\newcommand{\cat}[1]{\mathsf{#1}} \newcommand{\Sets}[0]{{\mathsf{Set}}} \newcommand{\Set}[0]{{\mathsf{Set}}} \newcommand{\sets}[0]{{\mathsf{Set}}} \newcommand{\set}{{\mathsf{Set} }} \newcommand{\Poset}[0]{\mathsf{Poset}} \newcommand{\GSets}[0]{{G\dash\mathsf{Set}}} \newcommand{\Groups}[0]{{\mathsf{Group}}} \newcommand{\Grp}[0]{{\mathsf{Grp}}} % Modifiers \newcommand{\der}[0]{{\mathsf{d}}} \newcommand{\dg}[0]{{\mathsf{dg}}} \newcommand{\comm}[0]{{\mathsf{C}}} \newcommand{\pre}[0]{{\mathsf{pre}}} \newcommand{\fn}[0]{{\mathsf{fn}}} \newcommand{\smooth}[0]{{\mathsf{sm}}} \newcommand{\Aff}[0]{{\mathsf{Aff}}} \newcommand{\Ab}[0]{{\mathsf{Ab}}} \newcommand{\Add}[0]{{\mathsf{Add}}} \newcommand{\Assoc}[0]{\mathsf{Assoc}} \newcommand{\Ch}[0]{\mathsf{Ch}} \newcommand{\Coh}[0]{{\mathsf{Coh}}} \newcommand{\Comm}[0]{\mathsf{Comm}} \newcommand{\Cor}[0]{\mathsf{Cor}} \newcommand{\Corr}[0]{\mathsf{Cor}} \newcommand{\Fin}[0]{{\mathsf{Fin}}} \newcommand{\Free}[0]{\mathsf{Free}} \newcommand{\Tors}[0]{\mathsf{Tors}} \newcommand{\Perf}[0]{\mathsf{Perf}} \newcommand{\Unital}[0]{\mathsf{Unital}} \newcommand{\eff}[0]{\mathsf{eff}} \newcommand{\derivedcat}[1]{\mathbf{D} {#1} } \newcommand{\bderivedcat}[1]{\mathbf{D}^b {#1} } \newcommand{\Cx}[0]{\mathsf{Ch}} \newcommand{\Stable}[0]{\mathsf{Stab}} \newcommand{\ChainCx}[1]{\mathsf{Ch}\qty{ #1 } } \newcommand{\Vect}[0]{{ \mathsf{Vect} }} \newcommand{\kvect}[0]{{ \mathsf{Vect}\slice{k} }} \newcommand{\loc}[0]{{\mathsf{loc}}} \newcommand{\locfree}[0]{{\mathsf{locfree}}} \newcommand{\Bun}{{\mathsf{Bun}}} \newcommand{\bung}{{\mathsf{Bun}_G}} % Rings \newcommand{\Local}[0]{\mathsf{Local}} \newcommand{\Fieldsover}[1]{{ \mathsf{Fields}_{#1} }} \newcommand{\Field}[0]{\mathsf{Field}} \newcommand{\Number}[0]{\mathsf{Number}} \newcommand{\Numberfield}[0]{\Field\slice{\QQ}} \newcommand{\NF}[0]{\Numberfield} \newcommand{\Art}[0]{\mathsf{Art}} \newcommand{\Global}[0]{\mathsf{Global}} \newcommand{\Ring}[0]{\mathsf{Ring}} \newcommand{\Mon}[0]{\mathsf{Mon}} \newcommand{\CMon}[0]{\mathsf{CMon}} \newcommand{\CRing}[0]{\mathsf{CRing}} \newcommand{\DedekindDomain}[0]{\mathsf{DedekindDom}} \newcommand{\IntDomain}[0]{\mathsf{IntDom}} \newcommand{\Domain}[0]{\mathsf{Domain}} \newcommand{\DVR}[0]{\mathsf{DVR}} \newcommand{\Dedekind}[0]{\mathsf{Dedekind}} % Modules \newcommand{\modr}[0]{{\mathsf{Mod}\dash\mathsf{R}}} \newcommand{\modsleft}[1]{\mathsf{#1}\dash\mathsf{Mod}} \newcommand{\modsright}[1]{\mathsf{Mod}\dash\mathsf{#1}} \newcommand{\mods}[1]{{\mathsf{#1}\dash\mathsf{Mod}}} \newcommand{\stmods}[1]{{\mathsf{#1}\dash\mathsf{stMod}}} \newcommand{\grmods}[1]{{\mathsf{#1}\dash\mathsf{grMod}}} \newcommand{\comods}[1]{{\mathsf{#1}\dash\mathsf{coMod}}} \newcommand{\algs}[1]{{{#1}\dash\mathsf{Alg}}} \newcommand{\Quat}[0]{{\mathsf{Quat}}} \newcommand{\torsors}[1]{{\mathsf{#1}\dash\mathsf{Torsors}}} \newcommand{\torsorsright}[1]{\mathsf{Torsors}\dash\mathsf{#1}} \newcommand{\torsorsleft}[1]{\mathsf{#1}\dash\mathsf{Torsors}} \newcommand{\bimod}[2]{({#1}, {#2})\dash\mathsf{biMod}} \newcommand{\bimods}[2]{({#1}, {#2})\dash\mathsf{biMod}} \newcommand{\Mod}[0]{{\mathsf{Mod}}} \newcommand{\Dmod}[0]{{ \mathcal{D}\dash\mathsf{Mod} }} \newcommand{\zmod}[0]{{\mathbb{Z}\dash\mathsf{Mod}}} \newcommand{\rmod}[0]{{\mathsf{R}\dash\mathsf{Mod}}} \newcommand{\amod}[0]{{\mathsf{A}\dash\mathsf{Mod}}} \newcommand{\kmod}[0]{{\mathsf{k}\dash\mathsf{Mod}}} \newcommand{\gmod}[0]{{\mathsf{G}\dash\mathsf{Mod}}} \newcommand{\grMod}[0]{{\mathsf{grMod}}} \newcommand{\gr}[0]{{\mathsf{gr}\,}} \newcommand{\mmod}[0]{{\dash\mathsf{Mod}}} \newcommand{\Rep}[0]{{\mathsf{Rep}}} \newcommand{\Irr}[0]{{\mathsf{Irr}}} \newcommand{\Adm}[0]{{\mathsf{Adm}}} \newcommand{\semisimp}[0]{{\mathsf{ss}}} % Vector Spaces and Bundles \newcommand{\VectBundle}[0]{{ \Bun\qty{\GL_r} }} \newcommand{\VectBundlerk}[1]{{ \Bun\qty{\GL_{#1}} }} \newcommand{\VectSp}[0]{{ \VectSp }} \newcommand{\VectBun}[0]{{ \VectBundle }} \newcommand{\VectBunrk}[1]{{ \VectBundlerk{#1} }} \newcommand{\Bung}[0]{{ \Bun\qty{G} }} % Algebras \newcommand{\Hopf}[0]{\mathsf{Hopf}} \newcommand{\alg}[0]{\mathsf{Alg}} \newcommand{\Alg}[0]{{\mathsf{Alg}}} \newcommand{\scalg}[0]{\mathsf{sCAlg}} \newcommand{\cAlg}[0]{{\mathsf{cAlg}}} \newcommand{\calg}[0]{\mathsf{CAlg}} \newcommand{\liegmod}[0]{{\mathfrak{g}\dash\mathsf{Mod}}} \newcommand{\liealg}[0]{{\mathsf{Lie}\dash\mathsf{Alg}}} \newcommand{\Lie}[0]{\mathsf{Lie}} \newcommand{\kalg}[0]{{\mathsf{Alg}_{/k} }} \newcommand{\kAlg}[0]{{\mathsf{Alg}_{/k} }} \newcommand{\kSch}[0]{{\mathsf{Sch}_{/k}}} \newcommand{\rAlg}[0]{{\mathsf{Alg}_{/R}}} \newcommand{\ralg}[0]{{\mathsf{Alg}_{/R}}} \newcommand{\zalg}[0]{{\mathsf{Alg}_{/\ZZ}}} \newcommand{\CCalg}[0]{{\mathsf{Alg}_{\mathbb{C}} }} \newcommand{\dga}[0]{{\mathsf{dg\Alg} }} \newcommand{\cdga}[0]{{ \mathsf{c}\dga }} \newcommand{\dgla}[0]{{\dg\Lie\Alg }} \newcommand{\Poly}[0]{{\mathsf{Poly} }} \newcommand{\Hk}[0]{{\mathsf{Hk} }} \newcommand{\Grpd}[0]{{\mathsf{Grpd}}} \newcommand{\inftyGrpd}[0]{{ \underset{\infty}{ \Grpd } }} \newcommand{\Algebroid}[0]{{\mathsf{Algd}}} % Schemes and Sheaves \newcommand{\Loc}[0]{\mathsf{Loc}} \newcommand{\Locsys}[0]{\mathsf{LocSys}} \newcommand{\Ringedspace}[0]{\mathsf{RingSp}} \newcommand{\RingedSpace}[0]{\mathsf{RingSp}} \newcommand{\LRS}[0]{\Loc\RingedSpace} \newcommand{\IndCoh}[0]{{\mathsf{IndCoh}}} \newcommand{\Ind}[0]{{\mathsf{Ind}}} \newcommand{\Pro}[0]{{\mathsf{Pro}}} \newcommand{\DCoh}[0]{{\mathsf{DCoh}}} \newcommand{\QCoh}[0]{{\mathsf{QCoh}}} \newcommand{\Cov}[0]{{\mathsf{Cov}}} \newcommand{\sch}[0]{{\mathsf{Sch}}} \newcommand{\presh}[0]{ \underset{ \mathsf{pre} } {\mathsf{Sh} }} \newcommand{\prest}[0]{ {\underset{ \mathsf{pre} } {\mathsf{St} } } } \newcommand{\Descent}[0]{{\mathsf{Descent}}} \newcommand{\Desc}[0]{{\mathsf{Desc}}} \newcommand{\FFlat}[0]{{\mathsf{FFlat}}} \newcommand{\Perv}[0]{\mathsf{Perv}} \newcommand{\smsch}[0]{{ \smooth\Sch }} \newcommand{\Sch}[0]{{\mathsf{Sch}}} \newcommand{\Schf}[0]{{\mathsf{Schf}}} \newcommand{\Sh}[0]{{\mathsf{Sh}}} \newcommand{\St}[0]{{\mathsf{St}}} \newcommand{\Stacks}[0]{{\mathsf{St}}} \newcommand{\Vark}[0]{{\mathsf{Var}_{/k} }} \newcommand{\Var}[0]{{\mathsf{Var}}} \newcommand{\Open}[0]{{\mathsf{Open}}} % Homotopy \newcommand{\CW}[0]{{\mathsf{CW}}} \newcommand{\sset}[0]{{\mathsf{sSet}}} \newcommand{\sSet}[0]{{\mathsf{sSet}}} \newcommand{\ssets}[0]{\mathsf{sSet}} \newcommand{\hoTop}[0]{{\mathsf{hoTop}}} \newcommand{\hoType}[0]{{\mathsf{hoType}}} \newcommand{\ho}[0]{{\mathsf{ho}}} \newcommand{\SHC}[0]{{\mathsf{SHC}}} \newcommand{\SH}[0]{{\mathsf{SH}}} \newcommand{\Spaces}[0]{{\mathsf{Spaces}}} \newcommand{\GSpaces}[1]{{G\dash\mathsf{Spaces}}} \newcommand{\Spectra}[0]{{\mathsf{Sp}}} \newcommand{\Sp}[0]{{\mathsf{Sp}}} \newcommand{\Top}[0]{{\mathsf{Top}}} \newcommand{\Bord}[0]{{\mathsf{Bord}}} \newcommand{\TQFT}[0]{{\mathsf{TQFT}}} \newcommand{\Kc}[0]{{\mathsf{K^c}}} \newcommand{\triang}[0]{{\mathsf{triang}}} \newcommand{\TTC}[0]{{\mathsf{TTC}}} % Infty Cats \newcommand{\Finset}[0]{{\mathsf{FinSet}}} \newcommand{\Cat}[0]{\mathsf{Cat}} \newcommand{\Fun}[0]{{\mathsf{Fun}}} \newcommand{\Kan}[0]{{\mathsf{Kan}}} \newcommand{\Monoid}[0]{\mathsf{Mon}} \newcommand{\Arrow}[0]{\mathsf{Arrow}} \newcommand{\quasiCat}[0]{{ \mathsf{quasiCat} } } \newcommand{\inftycat}[0]{{ \underset{\infty}{ \Cat} }} \newcommand{\inftycatn}[1]{{ \underset{(\infty, {#1})}{ \Cat} }} \newcommand{\core}[0]{{ \mathsf{core} }} % New? \newcommand{\Prism}[0]{\mathsf{Prism}} \newcommand{\Solid}[0]{\mathsf{Solid}} \newcommand{\WCart}[0]{\mathsf{WCart}} % Motivic \newcommand{\Torsor}[1]{{\mathsf{#1}\dash\mathsf{Torsor}}} \newcommand{\Torsorleft}[1]{{\mathsf{#1}\dash\mathsf{Torsor}}} \newcommand{\Torsorright}[1]{{\mathsf{Torsor}\dash\mathsf{#1} }} \newcommand{\Quadform}[0]{{\mathsf{QuadForm}}} \newcommand{\HI}[0]{{\mathsf{HI}}} \newcommand{\DM}[0]{{\mathsf{DM}}} \newcommand{\hoA}[0]{{\mathsf{ho}_*^{\scriptstyle \AA^1}}} \newcommand\Tw[0]{\mathsf{Tw}} \newcommand\SB[0]{\mathsf{SB}} \newcommand\CSA[0]{\mathsf{CSA}} \newcommand{\CSS}[0]{{ \mathsf{CSS} } } % Unsorted \newcommand{\FGL}[0]{\mathsf{FGL}} \newcommand{\FI}[0]{{\mathsf{FI}}} \newcommand{\CE}[0]{{\mathsf{CE}}} \newcommand{\Fuk}[0]{{\mathsf{Fuk}}} \newcommand{\Lag}[0]{{\mathsf{Lag}}} \newcommand{\Mfd}[0]{{\mathsf{Mfd}}} \newcommand{\Riem}[0]{\mathsf{Riem}} \newcommand{\Wein}[0]{{\mathsf{Wein}}} \newcommand{\gspaces}[1]{{#1}\dash{\mathsf{Spaces}}} \newcommand{\deltaring}[0]{{\delta\dash\mathsf{Ring}}} \newcommand{\terminal}[0]{{ \mathscr{1}_{\scriptscriptstyle \uparrow} }} \newcommand{\initial}[0]{{ \mathscr \emptyset^{\scriptscriptstyle \downarrow} }} % Universal guys \newcommand{\coeq}[0]{\operatorname{coeq}} \newcommand{\cocoeq}[0]{\operatorname{eq}} \newcommand{\dgens}[1]{\gens{\gens{ #1 }}} \newcommand{\ctz}[1]{\, {\converges{{#1} \to\infty}\longrightarrow 0} \, } \newcommand{\conj}[1]{{\overline{{#1}}}} \newcommand{\complex}[1]{{ {#1}_{\scriptscriptstyle \bullet}} } \newcommand{\cocomplex}[1]{ { {#1}^{\scriptscriptstyle \bullet}} } \newcommand{\bicomplex}[1]{{ {#1}_{\scriptscriptstyle \bullet, \bullet}} } \newcommand{\cobicomplex}[1]{ { {#1}^{\scriptscriptstyle \bullet, \bullet}} } \newcommand{\floor}[1]{{\left\lfloor #1 \right\rfloor}} \newcommand{\ceiling}[1]{{\left\lceil #1 \right\rceil}} \newcommand{\fourier}[1]{\widehat{#1}} \newcommand{\embedsvia}[1]{\xhookrightarrow{#1}} \newcommand{\openimmerse}[0]{\underset{\scriptscriptstyle O}{\hookrightarrow}} \newcommand{\weakeq}[0]{\underset{\scriptscriptstyle W}{\rightarrow}} \newcommand{\fromvia}[1]{\xleftarrow{#1}} \newcommand{\generators}[1]{\left\langle{#1}\right\rangle} \newcommand{\gens}[1]{\left\langle{#1}\right\rangle} \newcommand{\globsec}[1]{{{\Gamma}\qty{#1} }} \newcommand{\Globsec}[1]{{{\Gamma}\qty{#1} }} \newcommand{\langL}[1]{ {}^{L}{#1} } \newcommand{\equalsbecause}[1]{\overset{#1}{=}} \newcommand{\congbecause}[1]{\overset{#1}{\cong}} \newcommand{\congas}[1]{\underset{#1}{\cong}} \newcommand{\isoas}[1]{\underset{#1}{\cong}} \newcommand{\addbase}[1]{{ {}_{\pt} }} \newcommand{\ideal}[1]{\mathcal{#1}} \newcommand{\adjoin}[1]{ { \left[ \scriptstyle {#1} \right] } } \newcommand{\polynomialring}[1]{ { \left[ {#1} \right] } } \newcommand{\htyclass}[1]{ { \left[ {#1} \right] } } \newcommand{\qtext}[1]{{\quad \operatorname{#1} \quad}} \newcommand{\abs}[1]{{\left\lvert {#1} \right\rvert}} \newcommand{\stack}[1]{\mathclap{\substack{ #1 }}} \newcommand{\powerseries}[1]{ { \left[ {#1} \right] } } \newcommand{\functionfield}[1]{ { \left( {#1} \right) } } \newcommand{\rff}[1]{ \functionfield{#1} } \newcommand{\fps}[1]{{\left[\left[ #1 \right]\right] }} \newcommand{\formalseries}[1]{ \fps{#1} } \newcommand{\formalpowerseries}[1]{ \fps{#1} } \newcommand\fls[1]{{\left(\left( #1 \right)\right) }} \newcommand\lshriek[0]{{}_{!}} \newcommand\pushf[0]{{}^{*}} \newcommand{\nilrad}[1]{{\sqrt{0_{#1}} }} \newcommand{\jacobsonrad}[1]{{J ({#1}) }} \newcommand{\localize}[1]{ \left[ { \scriptstyle { {#1}\inv} } \right]} \newcommand{\primelocalize}[1]{ \left[ { \scriptstyle { { ({#1}^c) }\inv} } \right]} \newcommand{\plocalize}[1]{\primelocalize{#1}} \newcommand{\sheafify}[1]{ \left( #1 \right)^{\scriptscriptstyle \mathrm{sh}} } \newcommand{\complete}[1]{{ {}_{ \hat{#1} } }} \newcommand{\takecompletion}[1]{{ \overbrace{#1}^{\widehat{\hspace{4em}}} }} \newcommand{\pcomplete}[0]{{ {}^{ \wedge }_{p} }} \newcommand{\kv}[0]{{ k_{\hat{v}} }} \newcommand{\Lv}[0]{{ L_{\hat{v}} }} \newcommand{\twistleft}[2]{{ {}^{#1} #2 }} \newcommand{\twistright}[2]{{ #2 {}^{#1} }} \newcommand{\liesover}[1]{{ {}_{/ {#1}} }} \newcommand{\liesabove}[1]{{ {}_{/ {#1}} }} \newcommand{\slice}[1]{_{/ {#1}} } \newcommand{\coslice}[1]{_{{#1/}} } \newcommand{\quotright}[2]{ {}^{#1}\mkern-2mu/\mkern-2mu_{#2} } \newcommand{\quotleft}[2]{ {}_{#2}\mkern-.5mu\backslash\mkern-2mu^{#1} } \newcommand{\invert}[1]{{ \left[ { \scriptstyle \frac{1}{#1} } \right] }} \newcommand{\symb}[2]{{ \qty{ #1 \over #2 } }} \newcommand{\squares}[1]{{ {#1}_{\scriptscriptstyle \square} }} \newcommand{\shift}[2]{{ \Sigma^{\scriptstyle[#2]} #1 }} \newcommand\cartpower[1]{{ {}^{ \scriptscriptstyle\times^{#1} } }} \newcommand\disjointpower[1]{{ {}^{ \scriptscriptstyle\coprod^{#1} } }} \newcommand\sumpower[1]{{ {}^{ \scriptscriptstyle\oplus^{#1} } }} \newcommand\prodpower[1]{{ {}^{ \scriptscriptstyle\times^{#1} } }} \newcommand\tensorpower[2]{{ {}^{ \scriptstyle\otimes_{#1}^{#2} } }} \newcommand\tensorpowerk[1]{{ {}^{ \scriptscriptstyle\otimes_{k}^{#1} } }} \newcommand\derivedtensorpower[3]{{ {}^{ \scriptstyle {}_{#1} {\otimes_{#2}^{#3}} } }} \newcommand\smashpower[1]{{ {}^{ \scriptscriptstyle\smashprod^{#1} } }} \newcommand\wedgepower[1]{{ {}^{ \scriptscriptstyle\smashprod^{#1} } }} \newcommand\fiberpower[2]{{ {}^{ \scriptscriptstyle\fiberprod{#1}^{#2} } }} \newcommand\powers[1]{{ {}^{\cdot #1} }} \newcommand\skel[1]{{ {}^{ (#1) } }} \newcommand\transp[1]{{ \, {}^{t}{ \left( #1 \right) } }} \newcommand{\inner}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\inp}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\poisbrack}[2]{{\left\{ {#1},~{#2} \right\} }} \newcommand\tmf{ \mathrm{tmf} } \newcommand\taf{ \mathrm{taf} } \newcommand\TAF{ \mathrm{TAF} } \newcommand\TMF{ \mathrm{TMF} } \newcommand\String{ \mathrm{String} } \newcommand{\BO}[0]{{\B \Orth}} \newcommand{\EO}[0]{{\mathsf{E} \Orth}} \newcommand{\BSO}[0]{{\B\SO}} \newcommand{\ESO}[0]{{\mathsf{E}\SO}} \newcommand{\BG}[0]{{\B G}} \newcommand{\EG}[0]{{\mathsf{E} G}} \newcommand{\BP}[0]{{\operatorname{BP}}} \newcommand{\BU}[0]{\B{\operatorname{U}}} \newcommand{\MO}[0]{{\operatorname{MO}}} \newcommand{\MSO}[0]{{\operatorname{MSO}}} \newcommand{\MSpin}[0]{{\operatorname{MSpin}}} \newcommand{\MSp}[0]{{\operatorname{MSpin}}} \newcommand{\MString}[0]{{\operatorname{MString}}} \newcommand{\MStr}[0]{{\operatorname{MString}}} \newcommand{\MU}[0]{{\operatorname{MU}}} \newcommand{\KO}[0]{{\operatorname{KO}}} \newcommand{\KU}[0]{{\operatorname{KU}}} \newcommand{\smashprod}[0]{\wedge} \newcommand{\ku}[0]{{\operatorname{ku}}} \newcommand{\hofib}[0]{{\operatorname{hofib}}} \newcommand{\hocofib}[0]{{\operatorname{hocofib}}} \DeclareMathOperator{\Suspendpinf}{{\Sigma_+^\infty}} \newcommand{\Loop}[0]{{\Omega}} \newcommand{\Loopinf}[0]{{\Omega}^\infty} \newcommand{\Suspend}[0]{{\Sigma}} \newcommand*\dif{\mathop{}\!