# Matthew Morrow, Talk 2 (Friday, July 16) :::{.remark} A review of yesterday: - \(\K\dash\)theory can be refined by motivic cohomology, i.e. it breaks into pieces. More precisely we have the Atiyah-Hirzebruch spectral sequence, and even better, the spectrum $\K(X)$ has a motivic filtration with graded pieces $\ZZ_\mot(j)(X)[2j]$. - The $\ZZ_\mot(j)(X)$ correspond to algebraic cycles and étale cohomology mod $m$, where $m$ is prime to $\ch k$, due to Beilinson-Lichtenbaum and Beilinson-Bloch. Today we'll look at the classical mod $p$ theory, and variations on a theme: e.g. replacing \(\K\dash\)theory with similar invariants, or weakening the hypotheses on $X$. We'll also discuss recent progress in the case of étale \(\K\dash\)theory, particularly \(p\dash \)adically. ::: ## Mod $p$ motivic cohomology in characteristic $p$ :::{.remark} For $F\in\Field$ and $m\geq 1$ prime to $\ch F$, the Atiyah-Hirzebruch spectral sequence mod $m$ takes the following form: \[ E_2^{i, j} = H_\mot^{i, j}(F, \ZZ/m(-j)) \equalsbecause{BL} \begin{cases} H^{i-j}_\Gal(F; \mu_m^{\tensor j}) & i\leq 0 \\ 0 & i>0 . \end{cases} .\] Thus $E_2$ is supported in a quadrant four wedge: ![](figures/2021-07-16_11-12-08.png) We know the axis: \[ H^j(F; \mu_m^{\tensor j}) \mapsvia{\sim} \KM_j(F)/m .\] What happens if $m>p = \ch F$ for $\ch F > 0$? ::: :::{.theorem title="Izhbolidin (90), Bloch-Kato-Gabber (86), Geisser-Levine (2000)"} Let $F\in \Field^{\ch = p}$, then - $\KM_j(F)$ and $\K_j(F)$ are $p\dash$torsionfree. - $\K_j(F)/p \injectsfromvia{} \KM_j(F)/p \injectsvia{\dlog} \Omega_F^j$ ::: :::{.definition title="$\dlog$"} The $\dlog$ map is defined as \[ \dlog: \KM_j(F) / p &\to \Omega_f^j \\ \bigotimes_{i} \alpha_i &\mapsto \Extprod_i {d \alpha_i \over \alpha_i} ,\] and we write $\Omega^j_{F, \log} \da \im \dlog$. ::: :::{.remark} So the above theorem is about showing the injectivity of $\dlog$. What Geisser-Levine really prove is that \[ \ZZ_\mot(j)(F)/p \mapsvia{\sim} \Omega_{F, \log}^j[-j] .\] Thus the mod $p$ Atiyah-Hirzebruch spectral sequence, just motivic cohomology lives along the axis \[ E_2^{i, j} = \begin{cases} \Omega_{F, \log}^{-j} & i=0 \\ 0 & \text{else } \end{cases} \abuts \K_{i-j}(F; \ZZ/p) \] and $\K_j(F)/p \mapsvia{\sim} \Omega_{F, \log}^j$. ::: :::{.remark} So life is much nicer in $p$ matching the characteristic! Some remarks: - The isomorphism remains true with $F$ replaced any $F\in \Alg\slice{\FF_p}^{\reg, \loc, \noeth}$: \[ \K_j(F)/p \mapsvia{\sim} \Omega_{F, \log}^j .\] - The hard part of the theorem is showing that mod $p$, there is a surjection $\KM_j(F) \surjects \K_j(F)$. The proof goes through using $z^j(F, \bullet)$ and the Atiyah-Hirzebruch spectral sequence, and seems to necessarily go through motivic cohomology. ::: :::{.question} Is there a direct proof? Or can one even just show that \[ \K_j(F)/p = 0 \text{ for } j> [F: \FF_p]_\tr ?\] ::: :::{.conjecture title="Beilinson"} This becomes an isomorphism after tensoring to $\QQ$, so \[ \KM_j(F) \tensor_\ZZ \QQ \mapsvia{\sim} \K_j(F)\tensor_\ZZ \QQ .