphisms)
Let α, β ∈ CorSch/S(X,Y ) be two morphisms. We then say α is homotopic to β and write
α ∼ β iff there exists a H satisfying the following:

H ∈ CorSch/S(A1 ×X,Y )
α = H ◦ s0

β = H ◦ s1,

where s0, s1 are the zero and unit sections of A1
/X ∈ RingSch/X . This yields an equivalence

relation, and we set

πS(X,Y ) := CorSch/S(X,Y )/ ∼ .

Example 6.3.3(of A1-invariant sheaves): The sheaves Gm(−) and Hom(−, A) are A1-invariant.

Theorem 6.3.4(Suslin-Voevodsky).
Let S ∈ AffSch be regular and C ∈ AffSch/S an affine curve admitting a good compactifica-
tion C̃:

• C̃/S is proper and normal,
• C ⊆ C̃ is open/dense,
• C∞ := C̃ \ C admits an affine open neighborhood.

Then for any X ∈ smAffSch/S , there is a canonical isomorphism of groups:

πS(X,C) ∼−→ Pic(X×
S
C̃×

S
C∞)

α 7→ [O(α)],

where O(α) is the line bundle associated to α, viewed as a Cartier divisor in X×
S
C̃.
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6.3.2 Cohomology of Perfect Fields

Definition 6.3.5 (Fiber functors)
Fix k ∈ PerfField, then a function field E over k is a separable finitely generated field
extension E/k. One can define the fiber of a homotopy sheaf F at E/k as a filtered colimit
over smooth finitely generated sub k-algebras A:

F (E/k) := colim−−−−−→
A/k≤E/k

F (SpecA).

This yields a fiber functor: it is exact and commutes with coproducts.

Remark 6.3.6: We define the category HItr(S) ≤ trSh(S) to be the category of all homotopy
sheaves, which is (Grothendieck) abelian and bicomplete. The forgetful functor is exact, so there is
an adjunction

trSh/k
h0−⇀⊥↽−

Forget
HItr/k.

Proposition 6.3.7(Dévissage/purity).
If F is a homotopy sheaf and Z i−→ X is a codimension 1 closed immersion in smSch/k with
j : X \ Z → X an open immersion, then there is a SES of Nisnevich sheaves over XNis:

0→ FX → j∗FX\Z → i∗F−1,Z → 0.

6.3.3 Homotopy Invariance

Theorem 6.3.8(Main Theorem: homotopy invariance of homology).
If k ∈ PerfField and F ∈ HItr/k, then for all m and all X ∈ smSch/k, there is an isomorphism

p∗ : Hn
Nis(X;F) ∼−→ Hn

Nis(A1
/X ;F),

so the presheaf Hn
Nis(−,F) is homotopy invariant.

Corollary 6.3.9(Purity theorem).
For Z ↪→ X smooth closed of codimension m, then

Hn
Z(X;F) ∼−→ Hn−m

Nis (Z;F−m).

Here the LHS is Nisnevich cohomology with support.

Corollary 6.3.10(The Gersten resolution computes Nisnevich cohomology).
For X smooth, Fx is Cohen-Macaulay and there is a Cousin complex C∗(X;F), also called
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the Gersten complex of F , and one can compute Nisnevich cohomology as

Hn
Nis(X;F) ∼−→ Hn(C∗(X;F)).

6.3.4 Relation to Chow

Theorem 6.3.11(Nisnevich cohomology to Chow comparison).
Write Sn := Gm

h⊗n , then for a function field E/k, there is an isomorphism of sheaves

Sn(E) ∼−→ KM
n (E),

so this identifies with the nth unramified K-theory of E. Using the Gersten resolution of Sn,
one obtains an isomorphism of groups

Hn
Nis(X;Sn) ∼−→ CHn(X),

the Chow group of codimension n cycles modulo rational equivalence.

7 Frédéric Déglise, Talk 2 (Thursday, July
15)

E 7.1 Intro e

Remark 7.1.1: Recall the Beilinson conjectures (84/86), and Bloch’s higher Chow groups (86).
Today we’ll discuss the A1-homotopy category hoA1

∗ and the category of motives DM/S . We’ll be
working Top∗, the infinity category of pointed spaces, and DAb, the (infinity) derived category of
abelian groups.

E 7.2 The homotopy category e

Definition 7.2.1 (The homotopy category)
Consider infinity functors

F : smSchop
/S → Top∗

and define

F (X,Z) := hofib(F (X)→ F (X \ Z)).
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Then the (pointed) A1 homotopy category of S, denoted hoA1
∗ /S , consists of such functors

F that satisfy

• Excision: for all (Y, T )→ (X,Z) excisive, there is a weak equivalence

F (Y, T )→
W
F (X,Z).

• Homotopy invariance: The canonical projection A1
/X induces a weak equivalence

F (X)→
W
F (A1

/X).

This category admits a monoidal structure, which we’ll denote by the smash product X ∧ Y .

Remark 7.2.2: The excision axiom can be replaced by the following condition: for distinguished
squares ∆, the image F (∆) is homotopy cartesian:

W+ V+

U+ X+

y

Link to Diagram

We can similarly ask for (infinity additive) functors K : smSchop
/S → DAb satisfying these properties.

Remark 7.2.3: We can use infinity categorical localization theory to build this category. For a
scheme S, view a pointed space over S as a presheaf valued in pointed simplicial sets, viewed as an
infinity category. We can then construct

hoA1
∗ /S = Sh

pre
(smSch/S , sSet∗) [W−1] := C [W−1]

W :=
{
Z∗S(A1

/X)→ Z∗S(X)
∣∣∣ X ∈ Ob(C)

}
.

Remark 7.2.4: One can similarly do this for trSh
pre

(CorSch/S ,DAb) = DtrSh
pre/S

. Effective motives

DMeff
/S can be constructed by replacing presheaves with DShtr

/S and localizing at Ztr
S (A1

/X)→ Ztr
S (X).
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E 7.3 A1-locality e

Definition 7.3.1 (A1-local spaces)
A1-local spaces are those S-spaces for which the realization induces a weak equivalence on
mapping spaces:∣∣∣A1

/X

∣∣∣
+
→ X+  Hom(X+, Y )→

W
Hom(

(
A1
/X

)
+
, Y ) ∀Y ∈ Ob(C).

Remark 7.3.2: Fix k ∈ PerfField and consider complexes of sheaves K ∈ Ch
(

Shtr
/S

)
. We can define

cohomology sheaves H∗(K) by taking kernels mod images in Sh
pre

tr
/S

and Nisnevich-sheafifying to get

a sheaf

H i(K) :=
(
H i(K)

)sh
∈ Shtr

/S .

This gives a way to take cohomology of complexes of sheaves with transfers.

Theorem 7.3.3(Characterization of A1-local complexes of sheaves).
K is A1-local iff for all Hn(K) is A1-local in HItr/k for all n

Definition 7.3.4 (Suslin Complex)
Define standard cosimplicial scheme as

∆n := Spec
(
k[x0, · · · , xn]
〈
∑
xi〉

)
∈ Sch/k

and for K ∈ Ch
(
trSh/k

)
a complex of sheaves with transfers, the Suslin singular complex

is the complex of sheaves defined as

CS∗ (K), Γ
(
X/S

)
:= TotΠK(∆•×

k
X).

for X ∈ smSch/S .

Corollary 7.3.5(The Suslin complex is A1-local).
The Suslin singular complex CS∗ (K) is A1-local, and the functor CS∗ (−) is an isomorphism in
DM?
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E 7.4 Motives e

Definition 7.4.1 (Motives)
The homological motive of a smooth scheme X ∈ smSch/k is

M(X) := C∗(S)Ztr
/k(X).

Definition 7.4.2 (Tate twist)
The Tate twist is defined as

Z(1) := coker (M {1} →M(Gm)) [−1].

What is {1}? Maybe Spec k...

Example 7.4.3(of identifying a Tate twist): Z(1) = Gm[−1] ∈ [0, 1] is supported in homotopy
degree 0 and 1 (and in fact just in degree 1), and generally Z(n) = Z(1)⊗n

k ∈ (−∞, n] is supported
in degree at most n.

Conjecture 7.4.4(Reinforced Beilinson-Soulé).
For all n > 0, Z(n) ∈ [1, n], so it is in fact only supported in positive degrees. Moreover, for
E/k ∈ fnField,

H i>n (CE(∆∗E ,Gn
m)Q) = 0.

By Bloch-Kato, the integral and rational cases are equivalent.

E 7.5 Motivic Cohomology e

Definition 7.5.1 (Motivic cohomology)
For X ∈ smSch/k, the motivic cohomology is given by

Hn,i
mot(X) := Hn

Nis(X;Z(i)).

The grading n is the degree, and i is the twist.

Remark 7.5.2: Let Z(m) ∈ DShtr
/k, then for X ∈ smSch/k we have

Hn,i
M (X) = Hom

DMeff
(M(X),Z(i)[n]).