\operatorname{d}} \newcommand*{\horzbar}{\rule[.5ex]{2.5ex}{0.5pt}} \newcommand*{\vertbar}{\rule[-1ex]{0.5pt}{2.5ex}} \newcommand\Fix{ \mathrm{Fix} } \newcommand\CS{ \mathrm{CS} } \newcommand\FP{ \mathrm{FP} } \newcommand\places[1]{ \mathrm{Pl}\qty{#1} } \newcommand\Ell{ \mathrm{Ell} } \newcommand\homog{ { \mathrm{homog} } } \newcommand\Kahler[0]{\operatorname{Kähler}} \newcommand\Prinbun{\mathrm{Bun}^{\mathrm{prin}}} \newcommand\aug{\fboxsep=-\fboxrule\!\!\!\fbox{\strut}\!\!\!} \newcommand\compact[0]{\operatorname{cpt}} \newcommand\hyp[0]{{\operatorname{hyp}}} \newcommand\jan{\operatorname{Jan}} \newcommand\curl{\operatorname{curl}} \newcommand\kbar{ { \bar{k} } } \newcommand\ksep{ { k\sep } } \newcommand\mypound{\scalebox{0.8}{\raisebox{0.4ex}{\#}}} \newcommand\rref{\operatorname{RREF}} \newcommand\RREF{\operatorname{RREF}} \newcommand{\Tatesymbol}{\operatorname{TateSymb}} \newcommand\tilt[0]{ {}^{ \flat } } \newcommand\vecc[2]{\textcolor{#1}{\textbf{#2}}} \newcommand{\Af}[0]{{\mathbb{A}}} \newcommand{\Ag}[0]{{\mathcal{A}_g}} \newcommand{\Mg}[0]{{\mathcal{M}_g}} \newcommand{\Ahat}[0]{\hat{ \operatorname{A}}_g } \newcommand{\Ann}[0]{\operatorname{Ann}} \newcommand{\sinc}[0]{\operatorname{sinc}} \newcommand{\Banach}[0]{\mathcal{B}} \newcommand{\Arg}[0]{\operatorname{Arg}} \newcommand{\BB}[0]{{\mathbb{B}}} \newcommand{\Betti}[0]{{\operatorname{Betti}}} \newcommand{\CC}[0]{{\mathbb{C}}} \newcommand{\CF}[0]{\operatorname{CF}} \newcommand{\CH}[0]{{\operatorname{CH}}} \newcommand{\CP}[0]{{\mathbb{CP}}} \newcommand{\CY}{{ \text{CY} }} \newcommand{\Cl}[0]{{ \operatorname{Cl}} } \newcommand{\Crit}[0]{\operatorname{Crit}} \newcommand{\DD}[0]{{\mathbb{D}}} \newcommand{\DSt}[0]{{ \operatorname{DSt}}} \newcommand{\Def}{\operatorname{Def} } \newcommand{\Diffeo}[0]{{\operatorname{Diffeo}}} \newcommand{\Diff}[0]{\operatorname{Diff}} \newcommand{\Disjoint}[0]{\displaystyle\coprod} \newcommand{\resprod}[0]{\prod^{\res}} \newcommand{\restensor}[0]{\bigotimes^{\res}} \newcommand{\Disk}[0]{{\operatorname{Disk}}} \newcommand{\Dist}[0]{\operatorname{Dist}} \newcommand{\EE}[0]{{\mathbb{E}}} \newcommand{\EKL}[0]{{\mathrm{EKL}}} \newcommand{\QH}[0]{{\mathrm{QH}}} \newcommand{\AMGM}[0]{{\mathrm{AMGM}}} \newcommand{\resultant}[0]{{\mathrm{res}}} \newcommand{\tame}[0]{{\mathrm{tame}}} \newcommand{\primetop}[0]{{\scriptscriptstyle \mathrm{prime-to-}p}} \newcommand{\VHS}[0]{{\mathrm{VHS} }} \newcommand{\ZVHS}[0]{{ \ZZ\mathrm{VHS} }} \newcommand{\CR}[0]{{\mathrm{CR}}} \newcommand{\unram}[0]{{\scriptscriptstyle\mathrm{un}}} \newcommand{\Emb}[0]{{\operatorname{Emb}}} \newcommand{\minor}[0]{{\operatorname{minor}}} \newcommand{\Et}{\text{Ét}} \newcommand{\trace}{\operatorname{tr}} \newcommand{\Trace}{\operatorname{Trace}} \newcommand{\Kl}{\operatorname{Kl}} \newcommand{\Rel}{\operatorname{Rel}} \newcommand{\Norm}{\operatorname{Nm}} \newcommand{\Extpower}[0]{\bigwedge\nolimits} \newcommand{\Extalgebra}[0]{\bigwedge\nolimits} \newcommand{\Extalg}[0]{\Extalgebra} \newcommand{\Extcomplex}[0]{\cocomplex{ \Extalgebra} } \newcommand{\Extprod}[0]{\bigwedge\nolimits} \newcommand{\Ext}{\operatorname{Ext} } \newcommand{\FFbar}[0]{{ \bar{ \mathbb{F}} }} \newcommand{\FFpn}[0]{{\mathbb{F}_{p^n}}} \newcommand{\FFp}[0]{{\mathbb{F}_p}} \newcommand{\FF}[0]{{\mathbb{F}}} \newcommand{\FS}{{ \text{FS} }} \newcommand{\Fil}[0]{{\operatorname{Fil}}} \newcommand{\Flat}[0]{{\operatorname{Flat}}} \newcommand{\Fpbar}[0]{\bar{\mathbb{F}_p}} \newcommand{\Fpn}[0]{{\mathbb{F}_{p^n} }} \newcommand{\Fppf}[0]{\mathrm{\operatorname{Fppf}}} \newcommand{\Fp}[0]{{\mathbb{F}_p}} \newcommand{\Frac}[0]{\operatorname{Frac}} \newcommand{\GF}[0]{{\mathbb{GF}}} \newcommand{\GG}[0]{{\mathbb{G}}} \newcommand{\GL}[0]{\operatorname{GL}} \newcommand{\GW}[0]{{\operatorname{GW}}} \newcommand{\Gal}[0]{{ \mathsf{Gal}} } \newcommand{\bigo}[0]{{ \mathsf{O}} } \newcommand{\Gl}[0]{\operatorname{GL}} \newcommand{\Gr}[0]{{\operatorname{Gr}}} \newcommand{\HC}[0]{{\operatorname{HC}}} \newcommand{\HFK}[0]{\operatorname{HFK}} \newcommand{\HF}[0]{\operatorname{HF}} \newcommand{\HHom}{\mathscr{H}\kern-2pt\operatorname{om}} \newcommand{\HH}[0]{{\mathbb{H}}} \newcommand{\HP}[0]{{\operatorname{HP}}} \newcommand{\HT}[0]{{\operatorname{HT}}} \newcommand{\HZ}[0]{{H\mathbb{Z}}} \newcommand{\Hilb}[0]{\operatorname{Hilb}} \newcommand{\Homeo}[0]{{\operatorname{Homeo}}} \newcommand{\Honda}[0]{\mathrm{\operatorname{Honda}}} \newcommand{\Hsh}{{ \mathcal{H} }} \newcommand{\Id}[0]{\operatorname{Id}} \newcommand{\Intersect}[0]{\displaystyle\bigcap} \newcommand{\JCF}[0]{\operatorname{JCF}} \newcommand{\RCF}[0]{\operatorname{RCF}} \newcommand{\Jac}[0]{\operatorname{Jac}} \newcommand{\II}[0]{{\mathbb{I}}} \newcommand{\KK}[0]{{\mathbb{K}}} \newcommand{\KH}[0]{ \K^{\scriptscriptstyle \mathrm{H}} } \newcommand{\KMW}[0]{ \K^{\scriptscriptstyle \mathrm{MW}} } \newcommand{\KMimp}[0]{ \hat{\K}^{\scriptscriptstyle \mathrm{M}} } \newcommand{\KM}[0]{ \K^{\scriptstyle\mathrm{M}} } \newcommand{\Kah}[0]{{ \operatorname{Kähler} } } \newcommand{\LC}[0]{{\mathrm{LC}}} \newcommand{\LL}[0]{{\mathbb{L}}} \newcommand{\Log}[0]{\operatorname{Log}} \newcommand{\MCG}[0]{{\operatorname{MCG}}} \newcommand{\MM}[0]{{\mathcal{M}}} \newcommand{\mbar}[0]{\bar{\mathcal{M}}} \newcommand{\MW}[0]{\operatorname{MW}} \newcommand{\Mat}[0]{\operatorname{Mat}} \newcommand{\NN}[0]{{\mathbb{N}}} \newcommand{\NS}[0]{{\operatorname{NS}}} \newcommand{\OO}[0]{{\mathcal{O}}} \newcommand{\OP}[0]{{\mathbb{OP}}} \newcommand{\OX}[0]{{\mathcal{O}_X}} \newcommand{\Obs}{\operatorname{Obs} } \newcommand{\obs}{\operatorname{obs} } \newcommand{\Ob}[0]{{\operatorname{Ob}}} \newcommand{\Op}[0]{{\operatorname{Op}}} \newcommand{\Orb}[0]{{\mathrm{Orb}}} \newcommand{\Conj}[0]{{\mathrm{Conj}}} \newcommand{\Orth}[0]{{\operatorname{O}}} \newcommand{\PD}[0]{\mathrm{PD}} \newcommand{\PGL}[0]{\operatorname{PGL}} \newcommand{\GU}[0]{\operatorname{GU}} \newcommand{\PP}[0]{{\mathbb{P}}} \newcommand{\PSL}[0]{{\operatorname{PSL}}} \newcommand{\Pic}[0]{{\operatorname{Pic}}} \newcommand{\Pin}[0]{{\operatorname{Pin}}} \newcommand{\Places}[0]{{\operatorname{Places}}} \newcommand{\Presh}[0]{\presh} \newcommand{\QHB}[0]{\operatorname{QHB}} \newcommand{\QHS}[0]{\mathbb{Q}\kern-0.5pt\operatorname{HS}} \newcommand{\QQpadic}[0]{{ \QQ_p }} \newcommand{\ZZelladic}[0]{{ \ZZ_\ell }} \newcommand{\QQ}[0]{{\mathbb{Q}}} \newcommand{\QQbar}[0]{{ \bar{ \mathbb{Q} } }} \newcommand{\Quot}[0]{\operatorname{Quot}} \newcommand{\RP}[0]{{\mathbb{RP}}} \newcommand{\RR}[0]{{\mathbb{R}}} \newcommand{\Rat}[0]{\operatorname{Rat}} \newcommand{\Reg}[0]{\operatorname{Reg}} \newcommand{\Ric}[0]{\operatorname{Ric}} \newcommand{\SF}[0]{\operatorname{SF}} \newcommand{\SL}[0]{{\operatorname{SL}}} \newcommand{\SNF}[0]{\mathrm{SNF}} \newcommand{\SO}[0]{{\operatorname{SO}}} \newcommand{\SP}[0]{{\operatorname{SP}}} \newcommand{\SU}[0]{{\operatorname{SU}}} \newcommand{\F}[0]{{\operatorname{F}}} \newcommand{\Sgn}[0]{{ \Sigma_{g, n} }} \newcommand{\Sm}[0]{{\operatorname{Sm}}} \newcommand{\SpSp}[0]{{\mathbb{S}}} \newcommand{\Spec}[0]{\operatorname{Spec}} \newcommand{\Spf}[0]{\operatorname{Spf}} \newcommand{\Spc}[0]{\operatorname{Spc}} \newcommand{\spc}[0]{\operatorname{Spc}} \newcommand{\Spinc}[0]{\mathrm{Spin}^{{ \scriptscriptstyle \mathbb C} }} \newcommand{\Spin}[0]{{\operatorname{Spin}}} \newcommand{\Mp}[0]{{\operatorname{Mp}}} \newcommand{\Herm}[0]{{\mathsf{Herm}}} \newcommand{\coinv}[0]{{\operatorname{coinv}}} \newcommand{\Sq}[0]{\operatorname{Sq}} \newcommand{\Stab}[0]{{\operatorname{Stab}}} \newcommand{\Sum}[0]{ \displaystyle\sum } \newcommand{\Syl}[0]{{\operatorname{Syl}}} \newcommand{\Sym}[0]{\operatorname{Sym}} \newcommand{\Tor}[0]{\operatorname{Tor}} \newcommand{\Homcx}[0]{\operatorname{Hom}^{\bullet}} \newcommand{\Tr}[0]{\operatorname{Tr}} \newcommand{\Ug}[0]{{\mathcal{U}(\mathfrak{g}) }} \newcommand{\Uh}[0]{{\mathcal{U}(\mathfrak{h}) }} \newcommand{\Union}[0]{\displaystyle\bigcup} \newcommand{\U}[0]{{\operatorname{U}}} \newcommand{\Wedge}[0]{\bigwedge} \newcommand{\Wittvectors}[0]{{\mathbb{W}}} \newcommand{\ZHB}[0]{\operatorname{ZHB}} \newcommand{\ZHS}[0]{\mathbb{Z}\operatorname{HS}} \newcommand{\ZZG}[0]{{\mathbb{Z}G}} \newcommand{\ZZH}[0]{{\mathbb{Z}H}} \newcommand{\ZZlocal}[1]{{ \ZZ_{\hat{#1}} }} \newcommand{\plocal}[0]{{ \scriptsize {}_{ \localize{p} } }} \newcommand{\ZZpadic}[0]{{ \ZZ_{\hat p} }} \newcommand{\ZZpcomplete}[0]{{ \ZZpadic }} \newcommand{\ZZplocal}[0]{{ L_p \ZZ }} \newcommand{\ZZprof}[0]{{ \hat{\ZZ} }} \newcommand{\ZZladic}[0]{{ \ZZ_\ell }} \newcommand{\QQladic}[0]{{ \QQ_\ell }} \newcommand{\CCpadic}[0]{{ \CC_p }} \newcommand{\ZZ}[0]{{\mathbb{Z}}} \newcommand{\ZZbar}[0]{{ \bar{ \mathbb{Z} } }} \newcommand{\ZZhat}[0]{{ \widehat{ \mathbb{Z} } }} \newcommand{\Zar}[0]{{\mathrm{Zar}}} \newcommand{\ZpZ}[0]{\mathbb{Z}/p} \newcommand{\abuts}[0]{\Rightarrow} \newcommand{\ab}[0]{{\operatorname{ab}}} \newcommand{\Rees}[0]{{\operatorname{Rees}}} \newcommand{\actsonl}[0]{\curvearrowleft} \newcommand{\actson}[0]{\curvearrowright} \newcommand{\adjoint}[0]{\dagger} \newcommand{\adj}[0]{\operatorname{adj}} \newcommand{\ad}[0]{{ \operatorname{ad}}} \newcommand{\Ad}[0]{{ \operatorname{Ad} }} \newcommand{\afp}[0]{A_{/\FF_p}} \newcommand{\annd}[0]{{\operatorname{ and }}} \newcommand{\ann}[0]{\operatorname{Ann}} %\newcommand{\sech}[0]{\operatorname{sech}} \newcommand{\csch}[0]{\operatorname{csch}} \newcommand{\arccot}[0]{\operatorname{arccot}} \newcommand{\arccsc}[0]{\operatorname{arccsc}} \newcommand{\arcsec}[0]{\operatorname{arcsec}} \newcommand{\bP}[0]{\operatorname{bP}} \newcommand{\barz}{\bar{z} } \newcommand{\bbm}[0]{{\mathbb{M}}} \newcommand{\bd}[0]{{\del}} \newcommand{\bigast}[0]{{\mathop{\text{\Large $\ast$}}}} \newcommand{\bmgn}[0]{{ \bar{\mathcal{M}}_{g, n} }} \newcommand{\bundle}[1]{\mathcal{#1}} \newcommand{\by}[0]{\times} \newcommand{\candim}[0]{\operatorname{candim}} \newcommand{\chp}[0]{\operatorname{ch. p}} \newcommand{\ch}[0]{\operatorname{ch}} \newcommand{\AJ}[0]{\operatorname{AJ}} \newcommand{\chr}[0]{\operatorname{ch}} \newcommand{\characteristic}[0]{\operatorname{ch}} \newcommand{\character}[0]{\operatorname{ch}} \newcommand{\cl}[0]{{ \operatorname{cl}} } \newcommand{\codim}[0]{\operatorname{codim}} \newcommand{\cohdim}[0]{\operatorname{cohdim}} \newcommand{\coim}[0]{\operatorname{coim}} \newcommand{\coker}[0]{\operatorname{coker}} \newcommand{\cok}[0]{\operatorname{coker}} \newcommand{\cone}[0]{\operatorname{cone}} \newcommand{\conjugate}[1]{{\overline{{#1}}}} \newcommand{\connectsum}[0]{\mathop{ \Large\mypound }} \newcommand{\const}[0]{{\operatorname{const.}}} \newcommand{\converges}[1]{\overset{#1}} \newcommand{\convergesto}[1]{\overset{#1}\too} \newcommand{\convolve}[0]{\ast} \newcommand{\correspond}[1]{\theset{\substack{#1}}} \newcommand{\covers}[0]{\rightrightarrows} \newcommand{\cocovers}[0]{\leftleftarrows} \newcommand{\coveredby}[0]{\leftleftarrows} \newcommand{\projresolve}[0]{\rightrightarrows} \newcommand{\injresolve}[0]{\leftleftarrows} \newcommand{\covol}[0]{\operatorname{covol}} \newcommand{\cpt}[0]{{ \operatorname{compact} } } \newcommand{\crit}[0]{\operatorname{crit}} \newcommand{\cross}[0]{\times} \newcommand{\dR}[0]{\mathrm{dR}} \newcommand{\dV}{\,dV} \newcommand{\dash}[0]{{\hbox{-}}} \newcommand{\da}[0]{\coloneqq} \newcommand{\ddd}[2]{{\frac{d #1}{d #2}\,}} \newcommand{\ddim}[0]{\operatorname{ddim}} \newcommand{\ddt}{\tfrac{\dif}{\dif t}} \newcommand{\ddx}{\tfrac{\dif}{\dif x}} \newcommand{\dd}[2]{{\frac{\partial #1}{\partial #2}\,}} \newcommand{\definedas}[0]{\coloneqq} \newcommand{\del}[0]{{\partial}} \newcommand{\diagonal}[1]{\Delta} \newcommand{\Diagonal}[1]{\Delta} \newcommand{\diag}[0]{\operatorname{diag}} \newcommand{\diam}[0]{{\operatorname{diam}}} \newcommand{\diff}[0]{\operatorname{Diff}} \newcommand{\discriminant}[0]{{\Delta}} \newcommand{\disc}[0]{{\operatorname{disc}}} \newcommand{\disjoint}[0]{{\textstyle\coprod}} \newcommand{\dist}[0]{\operatorname{dist}} \newcommand{\dlog}[0]{\operatorname{dLog}} \newcommand{\logd}[0]{{ \del^{\scriptsize \log} }} \newcommand{\dom}[0]{\operatorname{dom}} \newcommand{\BM}[0]{{\operatorname{BM}}} \newcommand{\dual}[0]{ {}^{ \vee }} \newcommand{\shriek}[0]{ { ! }} \newcommand{\dmu}{\,d\mu} \newcommand{\dr}{\,dr} \newcommand{\dtau}{\,d\tau} \newcommand{\ds}{\,ds} \newcommand{\dtheta}{\,d\theta} \newcommand{\dt}{\,dt} \newcommand{\du}{\,du} \newcommand{\dw}{\,dw} \newcommand{\dxi}{\,d\xi} \newcommand{\dx}{\,dx} \newcommand{\dm}{\,dm} \newcommand{\dA}{\,dA} \newcommand{\dy}{\,dy} \newcommand{\dn}{\,dn} \newcommand{\dalpha}{\,d\alpha} \newcommand{\dzbar}{\,d\bar{z} } \newcommand{\dzeta}{\,d\zeta} \newcommand{\dz}{\,dz} \newcommand{\drho}{\,d\rho} \newcommand{\embeds}[0]{\hookrightarrow} \newcommand{\eo}[0]{{\operatorname{eo}}} \newcommand{\eps}[0]{{\varepsilon}} \newcommand{\essdim}[0]{\operatorname{essdim}} \newcommand{\et}{\text{ét}} \newcommand{\eul}[0]{{\operatorname{eul}}} \newcommand{\evalfrom}[0]{\Big|} \newcommand{\ext}{\operatorname{Ext} } \newcommand{\ff}[0]{\operatorname{ff}} \newcommand{\fppf}[0]{{\operatorname{fppf}}} \newcommand{\fpqc}[0]{{\operatorname{fpqc}}} \newcommand{\fp}[0]{{ \operatorname{fp} }} \newcommand{\fqr}[0]{{\mathbb{F}_{q^r}}} \newcommand{\fq}[0]{{\mathbb{F}_{q}}} \newcommand{\fqbar}[0]{\bar{\mathbb{F}_{q}}} \newcommand{\freeprod}[0]{\ast} \newcommand{\from}[0]{\leftarrow} \newcommand{\gal}[0]{{ \operatorname{Gal}} } \newcommand{\gl}[0]{{\mathfrak{gl}}} \newcommand{\gp}[0]{ {\operatorname{gp} } } \newcommand{\grad}[0]{\operatorname{grad}} \newcommand{\grdim}[0]{{\operatorname{gr\,dim}}} \newcommand{\height}[0]{\operatorname{ht}} \newcommand{\homotopic}[0]{\simeq} \newcommand{\id}[0]{\operatorname{id}} \newcommand{\im}[0]{\operatorname{im}} \newcommand{\decreasesto}[0]{\searrow} \newcommand{\increasesto}[0]{\nearrow} \newcommand{\injectivelim}[0]{\varinjlim} \newcommand{\injects}[0]{\hookrightarrow} \newcommand{\interior}[0]{^\circ} \newcommand{\intersect}[0]{\cap} \newcommand{\Todd}[0]{\operatorname{Td} } \newcommand{\into}[0]{\to} \newcommand{\inverselim}[0]{\varprojlim} \newcommand{\inv}[0]{^{-1}} \newcommand{\ip}[2]{{\left\langle {#1},~{#2} \right\rangle}} \newcommand{\kG}[0]{{kG}} \newcommand{\kfq}[0]{K_{/\mathbb{F}_q}} \newcommand{\kk}[0]{{\mathbb{k}}} \newcommand{\ko}[0]{{\operatorname{ko}}} \newcommand{\krulldim}[0]{\operatorname{krulldim}} \newcommand{\ks}[0]{\operatorname{ks}} \newcommand{\kxn}[0]{k[x_1, \cdots, x_{n}]} \newcommand{\kx}[1]{k[x_1, \cdots, x_{#1}]} \newcommand{\lci}[0]{\mathrm{lci}} \newcommand{\tb}[0]{\mathrm{tb}} \newcommand{\lcm}[0]{\operatorname{lcm}} \newcommand{\liealgk}[0]{{ \liealg_{/k} }} \newcommand{\liea}[0]{{\mathfrak{a}}} \newcommand{\lieb}[0]{{\mathfrak{b}}} \newcommand{\lied}[0]{{\mathfrak{d}}} \newcommand{\lief}[0]{{\mathfrak{f}}} \newcommand{\liegl}[0]{{\mathfrak{gl}}} \newcommand{\liep}[0]{{\mathfrak{p}}} \newcommand{\liesu}[0]{{\mathfrak{su}}} \newcommand{\lieg}[0]{{\mathfrak{g}}} \newcommand{\lieh}[0]{{\mathfrak{h}}} \newcommand{\liel}[0]{{\mathfrak{l}}} \newcommand{\lien}[0]{{\mathfrak{n}}} \newcommand{\lieo}[0]{{\mathfrak{o}}} \newcommand{\lier}[0]{{\mathfrak{r}}} \newcommand{\liesl}[0]{{\mathfrak{sl}}} \newcommand{\lieso}[0]{{\mathfrak{so}}} \newcommand{\liesp}[0]{{\mathfrak{sp}}} \newcommand{\liet}[0]{{\mathfrak{t}}} \newcommand{\lieu}[0]{{\mathfrak{u}}} \newcommand{\lieW}[0]{{\mathfrak{W}}} \newcommand{\liey}[0]{{\mathfrak{y}}} \newcommand{\mfX}[0]{{\mathfrak{X}}} \newcommand{\mfS}[0]{{\mathfrak{S}}} \newcommand{\gitquot}{{ \mathbin{/\mkern-6mu/}}} \newcommand{\htyquot}{\gitquot} \newcommand{\lk}[0]{\operatorname{lk}} \newcommand{\rot}[0]{\operatorname{rot}} \newcommand{\mTHH}[0]{{\operatorname{THH}}} \newcommand{\mHH}[0]{{\operatorname{HH}}} \newcommand{\TCH}[0]{{\operatorname{TCH}}} \newcommand{\TC}[0]{{\operatorname{TC}}} \newcommand{\THC}[0]{{\operatorname{THC}}} \newcommand{\THoH}[0]{{\operatorname{THH}}} \newcommand{\HoH}[0]{{\operatorname{HH}}} \newcommand{\TP}[0]{{\operatorname{TP}}} \newcommand{\TT}[0]{{\mathbb{T}}} \newcommand{\mapscorrespond}[2]{\mathrel{\operatorname*{\rightleftharpoons}_{#2}^{#1}}} \newcommand{\mapstofrom}[0]{\rightleftharpoons} \newcommand{\mapstovia}[1]{\xmapsto{#1}} \newcommand{\mapsvia}[1]{\xrightarrow{#1}} \newcommand{\torational}[0]{\dashrightarrow} \newcommand{\birational}[0]{\underset{\sim}{\torational}} \newcommand{\isomorphic}{{ \, \mapsvia{\sim}\, }} \newcommand{\iso}{{ \isomorphic }} \newcommand{\isovia}[1]{\underset{#1}{\iso}} \newcommand{\isoin}[1]{\overset{#1}{\iso}} \newcommand{\injectsvia}[1]{\xhookrightarrow{#1}} \newcommand{\embedsdense}[0]{{ \underset{ {\scriptscriptstyle\mathrm{dense}} }{\hookrightarrow} }} \newcommand{\injectsfromvia}[1]{\xhookleftarrow{#1}} \newcommand{\maps}[0]{\operatorname{Maps}} \newcommand{\mat}[0]{\operatorname{Mat}} \newcommand{\maxspec}[0]{{\operatorname{maxSpec}}} \newcommand{\mcTop}[0]{\mathcal{T}\mathsf{op}} \newcommand{\mca}[0]{{\mathcal{A}}} \newcommand{\mcb}[0]{{\mathcal{B}}} \newcommand{\mcc}[0]{{\mathcal{C}}} \newcommand{\mcd}[0]{{\mathcal{D}}} \newcommand{\mce}[0]{{\mathcal{E}}} \newcommand{\mcf}[0]{{\mathcal{F}}} \newcommand{\mcg}[0]{{\mathcal{G}}} \newcommand{\mch}[0]{{\mathcal{H}}} \newcommand{\mci}[0]{{\mathcal{I}}} \newcommand{\mcj}[0]{{\mathcal{J}}} \newcommand{\mck}[0]{{\mathcal{K}}} \newcommand{\mcl}[0]{{\mathcal{L}}} \newcommand{\mcm}[0]{{\mathcal{M}}} \newcommand{\mcn}[0]{{\mathcal{N}}} \newcommand{\mco}[0]{{\mathcal{O}}} \newcommand{\mcp}[0]{{\mathcal{P}}} \newcommand{\mcr}[0]{{\mathcal{R}}} \newcommand{\mcs}[0]{{\mathcal{S}}} \newcommand{\mct}[0]{{\mathcal{T}}} \newcommand{\mcu}[0]{{\mathcal{U}}} \newcommand{\mcv}[0]{{\mathcal{V}}} \newcommand{\mcw}[0]{{\mathcal{W}}} \newcommand{\mcx}[0]{{\mathcal{X}}} \newcommand{\mcX}[0]{{\mathcal{X}}} \newcommand{\mcy}[0]{{\mathcal{Y}}} \newcommand{\mcz}[0]{{\mathcal{Z}}} \newcommand{\mfa}[0]{{\mathfrak{a}}} \newcommand{\mfb}[0]{{\mathfrak{b}}} \newcommand{\mfc}[0]{{\mathfrak{c}}} \newcommand{\mff}[0]{{\mathfrak{f}}} \newcommand{\mfi}[0]{{\mathfrak{I}}} \newcommand{\mfh}[0]{{\mathfrak{h}}} \newcommand{\mfm}[0]{{\mathfrak{m}}} \newcommand{\mfn}[0]{{\mathfrak{n}}} \newcommand{\mfp}[0]{{\mathfrak{p}}} \newcommand{\mfo}[0]{{\mathfrak{o}}} \newcommand{\mfq}[0]{{\mathfrak{q}}} \newcommand{\mfr}[0]{{\mathfrak{r}}} \newcommand{\mfs}[0]{{\mathfrak{s}}} \newcommand{\mfy}[0]{{\mathfrak{Y}}} \newcommand{\mfx}[0]{{\mathfrak{X}}} \newcommand{\mg}[0]{{ \mathcal{M}_{g} }} \newcommand{\mgn}[0]{{ \mathcal{M}_{g, n} }} \newcommand{\Mgn}[0]{{ \mathcal{M}_{g, n} }} \newcommand{\Mell}[0]{{ \mathcal{M}_{\mathrm{ell}} }} \newcommand{\cusp}[0]{{ \mathrm{cusp} }} \newcommand{\Noeth}[0]{{ \mathrm{Noeth} }} \newcommand{\minpoly}[0]{{\operatorname{minpoly}}} \newcommand{\mltext}[1]{\left\{\begin{array}{c}#1\end{array}\right\}} \newcommand{\mm}[0]{{\mathfrak{m}}} \newcommand{\mot}[0]{{ \mathrm{mot}} } \newcommand{\cell}[0]{{ \mathrm{cell}} } \newcommand{\mspec}[0]{\operatorname{mSpec}} \newcommand{\ms}[0]{\xrightarrow{\sim}} \newcommand{\multinomial}[1]{\left(\!\!{#1}\!\!\right)} \newcommand{\mult}[0]{{\operatorname{mult}}} \newcommand{\mveq}[0]{{\mapsvia{\sim}}} \newcommand{\mviso}[0]{{\mapsvia{\sim}}} \newcommand{\nd}[0]{\operatorname{nd}} \newcommand{\nil}[0]{{\operatorname{nil}}} \newcommand{\nonzero}[0]{^{\bullet}} \newcommand{\normalneq}{\mathrel{\reflectbox{$\trianglerightneq$}}} \newcommand{\normal}[0]{{~\trianglelefteq~}} \newcommand{\norm}[1]{{\left\lVert {#1} \right\rVert}} \newcommand{\normm}[1]{{\left\lVert \left\lVert {#1} \right\rVert\right\rVert}} \newcommand{\notimplies}[0]{\centernot\implies} \newcommand{\onto}[0]{\twoheadhthtarrow} \newcommand{\open}[1]{\overset{\circ}{#1}} \newcommand{\op}[0]{^{\operatorname{op}}} \newcommand{\ord}[0]{{\operatorname{Ord}}} \newcommand{\order}[0]{{\operatorname{Ord}}} \newcommand{\oriented}[0]{{ \operatorname{oriented} } } \newcommand{\orr}[0]{{\operatorname{ or }}} \newcommand{\padic}[0]{p\dash\text{adic}} \newcommand{\pic}[0]{{\operatorname{Pic}}} \newcommand{\pnorm}[2]{{\left\lVert {#1} \right\rVert}_{#2}} \newcommand{\poly}[0]{\mathrm{poly}} \newcommand{\prim}[0]{{\operatorname{prim}}} \newcommand{\projectivelim}[0]{\varprojlim} \newcommand{\pr}[0]{{\operatorname{pr}}} \newcommand{\pt}[0]{{\operatorname{pt}}} \newcommand{\qc}[0]{{\operatorname{qc}}} \newcommand{\qst}[0]{{\quad \operatorname{such that} \quad}} \newcommand{\rank}[0]{\operatorname{rank}} \newcommand{\realpart}[1]{{\mathcal{Re}({#1})}} \newcommand{\red}[0]{{ \text{red} }} \newcommand{\reg}[0]{\mathrm{reg}} \newcommand{\reldim}[0]{\operatorname{reldim}} \newcommand{\restrictionof}[2]{ {\left.{{#1}} \right|_{{#2}} } } \newcommand{\rk}[0]{{\operatorname{rank}}} \newcommand{\rotate}[2]{{\style{display: inline-block; transform: rotate(#1deg)}{#2}}} \newcommand{\ro}[2]{{ \left.