\] This is known to be true for finite fields. ::: :::{.conjecture} \[ H_\mot^i(F; Z(j)) \text{ is torsion unless }i=j .\] This is wide open, and would follow from the following: ::: :::{.conjecture title="Parshin"} If $X\in \smooth\Var^{\proj}\slice{k}$ over $k$ a finite field, then \[ H_\mot^i(X; Z(j)) \text{ is torsion unless } i=2j .\] ::: ## Variants on a theme :::{.question} What things (other than \(\K\dash\)theory) can be motivically refined? ::: ### $\G\dash$theory :::{.remark} Bloch's complex $z^j(X, \bullet)$ makes sense for any $X\in \Sch$, and for $X$ finite type over $R$ a field or a Dedekind domain. Its homology yields an Atiyah-Hirzebruch spectral sequence \[ E_2^{i, j} = \CH^{-j}(X, -i-j) \abuts \G_{-i-j}(X) ,\] where $\G\dash$theory is the \(\K\dash\)theory of $\Coh(X)$. See Levine's work. Then $z^j(X, \bullet)$ defines **motivic Borel-Moore homology**[^it_is_homology] which refines \(\G\dash\)theory. [^it_is_homology]: Note that this is homology and not cohomology! ::: ### $\KH\dash$theory :::{.remark} This is Weibel's "homotopy invariant \(\K\dash\)theory", obtained by forcing homotopy invariance in a universal way, which satisfies \[ \KH(R[T]) \mapsvia{\sim} \KH(R) && \forall R .\] One defines this as a simplicial spectrum \[ \KH(R) \da \realize{ q \mapsto \K\qty{R[T_0, \cdots, T_q] \over 1 - \sum_{i=0}^q T_i} } .\] ::: :::{.remark} One hopes that for (reasonable) schemes $X$, there should exist an $\AA^1\dash$invariant motivic cohomology such that - There is an Atiyah-Hirzebruch spectral sequence converging to $\KH_{i-j}(X)$. - Some Beilinson-Lichtenbaum properties. - Some relation to cycles. For $X$ Noetherian with $\krulldim X<\infty$, the state-of-the-art is that stable homotopy machinery can produce an Atiyah-Hirzebruch spectral sequence using representability of $\KH$ in $\SH(X)$ along with the slice filtration. ::: ### Motivic cohomology with modulus :::{.remark} Let $X\in\smooth\Var$ and $D\injects X$ an effective (not necessarily reduced) Cartier divisor -- thought of where $X\sm D$ is an open which is compactified after adding $D$. Then one constructs $z^j\qty{ {X\vert D }, \bullet}$ which are complexes of cycles in "good position" with respect to the boundary $D$. ::: :::{.conjecture} There is an Atiyah-Hirzebruch spectral sequence \[ E_2^{i, j} = \CH^{j}\qty{ {X \vert D }, (-i-j) } \abuts \K_{-i-j}(X, D) ,\] where the limiting term involves *relative $K\dash$groups*. So there is a motivic (i.e. cycle-theoretic) description of relative \(\K\dash\)theory. ::: ## Étale \(\K\dash\)theory :::{.remark} \(\K\dash\)theory is simple étale-locally, at least away from the residue characteristic. ::: :::{.theorem title="Gabber, Suslin"} If $A \in\loc\Ring$ is strictly Henselian with residue field $k$ and $m \geq 1$ is prime to $\ch k$, then \[ \K_n(A; \ZZ/m) \mapsvia{\sim} \K_n(k; \ZZ/m) \mapsvia{\sim} \begin{cases} \mu_m(k)^{\tensor {n\over 2}} & n \text{ even} \\ 0 & n \text{ odd}. \end{cases} \] ::: :::{.remark} The problem is that \(\K\dash\)theory does *not* satisfy étale descent! \[ \text{For } B\in\Gal\Field\slice{A}^{\deg < \infty}, && K(B)^{h\Gal\qty{B\slice A}} \not\cong K(A) .