Taking the sheaf defined in top diagonal bidegree, this can be identified with unramified Milnor
K-theory:

Hn(−;Z(n)) = KMn(−).
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E 7.6 Stable Six Functors e

Remark 7.6.1: Let X : smSchop
/S → Top∗, which is a “space” in an infinity categorical sense, and

consider f : T → S a morphisms of schemes. We can form f∗ : smSch/S → smSch/T which induces
an adjunction

hoA1
∗ /S

f∗−⇀⊥↽−
f∗

hoA1
∗ /T .

For p : T → S smooth, we can define p] and p∗ similarly, yielding

hoA1
∗ /S

p]−⇀⊥↽−
p∗

hoA1
∗ /T .

There is also a stable lift of the tensor product to a smash product − ∧−, yielding

hoA1
∗ /S

−∧−−⇀⊥↽−
Hom(−,−)

hoA1
∗ /S .

Not precise, need to apply a space as an argument...?

There are also formulas for things like f∗(K ∧X+), as well as (smooth) base change and projection.

Theorem 7.6.2(Morel-Voevodsky Localization).
Let i : Z ↪→ S be closed and U := S \ Z with j : U ↪→

O
S an open immersion. Then for all

X ∈ hoA1
∗ /S , there is a homotopy cofiber sequence

j]j
∗(X)→ X → i∗i

∗X,

where the maps are given by units/counits of the corresponding adjunctions.

Remark 7.6.3: This can be restated as a geometric version of A1-homotopy equivalence: that
there is a weak equivalence

X

X \ (X×
S
Z) →W i∗((XZ)+).

We don’t have the 6 functor formalism unstably.

E 7.7 Stabilization e

Remark 7.7.1: One can take spheres in hoA1
∗ /S to be the pointed space

(P1,∞) ' S1 ∧ (Gm, 1).
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This yields a definition of loop spaces:

ΩP1(−) := RHom(P1,−),

where one needs to derive this construction.

Definition 7.7.2 (Stable homotopy category)
The stable homotopy category SH/S is defined as the limit

· · ·
ΩP1−−→ hoA1

∗ /S

ΩP1−−→ hoA1
∗ /S

ΩP1−−→ hoA1
∗ /S ,

which is a construction that works for presentable monoidal infinity categories.

Remark 7.7.3: This makes P1 a monoidally invertible object, and it turns out to invert Gm and
the classical sphere S1. This is because if we define Sn,m := Sn ∧Gm

m, we have

P1 ' S1,1 := S1 ∧Gm

An \ {0} ' Sn−1,n := Sn ∧Gm
⊗n

k .

Remark 7.7.4: A concrete model is given by sequences of objects, called P1-spectra. These are
sequences of pointed spaces X := (Xm) with A1-homotopy equivalences

Xm →
W

ΩP1(Xm+1).

This is somehow related to P1 ∧Xm
σm−−→ Xm+1. SH/S satisfies the following universal property: it

is the universal presentable monoidal infinity category receiving a functor

Σ∞ : hoA1
∗ /S → SH/S

such that P1 ∧ (−) is invertible. It turns out that the category SH/S admits a diagram relating it
to all of the categories that have appeared thus far.

Theorem 7.7.5(?-Voevodsky).
For f : T → S a morphism of schemes, separated of finite type, there is a triangulated
adjunction

SH/S

f!−⇀⊥↽−
f !

SH/T

such that

1. f! is compatible with composition.
2. If f is proper then there is am isomorphism η : f!

∼−→ f∗.
3. If f is smooth, then

f! = f](Th(Tf )⊗ (−))

where Tf is the tangent bundle and

Th(Tf ) := Σ∞(Tf/Tf∨)
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is its associated Thom space.

Moreover Th(Tf ) is tensor-invertible in SH/S with inverse Th(−Tf ).

Remark 7.7.6: There is a base change formula, and p∗f! ∼= g!q
∗ for cartesian squares:

Y T

X S

g

f

q p

Link to Diagram

There is a projection formula

f!(C ⊗ f∗(F )) ∼= f!(C)⊗ F.

Moreover, SH(−) satisfies a generalized Beilinson formalism.

E 7.8 Rational Homotopy e

Remark 7.8.1: SH/S is triangulated, and there are several ways to construct a triangulated
rationalization SH/S ⊗Q. This decomposes as

SH/S ⊗Q ∼−→
(

SH/S

)
Q+
×
(

SH/S

)
Q−

.

• The plus part is characterized by the algebraic Hopf map η acting by zero, ε = −1
• The minus by η being invertible and ε = +1

For S regular, the plus part is equivalent to
(

DM/S

)
Q
. Writing S0 := S ⊗Z Q, the minus part is

equivalent to the Witt sheaf WQ
S0 , which is connected to quadratic forms. Reindexing and setting

S̃n,i := Sn−i ∧Gm
⊗i

k , one can define cohomotopy groups(
πn,i/S

)
Q

:= [S, Sn−i ∧Gi
m](SH/S)Q

= [S, S̃n,i](SH/S)Q
= [1,1(s)[i]]
∼−→ gr iγ

(
(K2i−n)/S

)
Q
⊕Hn−i

Nis (S0;W),

where gr is a grading.
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For E ∈ Field, this yields

πn,i(E)Q = Hmot(E)Q ⊕W (E)Q.

Remark 7.8.2: There is a Grothendieck-Verdier duality: for f : X → S smooth finite type
with S regular, then f !(1S) ' Th(Lf). If E is a compact (constructible) object of SH/S the
E∨ = Hom(E, D∗) and there is an isomorphism E→ (E∨)∨.

8 Kirsten Wickelgren, Talk 1 (Wednesday,
July 14)

E 8.1 Intro e

Abstract:

Morel and Voevodsky’s A1 homotopy theory imports
tools from algebraic topology into the study of schemes,
or in other words, into the study of the solutions to
polynomial equations. This theory produces greater
understanding of arithmetic and geometric aspects
these solutions. We will introduce some of this theory
using as a guide questions such as “How many lines
meet 4 lines in 3-space?”

References/Background:

• Some algebraic topology or algebraic geometry, for example as described in Hatcher’s and
Hartshorne’s books

• Lecture Notes 1
• Lecture Notes 2
• Exercises

Remark 8.1.1: Enumerative geometry counts algebro-geometric objects over C. Example: how
many lines meet 4 generic lines in P3? The answer is 2, and our goal is to record this kind of
arithmetic information about geometric objects over a field k whose intersections are fixed over k
but not necessarily k itself. Our main tool will be A1-homotopy theory, due to Morel-Voevodsky.

E 8.2 Classical Theory e
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Remark 8.2.1: First some classical homotopy theory. The sphere can be defined as

Sn :=
{
x1, x2, · · · , xn

∣∣∣ ∑x2
i = 1

}
' Pn(R)/Pn−1(R),

and we have a degree map [Sn, Sn] → Z. Given any f ∈ Top(Sn, Sn) and p ∈ Sn, we can write

f−1(p) = {q1, q2, · · · , qN} and compute deg f =
N∑
i=1

degqi
f in terms of local degrees. Letting V

be a ball containing p, we have F−1(V ) ⊇ U 3 qi another ball such that U ∩ f−1(p) = qi. Then
U/∂U ' Sn ' V/∂V , so we can define a map

f : U

U \ {qi}
→ V

V \ {p}

and define degqi
f := deg f .

Letting [x1, x2, · · · , xn] be oriented coordinates about qi and [y1, y2, · · · , yn] about p, then f =
[f1, f2, · · · , fn] : Rn → Rn and we can consider Jf := det

(
∂fi
∂xi

)
. There is then a formula

degqi
(f) =

{
+1 Jf (qi) > 0
−1 Jf (qi) < 0.

,

and for all qi we have deg f = #f−1(pt), i.e. the number of solutions to the polynomial system
{f1 = f2 = · · · fn = 0}.

Example 8.2.2(?): If f ∈ C[x] of degree n, we can regard f as a function f : P1(C)→ P1(C) and
by the fundamental theorem of algebra,

deg f = n = # {f = 0} .

Remark 8.2.3: We can similarly count solutions to f = 0 when f is a section of a rank n vector
bundle

V

X

p
f

This count can be computed using the Euler class:

e(V ) = e(V, f) =
∑

qi∈{f=0}
deg qif.

Example 8.2.4(?): Let X := Gr(1, 3)/C, the Grassmannian parameterizing dimension 2 subspaces
W ⊆ C4, or equivalently lines in PW ⊆ P(C4) ∼= P3(C), where PW is defined as W \ {0} where
λw ∼ w for any λ ∈ C×. The tautological is a rank 2 bundle:
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S[PW ] = W S

Gr(1, 3)/C

Let L1, · · · , L4 be four lines in P3, then {lines intersecting all Li} = {f = 0} where f is a section
(depending on the Li) of the bundle

E :=
(∧2

S∗
)⊕4

Gr(1, 3)

and the Euler number of this bundle counts the number of such intersections. In particular, e(E)
is independent of the choice of lines and section, provided they’re sufficiently generic (so the Li do
not pairwise intersect). Using the splitting principle and knowledge of H∗(Gr), one can compute
e(E) = 2.