{{#1}} \right|_{{#2}} }} \newcommand{\selfmap}[0]{{\circlearrowleft}} \newcommand{\semidirect}[0]{\rtimes} \newcommand{\wreath}[0]{\wr} \newcommand{\size}[0]{{\sharp}} \newcommand{\sep}[0]{{ {}^{ \operatorname{sep} } }} \newcommand{\sgn}[0]{\operatorname{sgn}} \newcommand{\shom}{ {\mathcal{H}}\kern-0.5pt{\operatorname{om}}} \newcommand{\signature}[0]{\operatorname{sig}} \newcommand{\sign}[0]{\operatorname{sign}} \newcommand{\Sing}[0]{{\operatorname{Sing}}} \newcommand{\sing}[0]{{\mathrm{sing}}} \newcommand{\Pet}[0]{{\mathrm{Pet}}} \newcommand{\CM}[0]{{\mathrm{CM}}} \newcommand{\slope}[0]{{\mathrm{slope}}} \newcommand{\smpt}[1]{\setminus\theset{#1}} \newcommand{\smts}[1]{\setminus\theset{ #1 }} \newcommand{\smz}[0]{\setminus\theset{0}} \newcommand{\sm}[0]{\setminus} \newcommand{\spec}[0]{\operatorname{Spec}} \newcommand{\stab}[0]{{\operatorname{Stab}}} \newcommand{\stirlingfirst}[2]{\genfrac{[}{]}{0pt}{}{#1}{#2}} \newcommand{\stirling}[2]{\genfrac\{\}{0pt}{}{#1}{#2}} \newcommand{\surjectsvia}[2][]{ \xrightarrow[#1]{#2} { \mathrel{\mkern-16mu}\rightarrow }\, } \newcommand{\surjects}[0]{\twoheadrightarrow} \newcommand{\syl}[0]{{\operatorname{Syl}}} \newcommand{\sym}[0]{\operatorname{Sym}} \newcommand{\td}[0]{\mathrm{td}} \newcommand{\Tensor}[0]{\bigotimes} \newcommand{\tensor}[0]{\otimes} \newcommand{\boxtensor}[0]{\boxtimes} \newcommand{\Ltensor}[0]{ \overset{\mathbb{L}}{ \otimes} } \newcommand{\dtensor}[0]{ \overset{\mathbb{L}}{ \otimes} } \newcommand{\tgn}[0]{{ \mathcal{T}_{g, n} }} \newcommand{\theset}[1]{\left\{{#1}\right\}} \newcommand{\thetaref}[0]{{ \theta_{\mathrm{Ref} } }} \newcommand{\thevector}[1]{{\left[ {#1} \right]}} \newcommand{\thinrank}[0]{T_n\dash\operatorname{rank}} \newcommand{\too}[1]{{\xrightarrow{#1}}} \newcommand{\tors}[0]{{\operatorname{tors}}} \newcommand{\tor}[0]{\operatorname{Tor}} \newcommand{\transverse}[0]{\pitchfork} \newcommand{\trdeg}[0]{\operatorname{trdeg}} \newcommand{\trianglerightneq}{\mathrel{\ooalign{\raisebox{-0.5ex}{\reflectbox{\rotatebox{90}{$\nshortmid$}}}\cr$\triangleright$\cr}\mkern-3mu}} \newcommand{\tr}[0]{{\mathrm{tr}}} \newcommand{\tspt}[0]{{\{\operatorname{pt}\}}} \newcommand{\ts}[1]{\left\{{#1}\right\}} \newcommand{\tv}[1]{{\left[ {#1} \right]}} \newcommand{\txand}[0]{{\operatorname{ and }}} \newcommand{\txor}[0]{{\operatorname{ or }}} \newcommand{\txt}[1]{{\operatorname{ {#1} }}} \newcommand{\type}[0]{{\operatorname{type}}} \newcommand{\uniformlyconverges}[0]{\rightrightarrows} \newcommand{\union}[0]{\cup} \newcommand{\unital}[0]{{\operatorname{unital}}} \newcommand{\units}[0]{^{\times}} \newcommand{\up}[0]{\uparrow} \newcommand{\vhat}[1]{\widehat{ \vector{#1} }} \newcommand{\vol}[0]{\operatorname{vol}} \newcommand{\wait}[0]{{-}} \newcommand{\wt}[0]{{\operatorname{wt}}} \newcommand{\zar}[0]{{\mathrm{zar}}} \newcommand{\zbar}{\bar{z} } \newcommand{\zlnz}[0]{\mathbb{Z}/\ell^n\mathbb{Z}} \newcommand{\zlz}[0]{\mathbb{Z}/\ell\mathbb{Z}} \newcommand{\znz}[0]{\mathbb{Z}/n\mathbb{Z}} \newcommand{\zpz}[0]{\mathbb{Z}/p\mathbb{Z}} \newcommand{\divergence}[0]{{ \nabla\cdot }} \newcommand{\normalizer}[0]{{ N }} \newcommand{\fracId}[0]{{ \ddot{\Id} }} \newcommand{\Ord}[0]{{ \mathrm{Ord} }} \renewcommand{\AA}[0]{{\mathbb{A}}} \renewcommand{\SS}[0]{{\mathbb{S}}} \renewcommand{\bar}[1]{\mkern 1.5mu\overline{\mkern-1.5mu#1\mkern-1.5mu}\mkern 1.5mu} \renewcommand{\det}{\operatorname{det}} \renewcommand{\div}[0]{\operatorname{Div}} \newcommand{\Div}[0]{\operatorname{Div}} \renewcommand{\hat}[1]{\widehat{#1}} \renewcommand{\labelitemiii}{$\diamondsuit$} \renewcommand{\labelitemiv}{$\diamondsuit$} \renewcommand{\mid}[0]{\mathrel{\Big|}} \renewcommand{\mod}{\operatorname{mod}} \renewcommand{\qed}[0]{\hfill\blacksquare} \renewcommand{\too}[0]{\longrightarrow} \renewcommand{\vector}[1]{\mathbf{#1}} \DeclareMathOperator*{\spanof}{span} \DeclareMathOperator*{\Mor}{Mor} \DeclareMathOperator*{\Hom}{Hom} \DeclareMathOperator*{\Sec}{Sec} \DeclareMathOperator*{\supp}{supp} \DeclareMathOperator*{\eq}{=} \DeclareMathOperator*{\hocolim}{hocolim} \DeclareMathOperator{\Index}{Index} \DeclareMathOperator{\aut}{Aut} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Inn}{Inn} \DeclareMathOperator{\Out}{Out} \DeclareMathOperator{\BiHol}{BiHol} \DeclareMathOperator{\Br}{Br} \DeclareMathOperator{\Curv}{Curv} \DeclareMathOperator{\Deck}{Deck} \DeclareMathOperator{\Der}{Der} \DeclareMathOperator{\Endo}{End} \DeclareMathOperator{\Exists}{\exists} \DeclareMathOperator{\Forall}{\forall} \DeclareMathOperator{\Forget}{Forget} \DeclareMathOperator{\Frame}{Frame} \DeclareMathOperator{\Fr}{Fr} \DeclareMathOperator{\Griff}{Griff} \DeclareMathOperator{\Hol}{Hol} \DeclareMathOperator{\Ld}{{\mathbb{L} }} \DeclareMathOperator{\Maps}{Maps} \DeclareMathOperator{\Map}{Maps} \DeclareMathOperator{\OFrame}{OFrame} \DeclareMathOperator{\Prin}{Prin} \DeclareMathOperator{\Cart}{Cart} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\RHom}{\mathbb{R}Hom} \DeclareMathOperator{\Rad}{Rad} \DeclareMathOperator{\Rd}{{\mathbb{R} }} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\Symb}{Symb} \DeclareMathOperator{\Taut}{Taut} \DeclareMathOperator{\Th}{Th} \DeclareMathOperator{\Triv}{Triv} \DeclareMathOperator{\UFrame}{UFrame} \DeclareMathOperator{\Isom}{Isom} \DeclareMathOperator{\codom}{codom} \DeclareMathOperator{\coh}{coh} \DeclareMathOperator{\coinfl}{coinf} \DeclareMathOperator{\colspace}{colspace} \DeclareMathOperator{\cores}{coRes} \DeclareMathOperator{\hd}{Head} \DeclareMathOperator{\hilb}{Hilb} \DeclareMathOperator{\infl}{inf} \DeclareMathOperator{\len}{len} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\nullity}{nullspace} \DeclareMathOperator{\nullspace}{nullspace} \DeclareMathOperator{\per}{per} \DeclareMathOperator{\prin}{prin} \DeclareMathOperator{\projection}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\range}{range} \DeclareMathOperator{\rowspace}{rowspace} \DeclareMathOperator{\soc}{Soc} \DeclareMathOperator{\submfds}{SubMfds} \newcommand{\st}[0]{{~\mathrel{\Big\vert}~}} \newcommand{\suchthat}[0]{\st} \newcommand{\Suchthat}[0]{\middle\vert} \newcommand{\delbar}[0]{{ \bar{\del}}} \newcommand{\containedin}[0]{\subseteq} \newcommand{\contains}[0]{\supseteq} \newcommand{\containing}[0]{\supseteq} \newcommand{\iscontainedin}[0]{\supseteq} \newcommand{\rad}[1]{\sqrt{#1}} \newcommand{\thecat}[1]{\mathbf{#1}} \newcommand{\sheaf}[1]{\operatorname{\mathcal{#1}}} \newcommand{\IC}[0]{\sheaf{IC}} \newcommand{\rightderive}[0]{{\mathbf{R}}} \newcommand\rrarrows{\rightrightarrows} \newcommand\rrrarrows{ \mathrel{\substack{\textstyle\rightarrow\\[-0.6ex] \textstyle\rightarrow \\[-0.6ex] \textstyle\rightarrow}} } \newcommand\ul[1]{\underline{#1}} \newcommand\constantsheaf[1]{\underline{#1}} \newcommand\holomorphic[0]{\text{holo}} \newcommand\hol[0]{\text{hol}} \newcommand\cts[0]{\text{cts}} \newcommand\std[0]{\text{std}} \newcommand\Mero[0]{\operatorname{Mero}} \newcommand\Bl[0]{\operatorname{Bl}} \newcommand\res[0]{\operatorname{res}} \newcommand\coind[0]{\operatorname{coInd}} \newcommand\ind[0]{\operatorname{Ind}} \newcommand\Sel[0]{\operatorname{Sel}} \newcommand\Frob[0]{\operatorname{Frob}} \newcommand\transfer[0]{\operatorname{transfer}} \newcommand\modiso[0]{{_{\scriptstyle / \sim} }} \newcommand\even[0]{\text{even}} \newcommand\odd[0]{\text{odd}} \newcommand\hodgestar[0]{\star} \newcommand\dirac[0]{\mkern-3mu \not{ \partial} } \newcommand\laplacian[0]{\Delta} \newcommand\Laplacian[0]{\Delta} \newcommand\stardstar[0]{\hodgestar \mathrm{d} \mkern-1mu \hodgestar} \newcommand\covariant[0]{\nabla} \newcommand\ol[1]{\overline{#1}} \newcommand\univcover[1]{\overline{#1}} \newcommand\closure[1]{\overline{#1}} \newcommand\laurent[1]{{\left(\left( #1 \right)\right) }} \newcommand\laurentseries[1]{{\left(\left( #1 \right)\right) }} \newcommand\capprod{\frown} \newcommand\cupprod{\smile} \newcommand\Path{\mathcal{P}} \newcommand\gradient{\nabla} \newcommand\cechH[0]{{\check{H}}} \newcommand\Hc[0]{{\check{H}}} \newcommand\Cc[0]{{\check{C}}} \newcommand\cupp[0]{\smile} \newcommand\capp[0]{\frown} \newcommand\sig[0]{\operatorname{sig}} \newcommand\ev[0]{\operatorname{ev}} \newcommand\coev[0]{\operatorname{coev}} \newcommand\period[0]{\operatorname{period}} \newcommand{\fractional}[1]{\theset{#1}} \newcommand{\fractionalpart}[1]{\theset{#1}} \newcommand{\integerpart}[1]{\left[ {#1}\right] } \newcommand{\zadjoin}[1]{\mathbb{Z}\left[ {#1} \right]} \newcommand{\wedgeprod}[0]{\vee} \newcommand{\Wedgepower}[0]{\bigwedge\nolimits} \def\multichoose#1#2{{\left(\kern-.3em\left(\genfrac{}{}{0pt}{}{#1}{#2}\right)\kern-.3em\right)}} \def\rising#1#2{ \qty{#1}^{ (#2) } } \def\falling#1#2{ \qty{#1}_{ (#2) } } \newcommand\elts[2]{{ {#1}_1, {#1}_2, \cdots, {#1}_{#2}}} \newcommand\tselts[2]{{ \theset{ {#1}_1, {#1}_2, \cdots, {#1}_{#2} } }} \newcommand\mix[1]{\overset{\scriptscriptstyle {#1} }{\times}} \newcommand\fiberproduct[1]{\underset{\scriptscriptstyle {#1} }{\times}} \newcommand\fiberprod[1]{{ \fiberproduct{#1} }} \newcommand\basechange[1]{{ \fiberproduct{k} {#1} }} \newcommand\fprod[1]{{ \fiberproduct{#1} }} \newcommand\smallprod[0]{{ \scriptscriptstyle\prod }} \newcommand\eqLH[0]{{ \equalsbecause{\scriptscriptstyle\text{LH}} }} \newcommand\drcomplex[0]{{\cocomplex{\Omega}}} \newcommand{\cxH}[0]{{\complex{H}}} \newcommand{\ccxH}[0]{{\cocomplex{H}}} \newcommand{\chern}[0]{{\mathrm{ch}}} \newcommand{\Tot}[0]{{ \operatorname{Tot} }} \newcommand{\PV}[0]{{ \operatorname{PV} }} \newcommand{\Totsum}[0]{\Tot^{\oplus}} \newcommand{\Totprod}[0]{\Tot^{\Pi}} \newcommand{\xpn}[0]{ { x^{p^n} } } \newcommand{\Qbar}[0]{{ \bar{ \mathbb{Q} } }} \newcommand{\ptd}{{\scriptstyle { * } }} \newcommand{\charpoly}[0]{{\mathrm{charpoly}}} \newcommand{\Sw}[0]{{\mathrm{Sw}}} \newcommand{\Sieg}[0]{{\mathrm{Sieg}}} \newcommand{\Inertia}[0]{{\mathrm{In}}} \newcommand{\generic}[0]{{\mathrm{gen}}} \newcommand{\Conf}[0]{{\mathrm{Conf}}} \newcommand{\Sub}[0]{{\mathrm{Sub}}} \newcommand{\fin}[0]{{\mathrm{fin}}} \newcommand{\can}[0]{{\mathrm{can}}} \newcommand{\ess}[0]{{\mathrm{ess}}} \newcommand{\fd}[0]{{\mathrm{fd}}} \newcommand{\fg}[0]{{\mathrm{fg}}} \newcommand{\free}[0]{{\mathrm{free}}} \newcommand{\lf}[0]{{\mathrm{lf}}} \newcommand{\holonomy}[0]{{\mathrm{holon}}} \newcommand{\qproj}[0]{{\mathrm{qproj}}} \newcommand{\irr}[0]{{\mathrm{irr}}} \newcommand{\ft}[0]{{\mathrm{ft}}} \newcommand{\smol}[0]{{\mathrm{small}}} \newcommand{\alev}[0]{{\,\mathrm{a.e.}}} \newcommand{\semisimple}[0]{{\mathrm{ss}}} \newcommand{\semisimplification}[0]{{\mathrm{ss}}} \newcommand{\val}[0]{{\operatorname{val}}} \newcommand{\gon}[0]{{\dash\mathrm{gon}}} \newcommand{\semi}[0]{{\mathrm{semi}}} \newcommand{\inc}[0]{{\mathrm{inc}}} \newcommand{\Ball}[0]{{B}} \newcommand{\hq}[0]{{/}} \newcommand{\unioninfty}[0]{{\union\ts{\infty}}} \newcommand{\dualnumbers}[0]{{ [\eps] / \eps^2 }} \newcommand{\crys}[0]{{\mathrm{crys}}} \newcommand{\Xff}[0]{{X_\mathrm{FF}}} \newcommand{\an}[0]{{\mathrm{an}}} \newcommand{\prop}[0]{{\mathrm{prop}}} \newcommand{\ram}[0]{{\mathrm{ram}}} \newcommand{\Nis}[0]{{\mathrm{Nis}}} \newcommand{\perf}[0]{{\mathrm{perf}}} \newcommand{\exist}[0]{{\exists}} \newcommand{\quillenplus}[0]{{ {}^{+} }} \newcommand{\glue}[1]{{ \Disjoint_{#1} }} \newcommand{\normcomplex}[1]{{\norm{\complex{#1}}}} \newcommand{\nerve}[1]{{ \mathcal{N}({#1}) }} \newcommand{\realize}[1]{{ \abs{#1} }} \newcommand{\opcat}[1]{{ {#1}\op }} \newcommand{\intcl}[0] { \operatorname{cl}^{\mathrm{int}} } \newcommand{\algcl}[0] { \operatorname{cl}^{\mathrm{alg}} } \newcommand{\sepcl}[0] { \operatorname{cl}^{\mathrm{sep}} } \newcommand{\B}[0]{{\mathbf{B}}} \newcommand{\E}[0]{{\mathbf{E}}} \newcommand{\T}[0]{{\mathbf{T}}} \newcommand{\TX}[0]{{\T X} } \newcommand{\TM}[0]{{\T M} } \newcommand{\K}[0]{{\mathsf{K}}} \newcommand{\G}[0]{{\mathsf{G}}} %\newcommand{\H}[0]{{\mathsf{H}}} \newcommand{\D}{{ \mathsf{D} }} \newcommand{\mH}{{ \mathsf{H} }} \newcommand{\BGL}[0]{ \mathbf{B}\mkern-3mu \operatorname{GL} } \newcommand{\proportional}{ \propto } \newcommand{\asymptotic}{ \ll } \newcommand{\RM}[1]{% \textup{\uppercase\expandafter{\romannumeral#1}}% } \DeclareMathOperator{\righttriplearrows} {{\; \tikz{ \foreach \y in {0, 0.1, 0.2} { \draw [-stealth] (0, \y) -- +(0.5, 0);}} \; }} \DeclareMathOperator*{\mapbackforth}{\rightleftharpoons} \newcommand{\fourcase}[4]{ \begin{cases}{#1} & {#2} \\ {#3} & {#4}\end{cases} } \newcommand{\matt}[4]{{ \begin{bmatrix} {#1} & {#2} \\ {#3} & {#4} \end{bmatrix} }} \newcommand{\mattt}[9]{{ \begin{bmatrix} {#1} & {#2} & {#3} \\ {#4} & {#5} & {#6} \\ {#7} & {#8} & {#9} \end{bmatrix} }} \newcommand\stacksymbol[3]{ \mathrel{\stackunder[2pt]{\stackon[4pt]{$#3$}{$\scriptscriptstyle#1$}}{ $\scriptscriptstyle#2$}} } \newcommand{\textoperatorname}[1]{ \operatorname{\textnormal{#1}} } \newcommand\caniso[0]{{ \underset{\can}{\iso} }} \renewcommand{\ae}[0]{{ \text{a.e.} }} \newcommand\eqae[0]{\underset{\ae}{=}} \newcommand{\sech}[0]{{ \mathrm{sech} }} %\newcommand{\strike}[1]{{\enclose{\horizontalstrike}{#1}}} \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil} # Talk 1: Jordan Ellenberg, Sparsity of rational points on moduli spaces [ADDING Conference](https://www.daniellitt.com/adding) > [Reference for this talk](https://arxiv.org/abs/2109.01043) :::{.question} How many homogeneous forms in $\ZZ[x_0,\cdots, x_n]$ are there with discriminant equal to 1? More accurately, there is a $\PGL\dash$action, so how many $\PGL$ orbits are there? More generally: how many are there with discriminant divisible only by primes in some finite set $S$? ::: :::{.conjecture title="Shafarevich conjecture-esque"} There are finitely many. ::: :::{.remark} The general philosophy is that there should be only finitely many classes of $X$ with good reduction outside of $S$ -- this is known e.g. for abelian varieties of dimension $g$, see Faltings' proof of Mordell. ::: :::{.remark} In terms of rational points, there is a trichotomy: - $g=0$, - $g=1$, - $g > 1$. This in fact breaks into a dichotomy: - $g\leq 1$, - $g > 1$. ::: :::{.definition title="Sparse points"} There are bounds on rational point counts on $X$ with height at most $B$: - $g=0 \leadsto \ll_X B^2$ - $g=1\leadsto \ll_X \log B$ (Mordell) - $g\geq 2\leadsto \ll_X C_X$ where $C$ is a constant depending on $X$ (Faltings) Here we'll dichotomize this in a different way: $g=0$ and $g > 0$. We say $X$ has **sparse points** if $\size X(\QQ) \ll B^\eps$. ::: :::{.theorem title="E, Lawrence, Venkatesh 2021"} Let $K\in \NF, S\in \Places(K)$ finite, $U_K \injects \PP^N$ a quasiprojective variety with a geometric variation of Hodge structure with finite-to-one period map, making $U_X$ an interesting moduli space of something. Then the periods of $U(\OO_K\invert{S})$ are