\] View \(\K\dash\)theory as a presheaf of spectra (in the sense of infinity sheaves), and define **étale \(\K\dash\)theory** $K^\et$ to be the universal modification of \(\K\dash\)theory to satisfy étale descent. This was considered by Thomason, Soulé, Friedlander. ::: :::{.remark} Even better than $\K^\et$ is Clausen's **Selmer \(\K\dash\)theory**, which does the right thing integrally. Up to subtle convergence issues, for any $X\in \Sch$ and $m$ prime to $\ch X$ (the characteristic of the residue field) one gets an Atiyah-Hirzebruch spectral sequence \[ E_2^{i, j} = H_\et^{i-j}(X; \mu_m^{\tensor -j}) \abuts \K_{i-j}^{\et}(X; \ZZ/m) .\] Letting $F$ be a field and $m$ prime to $\ch F$, the spectral sequence looks as follows: \begin{tikzcd} &&&&&& {} \\ \\ \\ \\ \bullet &&&&&& \textcolor{rgb,255:red,92;green,92;blue,214}{H^0_\Gal(F; \ZZ/m)} & {H^1(F; \ZZ/m)} &&&&&&& \bullet \\ &&&&& \textcolor{rgb,255:red,92;green,92;blue,214}{H^0(F; \mu_m^{\tensor 1})} & \textcolor{rgb,255:red,92;green,92;blue,214}{H^1_\Gal(F; \mu_m^{})} & {H^2(F; \mu_m^{})} \\ &&&& \textcolor{rgb,255:red,92;green,92;blue,214}{H^0(F; \mu_m^{\tensor 2})} & \textcolor{rgb,255:red,92;green,92;blue,214}{H^1(F; \mu_m^{\tensor 2})} & \textcolor{rgb,255:red,92;green,92;blue,214}{H^2_\Gal(F; \mu_m^{\tensor 2})} & {H^3_\Gal(F; \mu_m^{\tensor 2})} \\ &&& {} &&& \vdots \\ &&&&&& {} \\ &&&&&& {} \arrow[color={rgb,255:red,135;green,135;blue,135}, dotted, from=5-1, to=5-15] \arrow[color={rgb,255:red,135;green,135;blue,135}, dotted, from=1-7, to=10-7] \arrow[dashed, no head, from=5-7, to=8-4] \arrow[dashed, no head, from=5-7, to=9-7] \arrow[from=6-6, to=7-8] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTYsWzYsNCwiSF4wX1xcR2FsKEY7IFxcWlovbSkiLFsyNDAsNjAsNjAsMV1dLFswLDQsIlxcYnVsbGV0Il0sWzE0LDQsIlxcYnVsbGV0Il0sWzYsMF0sWzYsOV0sWzYsNSwiSF4xX1xcR2FsKEY7IFxcbXVfbV57fSkiLFsyNDAsNjAsNjAsMV1dLFs2LDYsIkheMl9cXEdhbChGOyBcXG11X21ee1xcdGVuc29yIDJ9KSIsWzI0MCw2MCw2MCwxXV0sWzcsNCwiSF4xKEY7IFxcWlovbSkiXSxbNyw1LCJIXjIoRjsgXFxtdV9tXnt9KSJdLFs3LDYsIkheM19cXEdhbChGOyBcXG11X21ee1xcdGVuc29yIDJ9KSJdLFs1LDYsIkheMShGOyBcXG11X21ee1xcdGVuc29yIDJ9KSIsWzI0MCw2MCw2MCwxXV0sWzQsNiwiSF4wKEY7IFxcbXVfbV57XFx0ZW5zb3IgMn0pIixbMjQwLDYwLDYwLDFdXSxbNSw1LCJIXjAoRjsgXFxtdV9tXntcXHRlbnNvciAxfSkiLFsyNDAsNjAsNjAsMV1dLFszLDddLFs2LDhdLFs2LDcsIlxcdmRvdHMiXSxbMSwyLCIiLDAseyJjb2xvdXIiOlswLDAsNTNdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19XSxbMyw0LCIiLDAseyJjb2xvdXIiOlswLDAsNTNdLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkb3R0ZWQifX19XSxbMCwxMywiIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn0sImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMCwxNCwiIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn0sImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTIsOV1d) The whole thing converges to $\K_{-i-j}^\et(F; \ZZ/m)$, and the sector conjecturally converges