E 8.3 Over arbitrary fields: Grothendieck-Witt e

Remark 8.3.1: We’d like to do this over arbitrary fields k. Lannes and Morel defined degrees
for rational maps f : P1 → P1. Above we only remembered the sign of Jf , and here we’ll allow
remembering more: deg f will be valued in GW(k). We can realize GW(k) as the group completion
of the semiring of nondegenerate symmetric bilinear forms under ⊥,⊗k, where we complete with
respect to ⊥. It is related to the Witt group by

W (K) ∼−→ GW(k)
Z 〈qhyp〉

:= GW(k)
Z[〈1〉+ 〈−1〉] .

There is a rank map

rank : GW(k)→ Z

q : (V ⊗2
k → K) 7→ dimk V,

which can be realized by a pullback

GW(k) W (k)

Z Z/2

rankrank

y
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Link to Diagram

We can also write GW(k) in terms of generators 〈a〉 where a ∈ k×/(k×)×2, where 〈a〉 is associated
to a bilinear form

〈a〉 : k×2 → k

(x, y) 7→ axy,

subject to relations

• 〈a〉 〈b〉 = 〈ab〉
• 〈u〉+ 〈v〉 = 〈uv(u+ v)〉+ 〈u+ v〉
• 〈u〉+ 〈−u〉 = 〈1〉+ 〈−1〉 = qhyp, which is the matrix

qhyp =
[
0 1
1 0

]
.

Example 8.3.2(of known GW groups): The signature is the difference between the numbers
of positive and negative ones in the associated matrix, and one can show

rank : GW(C) ∼−→Z
(rank, sig) : GW(R) ∼−→Z×2

(rank,disc) : GW(Fq)
∼−→Z× F×q /(F×q )×2

where the last is a situation where we can compute étale cohomology.

Example 8.3.3(Springer’s theorem): Let k ∈ Field be complete and discretely valued with
residue field κ, e.g. k = Qp or Fp((t)) with κ = Fp. Then if ch k 6= 2,

GW (k) ∼−→W (k)⊕2
.

Remark 8.3.4: For E/k a finite separable field extension, we’ll have transfers

TrE/k
: GW(E)→ GW(k)

(V ⊗2
k
β−→ E) 7→ (V ⊗2

k
β−→ E

TrE/k−−−−→ k),

which coincide with classical transfers for field extensions.

Remark 8.3.5: For Lannes/Morel’s formula, given P1
/k

f−→ P1
/k and p ∈ P1

/k, we can write f−1(p) =
{q1, q2, · · · , qN} and suppose J(qi) = f ′(qi) 6= 0 for all i. Then we remember the entire Jacobian
and set

deg f :=
N∑
i=1

Trk(qi)/k
〈J(qi)〉 ,
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which in fact doesn’t depend on p. Morel defines an A1-degree

degA1 : [Pn/Pn+1,Pn/Pn+1]A1 → GW(k),

where we are taking unstable A1-homotopy classes of maps. Noting that an element of GW(R)
was determined by its rank and signature, we get a commutative diagram showing that degA1 is
compatible with rank, signature, and the classical algebraic topological degree. There are other
ways of computing this degree besides taking the above sum: Cazanave, Brazelton-McKean-Pauli
give formulas in terms of Bézoutians.

E 8.4 Homotopy e

Remark 8.4.1: Recall that

X ∧ Y := X × Y
(X × pt) ∪ (pt× Y ) ∈ Top∗,

and Sn ∧ Sm ∼−→ Sn+m and (S1)∧n ∼−→ Sn, so we define

ΣS1X := S1 ∧X.

In A1 homotopy theory we declare A1 ' pt.

Example 8.4.2(?): We can take a pushout of the following form:

z z

z Gm A1 ' pt

1/z pt ' A1 ∴ P1 ' ΣS1Gm

y

Link to Diagram

Here the formalism of homotopy pushouts allows us to conclude that in an appropriate A1-homotopy
category,

ΣS1Gm := S1 ∧Gm ' P1.

Remark 8.4.3(on motivic spheres): We have

Gm := Spec k[z, 1/z] = A1 \ {pt} .

By taking pushouts inductively we can realize

An \ {pt} ' ΣS1(A1 \ {pt}) ∧ (An \ {pt}) ' (S1)∧n−1 ∧ (Gm)∧n
.
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Remark 8.4.4: We can use this to write

Pn/Pn−1 ' Pn

Pn \ {pt}

' An

An \ {pt}

' pt
An \ {pt}

' ΣS1 (An \ {pt})
' (S1)∧n ∧ (Gm)∧n

.

Remark 8.4.5: Stable homotopy shows that inverting Σ is useful, which we also do in the A1-setting
by inverting ΣP1(−) := P1 ∧ (−) to obtain a stable homotopy category SH(k).

Theorem 8.4.6(Morel, Hopkins-Morel).
For k ∈ Field, stably we have

[S0, S0] ∼−→ [Pn/Pn−1,Pn/Pn−1] ∼−→ GW(k).

Moreover, there is a ring structure on homotopy classes which yields an isomorphism of rings
into Milnor-Witt K-theory, ⊕

n∈Z
[S0,Gm

∧n ] ∼−→ KMW
∗ (k).

Remark 8.4.7: KMW
∗ is a graded associative algebra with generators [u] ∈ KMW

1 (k) for u ∈ k× and
η ∈ KMW

−1 (k), with relations

• [u][1− u] = 0, the Steinberg relations,
• [ab] = [a] + [b] + η[a][b],
• [a]η = η[a],
• ηqhyp = 0 for qhyp := η[−1] + 2

Remark 8.4.8: There is an isomorphism

GW(k) ∼−→ KMW
0 (k)

〈a〉
 1 + η[a]
qhyp := 〈1〉+ 〈−1〉
 1 + 1 + η[−1].

Remark 8.4.9(on the proof): [a] yields a map

[a] : S0 = (Spec k)
∐

2 → Gm

p 7→ a,

where p is the non-basepoint, and

η : A2 \ {pt} → P1

(x, y) 7→ [x : y].
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On C-points, C2 \{0} ' S3 maps to CP1 ' S2 by the Hopf map, but on R-points we get S1 deg=−2−−−−−→
S1 implying that η is not nilpotent, which is a new fact.

Remark 8.4.10: We can define

X ∨ Y = X × Y
ptX ∼ ptY

and get maps

X ∨ Y → X × Y → X ∧ Y.

which yields

Σ(X × Y ) ∼−→ ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

Lemma 8.4.11(?).
In SH(k),we get

Gm
×2 Gm

Gm
∧2 ∨Gm

∧2 Gm

mult

(1,1,η)

'

Link to Diagram

Lemma 8.4.12(?).
The map

f : P1 → P1

z 7→ az

is equal to 1 + η[a] in SH(k), since f = Σg where

g : Gm → Gm

z 7→ az,

which is equal to

Σ(Gm × k
1×a−−→ G×2

m
mult−−−→ Gm).

Remark 8.4.13: The lemma implies the relation [ab] = [a] + [b] + η[a][b], and it turns out there’s
an isomorphism to motivic homotopy groups of spheres:

KMW
∗ (k) ∼−→

⊕
n∈Z

[S0,Gm
∧n ].
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E 8.5 Big Problems e

Remark 8.5.1: Notation: we’ll write⊕
n∈Z

πn,nS :=
⊕
n∈Z

[S0,Gm
∧n ]

to be the zero line of the homotopy groups of spheres, and generally
⊕
n

πn+r,nS for the r-line.

Classical homotopy groups of spheres encode interesting geometric information, and we’re finding
that the corresponding motivic homotopy groups of spheres do as well. Röndigs-Spitzweck-Østvær
compute the 1-line for ch k 6= 2 in a 2019 Annals paper, and we have some information about the
2-line.

Question 8.5.2
What is [Pn/Pn−1,Pn/Pn−1] for more general rings? Bachmann-Østvær (2021) do this over Z[ 1

2 ]
and show

π0,0S⊗ Z2̂
∼−→ GW(Z[ 1

2 ])⊗ Z2̂.

Question 8.5.3
What is π∗,∗S in general?

Question 8.5.4
Is there a Freudenthal suspension theorem? I.e. which stable elements of π∗,∗S correspond to
unstable groups?

E 8.6 Counting Things e

Remark 8.6.1: Many people have used the A1-Euler class for interesting things! Let X ∈ smSch/k
with dimX = d and let V → X ∈ BunGLr/X be a vector bundle.

Definition 8.6.2 (Orientation of bundles)
A bundle V → X is oriented by the following data: (L,ϕ) where L→ X is a line bundle and
ϕ is a trivialization

ϕ : detV ∼−→L⊗2.

It is relatively oriented when Hom(detTX,detV ) is oriented, where det(−) =
∧top

(−).
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Example 8.6.3(?): For X = Pn or Gr(m,n) (parameterizing copies of Pm in Pn), then

ωx = detTnX = O(−n− 1),

and X is orientable iff n is odd. For P1, O(n) is relatively orientable iff n is even.

E 8.7 Euler Numbers e

Definition 8.7.1 (Euler Number in GW(k))
Suppose X ∈ smSch/k is proper with dimX = d and consider a vector bundle

GLd y F V

X

f

Suppose

• V is relatively oriented by (L,ϕ), and f is a section with isolated zeros, so {f = 0}
consists of zeros of multiplicity 1, or equivalently

• For all x ∈ {f = 0}, the composite map

Tf :=
(
TxX → Tf(x)V

∼−→ TxX ⊕ Vx
p2−→ Vx

)
f(x) := (x, 0)

has nonvanishing determinant.

Then the Euler number of (V, ϕ) with respect to f is defined as

n(V, ϕ, f) :=
∑

x∈{f=0}⊆X
degx f.

where degx f can be computed by

• Choosing local Nisnevich coordinates on X ,
• Choosing local trivializations of V which are “compatible” with ϕ,

Then locally writing

f : Ad → Ad =⇒ Jf := det
(
∂fi
∂xj

)
,

one has

For Jf (x) 6= 0 ∈ κ(x), degx f := Trκ(x)/k
〈Jf (x)〉 .

Remark 8.7.2: Equivalently, Txf ∈ Hom(TxX,Vx) and we can define

Jf (x) := detTxf ∈ Hom(detTxX,detVx) ∼−→Lx
⊗2

k ,
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where the orientation provides the isomorphism. Picking any basis for Lx⊗
2
k yields a number which

is well-defined in κ(x)/(κ(x)×)2 by choosing a trivialization of Lx.

Question 8.7.3
What happens if the zeros of f have multiplicity mi > 1? In the classical setting, we didn’t say
what happens when Jf (x) = 0. We’ll answer this next time.

Question 8.7.4
Why is the Euler number n(V, f) independent of the section f? Analogously, why is the number of
intersections in the original problem 2, not depending on which specific lines were chosen?

Answer 8.7.5
Sections with isolated zeros are often connected by 1-parameter A1-families of such sections, and
GW(k[x]) ∼−→ GW(k), although this is hard to show.

Alternatively, the Euler number is a pushforward of an Euler class taking values in interesting
cohomology theories, so n(V, f) = π∗e(V, f).

9 Kirsten Wickelgren, Talk 2 (Friday, July
16)

E 9.1 Intro e

Remark 9.1.1: Recall that we have a classical degree map

deg : [Sn, Sn]→ Z

which roughly counts preimages. Given f ∈ Hom
Top

(Sn, Sn) and p ∈ Sn, we write f−1(p) =

{q1, q2, · · · , qN} and have a formula deg f =
∑

degqi
f where the local degrees degqi

f can be com-
puted by picking orientation-compatible coordinates {x1, x2, · · · , xn} near qi and {y1, y2, · · · , yn}

near p. In these coordinates we can form the Jacobian Jf := det ∂fi
∂xj

and write

degx f =
{

+1 J(qi) > 0
−1 J(qi) < 0.

Question 9.1.2
What happens if the zeros of f are not of multiplicity 1, so Jf (qi) = 0?

Kirsten Wickelgren, Talk 2 (Friday, July 16) 62
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Proposition 9.1.3(Eisenbud–H.Levine–Khimshiashvili signature formula).
Over k := R, any quadratic form can be diagonalized to diag(1, · · · , 1,−1, · · · ,−1), and there
is a formula

degx f = sigωEKL

where ωEKL is the isomorphism class of the bilinear form defined in the following way: for
f = (f1, · · · , fn), set

Q := R[x1, · · · , xn]0
〈f1, f2, · · · , fn〉

which is a finite dimensional local complete intersection. Since Q is Gorensteina, there is an
isomorphism Hom

k
(Q, k) ∼−→ Q, which we can take to be the bilinear form.b

aThe dualizing sheaf is locally free
bEven better, there is a distinguished isomorphism coming from a distinguished socle element (Scheja-Storch).

Remark 9.1.4: This form can be made very explicit: writing Jf = det ∂fi
∂xj

∈ Q, choose a k-linear

map η : Q→ k such that η(Jf ) = dimkQ and set

ωEKL :=
(
Q⊗

2
k

mult−−−→ Q
η−→ k

)

=⇒ ωEKL : Q⊗2 → k

(g, h) 7→ η(gh).

It turns out that the isomorphism class of ωEKL does not depend on the choice of η.

Example 9.1.5(?): Let f : A1 → A1 and f(z) = z2 with q = 0. Then

Q = k[x]0
〈x1〉

∼−→ k[x]
〈x2〉

and Jf = 2x. We then get ωEKL =
[
0 1
1 0

]
, which up to a change of basis is h :=

[
1 0
0 −1

]
.

Question 9.1.6
Eisenbud notes that ωEKL is defined over fields of arbitrary characteristic not equal to 2, does it
have a topological interpretation?

Remark 9.1.7: Yes! It comes from the A1-degree.

Theorem 9.1.8(Kass-W.).
ωEKL = degA1

q f is the local degree in GW(k) when κ(q) = k. Brazelton, Burklund, Mckean,
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Montoro, Opie handle the case when κ(q)/k is separable.

E 9.2 A1-Milnor numbers e

Definition 9.2.1 (Node, hypersurface singularity)
For ch k 6= 2, the simplest type of singularity is a node, defined over k as a point p ∈ X such
thata

ÔX,p
∼−→ k[x1, x2, · · · , xn]∑

x2
i + h.o.t.

,

A hypersurface singularity is a point p ∈ {f = 0} ⊆ X.
aHer OX,p is the stalk of the structure sheaf at p, which is a local ring with a unique maximal ideal mp, and
the LHS is completion at that ideal, so

ÔX,p := (OX,p)
m̂p

.

Definition 9.2.2 (Milnor number)
Let k := C. If you vary X in a family

X+ :=
{
f(x1, · · · , xn) +

∑
aixi = t

}
,

then the singularity p bifurcates into nodes. The number of nodes is given by the Milnor
number, defined as Mp, the number of nodes in the family X+ for any sufficiently small {ai}.
For R = C, this is explicitly described as

Mp := degTop
p grad f.

Remark 9.2.3: For other k with ch k 6= 2, nodes come in different types: given a residue field L at
a node p, the tangent directions defined over some extension L[

√
a] for a ∈ L×/(L×)×2 .

Example 9.2.4(?): Over k = R, one has examples like

• x2
1 + x2

2 = 0, yielding a non-split node and non-rational tangent directions
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• x2
1 − x2

2 = 0, yielding a split node and rational tangent directions

Definition 9.2.5 (Type of a node)
Let p be a node with

ÔX,p
∼−→ L[[x1, x2, · · · , xn]]∑

aix2
i

, L := κ(p).

The type p is defined as

type(p) := TrL/k

〈
2n

n∏
i=1

ai

〉
∈ GW(k).
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Definition 9.2.6 (A1-Milnor numbers)
The A1-Milnor number is defined as

Mp := degA1
p grad f =

∑
p∈N

type(p),

N is the set of nodes of f in a family for a generic {a1, a2, · · · , an}.
Note: the second equality is due to Kass-
Wickelgren.

Example 9.2.7(?): Let f(x, y) := x3 − y2 with ch k 6= 2, 3, then

• p = (0, 0) ∈ {f = 0},
• ∇f = (3x2,−2y), and

degA1 ∇f = degA1(x 7→ 3x2) degA1(y 7→ −2y)

=
[

0 1/3
1/3 0

]
〈−2〉

= 〈1〉+ 〈−1〉
= qhyp,

which has rank 2 and thus M = 2. This yields a cusp.

The family y2 = x3 + ax+ t for a 6= 0 yields a family:

• In the first term, the cusp bifurcates into 2 nodes, yields rankMA1(C) = M(C) for C the
cusp curve

• In the second, there are singular fibers when x3 + ax + t has double roots, which happens
when the discriminant is zero, so this occurs iff −4a3 − 27b2 = 0.
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This yields a bifurcation into two nodes, and for example,

• Over F5: 〈1〉 = 〈−1〉, so this can not bifurcate into 1 split and 1 non-split rational node.
• Over F7: 〈1〉 6= 〈−1〉, so this can not bifurcate into 2 split or 2 non-split nodes.

Remark 9.2.8: The classical Milnor number appears in conductor formulas and are related to the
Euler characteristic χ of the Milnor fiber. M. Levine-Lehalleur-Srinivas and R. Azouri have subtle
quadratic enrichments to GW(k).

E 9.3 A1-Euler characteristic χA1
e

Definition 9.3.1 (Relatively oriented bundles)
For X ∈ smVarproj

/k , we saw last time that a vector bundle V → X is relatively oriented by
(L,ϕ) where L→ X is a line bundle and

ϕ : L⊗2
k
∼−→ Hom(det TX,detV ).

Remark 9.3.2: The tangent bundle TX has a canonical relative orientation since

Hom(det TX,det TX) ∼−→ O ∼−→ O⊗2

where O is a trivial bundle of rank 1. It follows that we may define the Euler number of tangent
bundle:

χA1(X) := n(TX) ∈ GW(k),

where n is the Euler number.

Theorem 9.3.3(M. Levine).
χA1(X) is equal to the categorical Euler characteristic. The definition is omitted here, see
Levine’s “Enumerative geometry with quadratic forms”.

Example 9.3.4(M. Levine-Lehalleur-Srinivas):
See https: // arxiv. org/ abs/ 2101. 00482 .

Let X ⊆ Pn+1 for n even, written X := {F = 0} for f ∈ R[x0, · · · , xn]e homogeneous of degree e.
Take

ωEKL : Q⊗2 → k Q := k[x0, · · · , xn]〈
∂f
∂x0

, · · · , ∂f∂xn

〉 .