to $\K_{-i-j}(F; \ZZ/m)$ by the Beilinson-Lichtenbaum conjecture. ::: ## Recent Progress :::{.remark} We now focus on - Étale \(\K\dash\)theory, $\K^\et$ - mod $p$ coefficients, even period - \(p\dash \)adically complete rings The last is not a major restriction, since there is an arithmetic gluing square \begin{tikzcd} R && {R\invert{p}} \\ \\ {\hat{R}} && {\hat{R}\invert{p}} \arrow[from=1-1, to=3-1] \arrow[from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJSIl0sWzIsMCwiUlxcaW52ZXJ0e3B9Il0sWzIsMiwiXFxoYXR7Un1cXGludmVydHtwfSJdLFswLDIsIlxcaGF0e1J9Il0sWzAsM10sWzMsMl0sWzEsMl0sWzAsMV1d) Here the bottom-left is the \(p\dash \)adic completion, and the right-hand side uses classical results when $p$ is prime to all residue characteristic classes. ::: :::{.theorem title="Bhatt-M-Scholze, Antieau-Matthew-M-Nikolaus, Lüders-M, Kelly-M"} For any \(p\dash \)adically complete ring $R$ (or in more generality, derived $p\dash$complete simplicial rings) one can associate a theory of **$p\dash$adic étale motivic cohomology** -- $p\dash$complete complexes $\ZZ_p(j)(R)$ for $j\geq 0$ satisfying an analog of the Beilinson-Lichtenbaum conjectures: 1. An Atiyah-Hirzebruch spectral sequence: \[ E_2^{i, j} = H^{i-j}(\ZZ_p(j)(R)) \abuts \K_{-i-j}^\et(R; \ZZ)\complete{p} .\] 2. Known low weights: \[ \ZZ_p(0)(R) &\mapsvia{\sim} \RR \Gamma_\et(R; \ZZ_p) \\ \ZZ_p(1)(R) &\mapsvia{\sim} \takecompletion{\RR \Gamma_\et(R; \GG_m)} [-1] .\] 3. Range of support: $\ZZ_p(j)(R)$ is supported in degrees $d\leq j+1$, and even in degrees $d\leq n+1$ if the $R\dash$module $\Omega_{R/pR}^1$ is generated by $n' [Link to Diagram](https://q.uiver.app/?q=WzAsMzIsWzUsMiwiSF4wKDApIixbMCw2MCw2MCwxXV0sWzUsMywiSF4xKDEpIixbMCw2MCw2MCwxXV0sWzUsNCwiSF4yKDIpIl0sWzUsNSwiSF4zKDMpIl0sWzQsMywiSF4wKDEpIl0sWzQsNCwiSF4xKDIpIixbMCw2MCw2MCwxXV0sWzQsNSwiSF4yKDMpIl0sWzMsNCwiSF4wKDIpIl0sWzYsMiwiSF4xKDApIl0sWzcsMiwiMCJdLFs2LDMsIkheMigxKSJdLFs2LDQsIkheMygyKSJdLFs2LDUsIkheNCgzKSJdLFs3LDMsIjAiXSxbNyw0LCIwIl0sWzcsNSwiMCJdLFs4LDUsIjAiXSxbOCw0LCIwIl0sWzgsMywiMCJdLFs4LDIsIjAiXSxbNiwwXSxbNiw3XSxbMiw1LCJcXGRkb3RzIl0sWzMsNSwiSF4xKDMpIl0sWzMsNiwiXFx2ZG90cyJdLFs0LDYsIlxcdmRvdHMiXSxbNSw2LCJcXHZkb3RzIl0sWzYsNiwiXFx2ZG90cyJdLFs1LDBdLFs1LDddLFswLDJdLFsxMSwyXSxbNCwxMSwiIiwwLHsiY29sb3VyIjpbMCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFsyOCwyOSwiIiwwLHsiY29sb3VyIjpbMCwwLDYwXSwic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZG90dGVkIn0sImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMzAsMzEsIiIsMCx7ImNvbG91ciI6WzAsMCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9LCJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d) So the Atiyah-Hirzebruch spectral sequence collapses to \[ \K_n\qty{ { K[T] \over \gens{T^r} }, \gens{T}} = \begin{cases} H^1\qty{\ZZ_p\qty{n+1\over 2}} (R) & n \text{ odd} \\ 0 & n \text{ even}. \end{cases} .\] When $r=2$, one can even valuation these nontrivial terms. ::: :::{.question} What is the motivic cohomology for regular schemes not over a field? We'd like to understand this in general. :::