Define BJac to be the restriction of ωEKL to
n⊕
q=0

Q(q+1)e−n−2, then

χA1(X) = 〈e〉+ 〈−e〉BJac + n

2 qhyp.
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Example 9.3.5(Clebsch surface): Take the Clebsch surface

C :=
{

[x1, x2, · · · , x3]
∣∣∣ ∑x3

i =
(∑

xi
)3
}
⊆ P3

/Q.

Then χ(C) = 9, and

χA1(C) = 2qhyp + 〈−10〉+ 〈−6〉+ 〈−21〉+ 〈−14〉+ 〈−2〉 ,

which can be computed with Macaulay2!

E 9.4 Cohomology and the Euler Class e

Remark 9.4.1: Note that we have a stable A1-homotopy category SH(k), so we can take cohomology
theories on X ∈ smSch/k:

• Hmot or HZ: motivic cohomology
• H̃mot or HZ̃: extended motivic cohomology
• K: K-theory
• KO: Hermitian K-theory

It turns out that

Hn(X) = π−n Hom
SH(k)

(X,H) = [X,ΣnH],

and it’s useful to allow twisting the second term by shifts.

Definition 9.4.2 (Twisted suspension)
Letting V → X be a vector bundle, we can define the twisted suspension

HV (X) := [X,Th(V ) ∧H] where Th(V ) := V ∨

V ∨ \ {0} = P(V ∨ ⊕O)
P(V ∨)

where taking the dual is a condition needed for K-theory. This reduces to a usual suspension
for the trivial bundle.

Example 9.4.3(?): For V := (OX)⊕n the trivial rank n bundle on X, we have HV = Hn.

Example 9.4.4(?):

HZn(X) ∼= H2n
mot(X;Z(n)) ∼= H2n,n

mot (X) ∼= CHn(X),

the Chow group of codimension n cycles modulo rational equivalence. These are the geometric
gradings.

Example 9.4.5(?): H̃Zn(X) ∼= C̃Hn(X) the Chow-Witt group, also called the oriented Chow
group. Using the Gersten resolution, these can be expressed as formal sums of codimension n
subvarieties with coefficients in GW(k(Z)), where k(Z) are the rational functions of Z, subject to
some conditions, modulo equivalence.
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Example 9.4.6(?): K0(X) is the group completion of vector bundles on X, and KO0(X) addition-
ally remembers the data of a nondegenerate symmetric bilinear form. These are “representable” in
a sense because they are related to Thom spectra.

Definition 9.4.7 (Cohomology with support)
Let Z ↪→ X be a closed subscheme, then define the cohomology with support

HV
Z (X) :=

[
X

X \ Z
,Th(V ) ∧H

]
SH(k)

.

Definition 9.4.8 (Euler class)
For H a cohomology theory and S|toH a ring? and a vector bundle V → X with a section f
(for example, the zero section), then the Euler class

eH(V, f) ∈ HV ∨

{f=0}(X)

is the class of the map

X

X \ {f = 0}
f−→ V

V \ {0} ∧H.

Definition 9.4.9 (Euler Number)
For f : X → S is a local closed immersion (lci) if it locally factors as U i−→ P

p−→ S with p
smooth and i a closed immersion determined by a Koszul regular sequence (so modding out
doesn’t yield a zero divisor, and the higher cohomology of the Koszul complex is zero).

Remark 9.4.10: Some properties:

• This has a well-behaved cotangent complex Lf .

• For a regular embedding, Li ' Nu
∨P [1] is conormal bundle.3

• Lp ' ΩP/S ' Tp∨.

• Lpi is determined by i∗Lp → Lpi → Li,

• There is a coherent Serre duality related to Lf .

There is also a good notion of pushforward: let p : X → S be proper 4 and lci.

Then there is a Becker-Gottlieb transfer

TrBG : Σ∞+ S → Th(Lp),

and the cartoon is the following:

3I.e. the dual of the normal bundle.
4Here proper means that the preimage of a compact set is compact.
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Here we embed X → S into the trivial bundle over S and take a neighborhood. Letting B be the
trivial bundle over S, then Th(B) ∼= Σ∞+ S and collapsing fiberwise quotients by the complement of
the neighborhood:

This yields p∗ : HLp(X)→ H0(S).

E
9.5 Oriented Cohomology Theories and

Euler Numbers
e

Remark 9.5.1:
• H is GL -oriented if Hn

Z(X) ∼−→ HV
Z (X) with n := rank V .
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An example is HZ,K, but non examples are HZ̃,KO.

• H is SL-oriented if

– HV
Z (X) ∼−→ HV ′

Z (X),
– rank V = rank V ′ and
– detV ∼−→ detV ′ ⊗ L⊗2 for L→ X a line bundle.

An example is HZ̃,KO.

Remark 9.5.2: For V → X a relatively oriented vector bundle on X
p−→ k with p smooth and

proper, and H an SLc-oriented cohomology theory. Then

HV ∨(X) ∼−→ HT∨X(X).

Letting f be any section of V , e.g. the zero section, then

eH(V, f) ∈ HV ∨

{f=0}(X) HV ∨(X)

X → X

X \ {f = 0} Th(V ) ∧H

z: forget support

Link to Diagram

Letting f : X → Th(V ) ∧H, any two sections f1, f2 of V are connected by copies of A1 in H0(V ),
so

eH(V ) := z(eH(V, f1)) = z(eH(V, f2)).

Definition 9.5.3 (Euler number)
The Euler number nH(V ) of V in H0(S) is

nH(V ) := p∗e
H(V ).

Remark 9.5.4: This agrees with

n(V, f) =
∑

x∈{f=0}⊆X
degx f, degx f ∈ GW(k),

for H = HZ̃,KO over S := Spec k. Moreover, n(V, f) is independent of the choice of section.

See Déglise-Jin-Khan, Bachmann-Wickelgren.

9.5 Oriented Cohomology Theories and Euler Numbers 71

https://q.uiver.app/?q=WzAsNixbMSwwLCJIX3tcXHRze2Y9MH19XntWXFxkdWFsfShYKSJdLFs0LDAsIkhee1ZcXGR1YWx9KFgpIl0sWzEsMl0sWzAsMCwiZV5IKFYsIGYpIFxcaW4iXSxbMSwxLCJYXFx0byB7WFxcb3ZlciBYXFxzbXRze2Y9MH19Il0sWzQsMSwiXFxUaChWKSBcXHNtYXNocHJvZCBIIl0sWzAsMSwiejogXFx0ZXh0eyBmb3JnZXQgc3VwcG9ydH0iXSxbNCw1LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJtYXBzIHRvIn19fV1d
https://arxiv.org/abs/1805.05920
https://arxiv.org/abs/2002.01848


9 Kirsten Wickelgren, Talk 2 (Friday, July 16)

E
9.6 Arithmetic count of lines on a smooth

cubic surface (joint with Jesse Kass) e

Definition 9.6.1 (Cubic surface)
A cubic surface is given by X ⊆ P3 where X = {f = 0} with f ∈ k[w, x, y, z]3 homogeneous
of degree 3.

Theorem 9.6.2(Salmon-Cayley, 1849).
Any smooth cubic surface over C contains exactly 27 lines.

Example 9.6.3(?): Consider the Fermat cubic:

f(x, y, z, w) = x2 + y2 + z2 + w2.

The lines are given by {
[S,−S, T,−T ]

∣∣∣ [S, T ] ∈ P1(C) ⊆ X
}
.

For ω3, λ3 = 1, we can take {
[S, λS, T, ωT ]

∣∣∣ [S, T ] ∈ P1(C)
}
.

Permuting the variables in
(

4
2

)
/2 = 3 ways, then there are 3 · 3 · 3 = 27 total lines.

Proof (?).
Let Gr(1, 3) be the Grassmannian parameterizing W ⊆ C4 with dimW = 2, or equivalently
copies of P1 in P3. Take the tautological S → Gr(1, 3) whose fiber over [PW ] is W itself.
Then Sym3 S∨[PW ] = Sym3(W∨) are cubic polynomials in W , and f determines a section σf of
Sym3 S∨ given by

σf ([PW ) = f |W ,

which is zero iff the line PW is contained in X. So we’ve reduced to counting zeros of a section:

n(V ) =
∑

lines L⊆X
degL σf .

Fact
For a smooth cubic surface, all zeroes of σf have multiplicity one.

Over C, the classical differential topological degree is 1, so n(V ) is the number of lines, and
n(V ) = 27.
Consider now the situation over R:

• Schläfli (1861): Over R, there can only be 3, 7, 15, or 27 lines.
• Segre (1942): These lines break into two classes: hyperbolic, or elliptic.
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For L ⊆ X a real line, L gives an involution I : L→ L where I(p) is defined by consider TpX,
which contains a line L along with a curve C of degree 2 since the total degree is 3:

In particular, there is another point in the intersection of L∩C ∩X, so I(p) is defined as that
point where TI(p)X = TpX. If I yields a C-conjugate pair, say L is elliptic, and otherwise if I
yields two R-point say L is hyperbolic. Taking a path p→ I(p), if the tangent space undergoes
a full twist, this is the elliptic situation.

�

Theorem 9.6.5(Segre + many authors in the 2010s).
The number of hyperbolic lines minus the number of elliptic lines is exactly 3.

Question 9.6.6
What about other fields, like k = Fp,Qp,Q?

Answer 9.6.7
The above proof works in A1-homotopy theory. Letting X ⊆ X ⊆ P3

/k a cubic surface.

Definition 9.6.8 (Type of a line)
The type of a line L is an element

〈D〉 ∈ GW(k(L)), D ∈ k(L)×/(k(L)×)×2

such that the fixed points Fix(I) form a conjugate pair of points defined over k(L)
[√
D
]
.
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Theorem 9.6.9(Kass-Wickelgren).
let k ∈ Fieldch 6=2 and X ⊆ P3

/k, then∑
lines

L⊆k(X)

Trk(L)/k type(D) = 15 〈1〉+ 12 〈−1〉 ∈ GW(k).

10 Matthew Morrow, Talk 1 (Thursday, July
15)

E 10.1 Intro e

Abstract:

Motivic cohomology offers, at least in certain situa-
tions, a geometric refinement of algebraic K-theory
or its variants (G-theory, KH-theory, étale K-theory,
· · ·). We will overview some aspects of the subject,
ranging from the original cycle complexes of Bloch,
through Voevodsky’s work over fields, to more recent
p-adic developments in the arithmetic context where
perfectoid and prismatic techniques appear.

References/Background:

• Algebraic geometry, sheaf theory, cohomology.

– Comfort with derived techniques such as descent and the cotangent complex would be
helpful.

– Casual familiarity with K-theory, cyclic homology, and their variants would be motiva-
tional.

– Infinity-categories and spectra will appear, though probably not in a very essential way.

• Lecture Notes

Remark 10.1.1: Some things we’ve already seen that will be useful:

• Motivic complexes
• Milnor K-theory
• Their relations to étale cohomology (e.g. Bloch-Kato)
• A1-homotopy theory
• Categorical aspects (e.g. presheaves with transfer)

These have typically been for smVar/k. Our goals will be to study

Matthew Morrow, Talk 1 (Thursday, July 15) 74

https://www.ias.edu/sites/default/files/Morrow%20lectures%201%2B2.pdf


10 Matthew Morrow, Talk 1 (Thursday, July 15)

• Motivic cohomology as a tool to analyze algebraic K-theory.
• Recent progress in mixed characteristic, with fewer smoothness/regularity hypothesis

E 10.2 K0 and K1 e

Remark 10.2.1: Some phenomena of K-theory to keep in mind:

• It encodes other invariants.
• It breaks into “simpler” pieces that are motivic in nature.

Definition 10.2.2 (The Grothendieck group (Grothendieck, 50s))
Let R ∈ CRing, then define the Grothendieck group K0(R) as the free abelian group:

K0(R) = R-Modproj,fg,∼=/ ∼ .

where [P ] ∼ [P ′] + [P ′′] when there is a SES

0→ P ′ → P → P ′′ → 0.

Remark 10.2.3: There is an equivalent description as a group completion:

K0(R) =
(

R-Modproj,fg,∼=,⊕
)gp

.

The same definitions work for any X ∈ Sch by replacing R-Modproj,fg with BunGLr/X , the category
of (algebraic) vector bundles over X.

Example 10.2.4(?): For F ∈ Field, the dimension induces an isomorphism:

dimF : K0(F )→ Z
[P ] 7→ dimF P.

Example 10.2.5(?): Let O ∈ DedekindDom, e.g. the ring of integers in a number field, then any
ideal I E O is a finite projective module and defines some [I] ∈ K0(O). There is a SES

0→ Cl(O) I 7→[I]−[O]−−−−−−→ K0(O) rankO(−)−−−−−−→ Z→ 0.

Thus K0(O) breaks up as Cl(O) and Z, where the class group is a classical invariant: isomorphism
classes of nonzero ideals.

Example 10.2.6(?): Let X ∈ smAlgVarqproj
/k over a field, and let Z ↪→ X be an irreducible closed

subvariety. We can resolve the structure sheaf OZ by vector bundles:

0← OZ ← P0 ← · · ·Pd ← 0.
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We can then define

[Z] :=
d∑
i=0

(−1)i[Pi] ∈ K0(X),

which turns out to be independent of the resolution picked. This yields a filtration:

FiljK0(X) :=
〈

[Z]
∣∣∣ Z ↪→ X irreducible closed, codim(Z) ≤ j

〉

=⇒ K0(X) ⊇ FildK0(X) ⊇ · · · ⊇ Fil0K0(X) ⊇ 0.

Theorem 10.2.7(Part of Riemann-Roch).
There is a well-defined surjective map

CHj(X) := {j-dimensional cycles} /rational equivalence→ FiljK0(X)
Filj−1K0(X)

Z 7→ [Z],

and the kernel is annihilated by (j − 1)!.

Slogan 10.2.8
Up to small torsion, K0(X) breaks into Chow groups.

Definition 10.2.9 (Bass, 50s)
Set

K1(R) := GL(R)/E(R) :=
⋃
n≥1

GLn(R)/En(R)

where we use the block inclusion

GLn(R) ↪→ GLn+1

g 7→
[
g 0
0 1

]

and En(R) ⊆ GLn(R) is the subgroup of elementary row and column operations performed on
In.

Example 10.2.10(?): There exists a determinant map

det : K1(R)→ R×

g 7→ det(g),

which has a right inverse r 7→ diag(r, 1, 1, · · · , 1).
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Example 10.2.11(?): For F ∈ Field, we have En(F ) = SLn(F ) by Gaussian elimination. Since
every g ∈ SLn(F ) satisfies det(g) = 1, there is an isomorphism

det : K1(F ) ∼−→ F×.

Remark 10.2.12: We can see a relation to étale cohomology here by using Kummer theory to
identify

K1(F )/m ∼−→ F×/m
Kummer,∼−−−−−−−→ H1

Gal(F ;µm)

for m prime to chF , so this is an easy case of Bloch-Kato.

Example 10.2.13(?): For O the ring of integers in a number field, there is an isomorphism

det : K1(O) ∼−→ O×,

but this is now a deep theorem due to Bass-Milnor-Serre, Kazhdan.

Example 10.2.14(?): Let D := R[x, y]/
〈
x2 + y2 − 1

〉
∈ DedekindDom, then there is a nonzero

class [
x y
−y x

]
∈ ker det,

so the previous result for O is not a general fact about Dedekind domains. It turns out that

K1(D) ∼−→ D× ⊕ L,

where L encodes some information about loops which vanishes for number fields.

E 10.3 Higher Algebraic K-theory e

Remark 10.3.1: By the 60s, it became clear that K0,K1 should be the first graded pieces in some
exceptional cohomology theory, and there should exist some Kn(R) for all n ≥ 0 (to be defined).
Quillen’s Fields was a result of proposing multiple definitions, including the following:

Definition 10.3.2 (The K-theory spectrum (Quillen, 73))
Define a K-theory space or spectrum (infinite loop space) by deriving the functor K0(−):

K(R) := BGL(R)+ × K0(R)

where π∗BGL(R) = GL(R) for ∗ = 1. Quillen’s plus construction forces π∗ to be abelian
without changing the homology, although this changes homotopy in higher degrees. We then
define

Kn(R) := πnK(R).
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Remark 10.3.3: This construction is good for the (hard!) hands-on calculations Quillen originally
did, but a more modern point of view would be

• Setting K(R) to be the ∞-group completion of the E∞ space associated to the category
R-Modproj,∼=.

• Regarding K(−) as the universal invariant of StabCat
∞

taking exact sequences in StabCat
∞

to
cofibers sequences in the category of spectra Sp, in which case one defines

K(R) := K(PerfCh (R-Mod))

as K(−) of perfect complexes of R-modules.

Both constructions output groups Kn(R) for n ≥ 0.

Example 10.3.4(Quillen, 73): The only complete calculation of K groups that we have is

Kn(Fq) =


Z n = 0
0 n even
Z/
〈
q

n+1
2 −1

〉
n odd.

Example 10.3.5(?): We know K groups are hard because Kn>0(Z) = 0 ⇐⇒ the Vandiver
conjecture holds, which is widely open.

Check content of conjecture, maybe 4n?

Conjecture 10.3.6.
If R ∈ Algft,reg

/Z then Kn(R) should be a finitely generated abelian group for all n. This is
widely open, but known when dimR ≤ 1.

Example 10.3.7(?): For F ∈ Field with chF prime to m ≥ 1, ten

TateSymb : K2(F )/m ∼−→ H2
Gal(F ;µ⊗2

m ),

which is a specialization of Bloch-Kato due to Merkurjev-Suslin.

Example 10.3.8(Lichtenbaum, Quillen 70s): Partially motivated by special values of zeta
functions, for a number field F and m ≥ 1, formulae for Kn(F ;Z/m) were conjectured in terms of
Hét.

Remark 10.3.9: Here we’re using K-theory with coefficients, where one takes a spectrum and
constructs a mod m version of it fitting into a SES

0→ Kn(F )/m→ Kn(F ;Z/m)→ Kn−1(F )[m]→ 0.

However, it can be hard to reconstruct Kn(−) from Kn(−,Z/m).
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E 10.4 Arrival of Motivic Cohomology e

Question 10.4.1
K-theory admits a refinement in the form of motivic cohomology, which splits into simpler pieces
such as étale cohomology. In what generality does this phenomenon occur?

Example 10.4.2(?): This is always true in topology: given X ∈ Top, KTop
0 can be defined using

complex vector bundles, and using suspension and Bott periodicity one can define KTop
n (X) for all

n.

Theorem 10.4.3(Atiyah-Hirzebruch).
There is a spectral sequence which degenerates rationally:

Ei,j2 = H i−j
Sing(X;Z)⇒ KTop

−i−j(X).

Remark 10.4.4: So up to small torsion, topological K-theory breaks up into singular cohomology.
Motivated by this, we have the following

E 10.5 Big Conjecture e

Conjecture 10.5.1(Existence of motivic cohomology (Beilinson-Lichtenbaum,
80s)).
For any X ∈ smVar/k, there should exist motivic complexes

Zmot(j)(X), j ≥ 0

whose homology, the weight j motivic cohomology of X, has the following expected
properties:

• There is some analog of the Atiyah-Hirzebruch spectral sequence which degenerates
rationally:

Ei,j2 = H i−j
mot(X;Z(−j))⇒ K−i−j(X),

where H∗mot(−) is taking kernels mod images for the complex Zmot(•)(X) satisfying
descent.

• In low weights, we have

– Zmot(0)(X) = Z#π0(X)[0] in degree 0, supported in degree zero.
– Zmot(1)(X) = RΓzar(X;O×X)[−1], supported in degrees 1 and 2 for a normal scheme

after the right-shift.

10.4 Arrival of Motivic Cohomology 79



10 Matthew Morrow, Talk 1 (Thursday, July 15)

• Range of support: Zmot(j)(X) is supported in degrees 0, · · · , 2j, and in degrees ≤ j if
X = SpecR for R a local ring.

• Relation to Chow groups:

H2j
mot(X;Z(j)) ∼−→CHj(X).

• Relation to étale cohomology (Beilinson-Lichtenbaum conjecture): taking the complex
mod m and taking homology yields

H i
mot(X;Z/m(j)) ∼−→ H i

ét(X;µ⊗jm )

if m is prime to ch k and i ≤ j.

Example 10.5.2(?): Considering computing Kn(F ) (mod m) for m odd and for number fields F ,
as predicted by Lichtenbaum-Quillen. The mod m AHSS is simple in this case, since cohdimF ≤ 2:

• • • •

• • • H0
Gal(F ;Z/m)

• • H0
Gal(F ;µm) H1

Gal(F ;µm)

• H0
Gal(F ;µ⊗2

m ) H1
Gal(F ;µ⊗2

m ) H2
Gal(F ;µ⊗2

m )

...
... H2

Gal(F ;µ⊗3
m ) •

...
... •

...

∂

Link to Diagram

The differentials are all zero, so we obtain

K2j−1(F ;Z/m) ∼−→ H1
Gal(F ;µ⊗jm )

and

0→ H2
Gal(F, µ⊗j+1

m )→ K2j(F ;Z/m)→ H0
Gal(F ;µ⊗jm )→ 0.
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Theorem 10.5.3(Bloch, Levine, Friedlander, Rost, Suslin, Voevodsky, · · · ).
The above conjectures are true except for Beilinson-Soulé vanishing, i.e. the conjecture that
Zmot(j)(X) is supported in positive degrees n ≥ 0.

Remark 10.5.4: Remarkably, one can write a definition somewhat easily which turns out to work
in a fair amount of generality for schemes over a Dedekind domain.

Definition 10.5.5 (Higher Chow groups)
For X ∈ Var/k, let zj(X,n) be the free abelian group of codimension j irreducible closed
subschemes of X×

F
∆n intersecting all faces properly, where

∆n = Spec
(
F [T0, · · · , Tn]
〈
∑
Ti − 1〉

)
∼= An/F ,

which contains “faces” ∆m for m ≤ n, and properly means the intersections are of the expected
codimension. Then Bloch’s complex of higher cycles is the complex zj(X, •) where the
boundary map is the alternating sum

zj(X,n) 3 ∂(Z) =
n∑
i=0

(−1)i[Z ∩ Facei(X ×∆n−1)],

Bloch’s higher Chow groups are the cohomology of this complex:

Chj(X,n) := Hn(zj(X, •)),

and then the following complex has the expected properties:

Zmot(j)(X) := zj(X, •)[−2j]

Remark 10.5.6: Déglise’s talks present the machinery one needs to go through to verify this!

E 10.6 Milnor K-theory and Bloch-Kato e

Remark 10.6.1: How is motivic cohomology related to the Bloch-Kato conjecture? Recall from
Danny’s talks that for F ∈ Field then one can form

KM
j (F ) = (F×)⊗

j
F / 〈Steinberg relations〉 ,

and for m ≥ 1 prime to chF we can take Tate/Galois/cohomological symbols

TateSymb : KM
j (F )/m→ Hj

Gal(F ;µ⊗jm ).

where µ⊗jm is the jth Tate twist. Bloch-Kato conjectures that this is an isomorphism, and it is a
theorem due to Rost-Voevodsky that the Tate symbol is an isomorphism. The following theorem
says that a piece of Hmot can be identified as something coming from KM:
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Theorem 10.6.2(Nesterenko-Suslin, Totaro).
For any F ∈ Field, for each j ≥ 1 there is a natural isomorphism

KM
j (F ) ∼−→ Hj

mot(F ;Z(j)).

Remark 10.6.3: Taking things mod m yields

KM
j (F )/m ∼−→ Hj

mot(F ;Z/m(j)) ∼,BL−−−→ Hj
ét(F ;µ⊗jm ),

where the conjecture is that the obstruction term for the first isomorphism coming from Hj+1 van-
ishes for local objects, and Beilinson-Lichtenbaum supplies the second isomorphism. The composite
is the Bloch-Kato isomorphism, so Beilinson-Lichtenbaum =⇒ Bloch-Kato, and it turns out that
the converse is essentially true as well. This is also intertwined with the Hilbert 90 conjecture.

Tomorrow: we’ll discard coprime hypotheses, look at p-adic phenomena, and look at what happens
étale locally.

11 Matthew Morrow, Talk 2 (Friday, July 16)

Remark 11.0.1: A review of yesterday:

• K-theory can be refined by motivic cohomology, i.e. it breaks into pieces. More precisely we
have the Atiyah-Hirzebruch spectral sequence, and even better, the spectrum K(X) has a
motivic filtration with graded pieces Zmot(j)(X)[2j].

• The Zmot(j)(X) correspond to algebraic cycles and étale cohomology mod m, where m is
prime to ch k, due to Beilinson-Lichtenbaum and Beilinson-Bloch.

Today we’ll look at the classical mod p theory, and variations on a theme: e.g. replacing K-theory
with similar invariants, or weakening the hypotheses on X. We’ll also discuss recent progress in the
case of étale K-theory, particularly p-adically.

E
11.1 Mod p motivic cohomology in

characteristic p e

Remark 11.1.1: For F ∈ Field and m ≥ 1 prime to chF , the Atiyah-Hirzebruch spectral sequence
mod m takes the following form:

Ei,j2 = H i,j
mot(F,Z/m(−j)) BL=

{
H i−j

Gal (F ;µ⊗jm ) i ≤ 0
0 i > 0.

.

Thus E2 is supported in a quadrant four wedge:
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We know the axis:

Hj(F ;µ⊗jm ) ∼−→ KM
j (F )/m.

What happens if m > p = chF for chF > 0?

Theorem 11.1.2(Izhbolidin (90), Bloch-Kato-Gabber (86), Geisser-Levine (2000)).
Let F ∈ Fieldch=p, then

• KM
j (F ) and Kj(F ) are p-torsionfree.

• Kj(F )/p←−↩ KM
j (F )/p

dLog
↪−−−→ Ωj

F

Definition 11.1.3 (dLog)
The dLog map is defined as

dLog : KM
j (F )/p→ Ωj

f⊗
i

αi 7→
∧

i

dαi
αi

,

and we write Ωj
F,log := im dLog.
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Remark 11.1.4: So the above theorem is about showing the injectivity of dLog. What Geisser-
Levine really prove is that

Zmot(j)(F )/p ∼−→ Ωj
F,log[−j].

Thus the mod p Atiyah-Hirzebruch spectral sequence, just motivic cohomology lives along the axis

Ei,j2 =
{

Ω−jF,log i = 0
0 else

⇒ Ki−j(F ;Z/p)

and Kj(F )/p ∼−→ Ωj
F,log.

Remark 11.1.5: So life is much nicer in p matching the characteristic! Some remarks:

• The isomorphism remains true with F replaced any F ∈ Algreg,loc,Noeth
/Fp

:

Kj(F )/p ∼−→ Ωj
F,log.

• The hard part of the theorem is showing that mod p, there is a surjection KM
j (F )� Kj(F ).

The proof goes through using zj(F, •) and the Atiyah-Hirzebruch spectral sequence, and seems
to necessarily go through motivic cohomology.

Question 11.1.6
Is there a direct proof? Or can one even just show that

Kj(F )/p = 0 for j > [F : Fp]tr?

Conjecture 11.1.7(Beilinson).
This becomes an isomorphism after tensoring to Q, so

KM
j (F )⊗Z Q ∼−→ Kj(F )⊗Z Q.

This is known to be true for finite fields.

Conjecture 11.1.8.

H i
mot(F ;Z(j)) is torsion unless i = j.

This is wide open, and would follow from the following:

Conjecture 11.1.9(Parshin).
If X ∈ smVarproj

/k over k a finite field, then

H i
mot(X;Z(j)) is torsion unless i = 2j.
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E 11.2 Variants on a theme e

Question 11.2.1
What things (other than K-theory) can be motivically refined?

11.2.1 G-theory

Remark 11.2.2: Bloch’s complex zj(X, •) makes sense for any X ∈ Sch, and for X finite type over
R a field or a Dedekind domain. Its homology yields an Atiyah-Hirzebruch spectral sequence

Ei,j2 = CH−j(X,−i− j)⇒ G−i−j(X),

where G-theory is the K-theory of Coh(X). See Levine’s work.

Then zj(X, •) defines motivic Borel-Moore homology5 which refines G-theory.

11.2.2 KH-theory

Remark 11.2.3: This is Weibel’s “homotopy invariant K-theory”, obtained by forcing homotopy
invariance in a universal way, which satisfies

KH(R[T ]) ∼−→ KH(R) ∀R.

One defines this as a simplicial spectrum

KH(R) :=
∣∣∣∣∣q 7→ K

(
R[T0, · · · , Tq]
1−

∑q
i=0 Ti

)∣∣∣∣∣.

Remark 11.2.4: One hopes that for (reasonable) schemes X, there should exist an A1-invariant
motivic cohomology such that

• There is an Atiyah-Hirzebruch spectral sequence converging to KH
i−j(X).

• Some Beilinson-Lichtenbaum properties.
• Some relation to cycles.

For X Noetherian with krulldimX < ∞, the state-of-the-art is that stable homotopy machinery
can produce an Atiyah-Hirzebruch spectral sequence using representability of KH in SH(X) along
with the slice filtration.

5Note that this is homology and not cohomology!
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11.2.3 Motivic cohomology with modulus

Remark 11.2.5: Let X ∈ smVar and D ↪→ X an effective (not necessarily reduced) Cartier divisor
– thought of where X \D is an open which is compactified after adding D. Then one constructs
zj (X|D, •) which are complexes of cycles in “good position” with respect to the boundary D.

Conjecture 11.2.6.
There is an Atiyah-Hirzebruch spectral sequence

Ei,j2 = CHj (X|D, (−i− j))⇒ K−i−j(X,D),

where the limiting term involves relative K-groups. So there is a motivic (i.e. cycle-theoretic)
description of relative K-theory.

E 11.3 Étale K-theory e

Remark 11.3.1: K-theory is simple étale-locally, at least away from the residue characteristic.

Theorem 11.3.2(Gabber, Suslin).
If A ∈ locRing is strictly Henselian with residue field k and m ≥ 1 is prime to ch k, then

Kn(A;Z/m) ∼−→ Kn(k;Z/m) ∼−→
{
µm(k)⊗

n
2 n even

0 n odd.

Remark 11.3.3: The problem is that K-theory does not satisfy étale descent!

For B ∈ GalFielddeg<∞
/A , K(B)hGal(B/A) 6∼= K(A).

View K-theory as a presheaf of spectra (in the sense of infinity sheaves), and define étale K-theory
Két to be the universal modification of K-theory to satisfy étale descent. This was considered by
Thomason, Soulé, Friedlander.

Remark 11.3.4: Even better than Két is Clausen’s Selmer K-theory, which does the right thing
integrally. Up to subtle convergence issues, for any X ∈ Sch and m prime to chX (the characteristic
of the residue field) one gets an Atiyah-Hirzebruch spectral sequence

Ei,j2 = H i−j
ét (X;µ⊗−jm )⇒ Két

i−j(X;Z/m).

Letting F be a field and m prime to chF , the spectral sequence looks as follows:
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• H0
Gal(F ;Z/m) H1(F ;Z/m) •

H0(F ;µ⊗1
m ) H1

Gal(F ;µm) H2(F ;µm)

H0(F ;µ⊗2
m ) H1(F ;µ⊗2

m ) H2
Gal(F ;µ⊗2

m ) H3
Gal(F ;µ⊗2

m )

...

Link to Diagram

The whole thing converges to Két
−i−j(F ;Z/m), and the sector conjecturally converges to K−i−j(F ;Z/m)

by the Beilinson-Lichtenbaum conjecture.

E 11.4 Recent Progress e

Remark 11.4.1: We now focus on

• Étale K-theory, Két

• mod p coefficients, even period
• p-adically complete rings

The last is not a major restriction, since there is an arithmetic gluing square
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R R
[

1
p

]

R̂ R̂
[

1
p

]

Link to Diagram

Here the bottom-left is the p-adic completion, and the right-hand side uses classical results when p
is prime to all residue characteristic classes.

Theorem 11.4.2(Bhatt-M-Scholze, Antieau-Matthew-M-Nikolaus, Lüders–M, Kel-
ly-M).
For any p-adically complete ring R (or in more generality, derived p-complete simplicial rings)
one can associate a theory of p-adic étale motivic cohomology – p-complete complexes
Zp(j)(R) for j ≥ 0 satisfying an analog of the Beilinson-Lichtenbaum conjectures:

1. An Atiyah-Hirzebruch spectral sequence:

Ei,j2 = H i−j(Zp(j)(R))⇒ Két
−i−j(R;Z)p̂.

2. Known low weights:

Zp(0)(R) ∼−→ RΓét(R;Zp)

Zp(1)(R) ∼−→
̂︷ ︸︸ ︷

RΓét(R;Gm)[−1].

3. Range of support: Zp(j)(R) is supported in degrees d ≤ j + 1, and even in degrees
d ≤ n + 1 if the R-module Ω1

R/pR is generated by n′ < n elements. It is supported in
non-negative degrees if R is quasisyntomic, which is a mild smoothness condition that
holds in particular if R is regular.

4. An analog of Nesterenko-Suslin: for R ∈ locRing,

K̂M
j (R) ∼−→ Hj(Zp(j)(R)),

where K̂M is the “improved Milnor K-theory” of Gabber-Kerz.

5. Comparison to Geisser-Levine: if R is smooth over a perfect characteristic p field, then

Zp(j)(R)/p ∼−→ RΓét(SpecR; Ωj
log)[−j],

where [−j] is a right-shift.

Remark 11.4.3: For simplicity, we’ll write H i(j) := H i(Zp(j)(R)). The spectral sequence looks
like the following:
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It converges to Két
−i−j(R;Z/p). The 0-column is

̂︷ ︸︸ ︷
KM
−j(R) , and we understand the 1-column: we

have

Hj+1 ∼−→ lim←−
r

ṽr(j)(R).

where ṽr(j)(R) are the mod pr weight j Artin-Schreier obstruction. For example,

ṽ1(j)(R) := coker

1− C−1 : Ωj
R/pR →

Ωj
R/pR

∂Ωj−1
R/pR

 = R

pR+
{
ap − a

∣∣∣ a ∈ R} .
These are weird terms that capture some class field theory and are related to the Tate and Kato
conjectures.

Theorem 11.4.4((continued)).
If R is local, then the 3rd quadrant of the above spectral sequence gives an Atiyah-Hirzebruch
spectral sequence converging to K−i−j(R;Zp).

Remark 11.4.5: So we get things describing étale K-theory, and after discarding a little bit we get
something describing usual K-theory. Moreover, for any local p-adically complete ring R, we have
broken K∗(R;Zp) into motivic pieces.

Example 11.4.6(?): We same that for number fields, cohdim ≤ 2 yields a simple spectral sequence
relating K groups to Galois cohomology. Consider now a truncated polynomial algebra A = k[T ]/T r
for k ∈ PerfFieldch=p and let r ≥ 1. Then by the general bounds given in the theorem, H i(j) = 0
unless 0 ≤ i ≤ 2, using that Ω can be generated by one element. Slightly more work will show
H0, H2 vanish unless i = j = 0 (so higher weights vanish), since they’re p-torsionfree and are killed
by p.

So the spectral sequence collapses:
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H0(0) H1(0) 0 0

H0(1) H1(1) H2(1) 0 0

H0(2) H1(2) H2(2) H3(2) 0 0

. . . H1(3) H2(3) H3(3) H4(3) 0 0

...
...

...
...

Link to Diagram

So the Atiyah-Hirzebruch spectral sequence collapses to

Kn

(
K[T ]
〈T r〉

, 〈T 〉
)

=

H
1
(
Zp
(
n+ 1

2

))
(R) n odd

0 n even.
.

When r = 2, one can even valuation these nontrivial terms.

Question 11.4.7
What is the motivic cohomology for regular schemes not over a field? We’d like to understand this
in general.
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