sparse. ::: :::{.remark} The anabelian part: $U$ has large $\pi_1$, so lots of etale covers. E.g. if $U$ is a moduli of hypersurfaces, take the universal curve $\mch\to U$, then $H^n(\mch_t; C_m)$ varies and this can be interpreted as a moduli space with level structure. We try to show that large $\pi_1$ implies sparseness. This isn't quite true, since e.g. blowing up introduces lots of rational points, so a stronger condition is needed: $\pi_1(U)$ is infinite and for every finite-dimensional $V \subseteq U$, $\pi_1(V)\to \pi_1(U)$ has infinite image. ::: :::{.remark} Why is it useful to have lots of etale covers? Consider $x-y=1$ for $x,y\in \ZZ\invert{S}\units$ and $S = \ts{2,3}$. The $S\dash$units theorem of Siegel guarantees there are only finitely many solutions. One way to approach this: if $x=2^a3^b$, we know $x$ up to squares: $x=s,2s,3s,6s$ for $s$ a square, as is $y$. This yields a system \[ m^2-n^2 &=1 \\ m^2-2n^2 &= 1 \\ 2m^2-n^2 &= 1 \\ \vdots & \qquad ,\] which e.g. some can be solved using techniques for Pell equations. Having higher degree rigidifies the situation, so perhaps there are more techniques to solve them. Strategy: trade one hard equation for a finite list of higher degree easier equations. ::: :::{.fact} A partitioning trick for integral points: $Y\to U$ is a finite etale cover, then there are a finite number of twists $\ts{Y_1,\cdots, Y_m}$ (all isomorphic over $\QQbar$) with $Y_i\to U$ such that every point in $U(\ZZ\invert{S})$is in the image of $Y(\ZZ\invert{S})$ for some $i$. So \[ \disjoint_i Y_i(\ZZ\invert{S}) \covers U(\ZZ\invert{S}) .\] ::: :::{.theorem title="Heath-Brown 2004 (determinantal methods)"} Let $X \subset \PP^2$ be a plane curve of degree $d$, then there is a uniform bound: \[ \size \ts{ p\in X(\QQ) \st \height(p)\leq B} \leq C_{d, \eps}B^{2d+\eps} .\] > Note: missed the exponent on $B$, need to fix. ::: :::{.remark} Useful to control numbers of points for curves you know nothing about. Walsh removes the $\eps$ in all terms, Selberg, Brolog generalized to higher dimensions, CCDN make the constant effective. Pitch: these theorems are useful for other theorems which are not ostensibly about uniformity! ::: :::{.remark} All we can control in this situation is the degree of $Y_i\to U$ and $U\subseteq \PP^N$ has a degree, so we can control the degree of the $Y_i$. Broberg gives a bound $\ll B^{n+1\over d^{1\over n}}$ where $n=\dim U$. It doesn't actually matter what this is, just that it decreases in $d$, and we can take higher degree covers. ::: :::{.remark} "Anabelian": $\pi_1$ somehow tells the entire story. ::: :::{.remark} Heath-Brown's technique uses $p\dash$adic repulsion of points for $X(\QQ)\to X(\QQpadic)$ where low-height points do not end up nearby. Recall that there is a SES \[ 1\to \pi_1^\et(X_{\QQbar}) \to \pi_1^\et(X_\QQ) \to G_\QQ\to 1 ,\] and any point $p\in X(\QQ)$ gives a section, thought of as $X(\QQ) \to H^1(G_\QQ; \pi_1^\et(X_{\QQbar}))$. Anabelian-ness: embed into some large interesting geometric space like this. This cohomology group has a topology where $p, q\in X(\QQ)$ are nearby iff there exists a higher degree etale cover $Y\to X$ (small subsets correspond to large index subgroups in the profinite topology) such that $p, q$ both lift to $Y(\QQ)$. ::: :::{.remark} How this goes for curves: $C(\QQ) \to \Jac(\QQ)$, and one can tensor up to $\Jac(\QQ) \tensor_{\ZZ} \ZZpadic$. Modern take: points are close if they differ by a power of $p$ in the Mordell-Weil group. Interpretation of the main theorem: Heath-Brown in more general profinite topologies. ::: # Talk 2: Wanlin Li, Ceresa cycle and hyperellipticity :::{.remark} A hyperbolic curve is determined by its $\pi_1^\et$. ::: :::{.remark} Recall $y^2=f(x)$ defines a hyperelliptic curve $C$, which admits an involution $(x,y)\to(x,-y)$ and produces a degree 2 map \[ C &\to \PP^1 \\ (x,y) &\mapsto x .\] Let $\kbar$ be a separable closure of $k$. There is a fibration induced by taking a geometric point of $\spec k$ and pulling back: \begin{tikzcd} {C_{\kbar}} && C \\ \\ {\spec \kbar} && {\spec k} \arrow[from=3-1, to=3-3] \arrow[from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \arrow[from=1-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJDX3tcXGtiYXJ9Il0sWzIsMCwiQyJdLFsyLDIsIlxcc3BlYyBrIl0sWzAsMiwiXFxzcGVjIFxca2JhciJdLFszLDJdLFsxLDJdLFswLDFdLFswLDNdLFswLDIsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==) As in topology, this induces a LES in homotopy, which here splits into SESs. In particular, \[ 1\to \pi_1(C_{\kbar})\to \pi_1(C_k) \to \Gal(\kbar/k) .\] A point induces a section and thus a map $\Gal(\kbar/k) \to \Aut \pi_1(C_{\kbar})$. Take the lower central series of $\pi \da \pi_1(C_{\kbar})$, this induces \[ 1\to L^2\pi/L^3\pi \to \pi/L^3\pi \to \pi/L^1 \pi = \pi^\ab \to 1 \] where the first term is abelian. > See Davis-Pries-Wickelgren for applications to Fermat curves. ::: :::{.question} This extension corresponds to an element in $\mu(C) \in H^1(G_{\kbar}; \Hom(\pi^\ab, L^2\pi/L^3\pi ) )$, and when $C$ is hyperelliptic $\mu(C) = 0$. Does the converse hold? ::: :::{.theorem title="Bisogno-L-Litt-Srinivasan"} There exist non-hyperelliptic curves $C$ over $k$ such that $\mu(C)$ is torsion -- in particular, the *Fricke-Macbeath* curve, which is genus 7 Hurwitz. Moreover if $C_1\to C_2$ then $\mu(C_1)$ torsion implies $\mu(C_2)$ torsion. > See ? ::: :::{.theorem title="Harris-Pulte (Hain-Matsumoto)"} $\mu(C)$ is the $\ell\dash$adic cycles class associated to the **Ceresa cycle**. > See [Hain-Matsumoto](https://arxiv.org/abs/math/0306037) and [Pulte](https://projecteuclid.org/journals/duke-mathematical-journal/volume-57/issue-3/The-fundamental-group-of-a-Riemann-surface--Mixed-Hodge/10.1215/S0012-7094-88-05732-8.short) ::: :::{.remark} For $C\slice k$ and $p\in C(K)$, the Abel-Jacobi map yields \[ \AJ: C &\injects \Jac(C) \\ q &\mapsto [q-p] .\] So define the **Ceresa cycle** as \[ \tilde c \da \AJ(C) - \bar{ \AJ(C) } \da [q-p] - [p-q] .\] Note that $\tilde c$ is homologically trivial in Chow, but algebraically *nontrivial* for a very general $C\slice \CC$ with $g\geq 3$. ::: :::{.theorem title="Beauville"} There is an explicit non-hyperelliptic curve $C$ with $\tilde c$ torsion: \[ x^4 + xz^3 + y^3z = 0 \subseteq \PP^2, \qquad p = \tv{0,0,1} .\] > See ? ::: :::{.remark} Consider curves over the local field $K = \CC\fps{t}$. Note $\Gal(\bar{\CC\fps t}/\CC\fps{t}) = \hat \ZZ$, so this resembles a circle, and one can degenerate a family over the punctured disc. Apply nonabelian Picard-Lefschetz due to Asada-Matsumoto-Oda: if $C$ has semistable reduction then the monodromy of $C/\CC\fps{t}$ is given by a multi-twist, i.e. a product of Dehn twists about simple closed curves. One can explicitly compute the Ceresa class in this situation. The degeneration data can be encoded as a tropical curve (essentially the dual graph of the special fiber). > See [Asada-Matsumoto-Oda](https://www.sciencedirect.com/science/article/pii/002240499400112V) ::: :::{.theorem title="?"} $\mu(C)$ is always torsion for $C$ defined over $\CC\fps{t}$. ::: :::{.remark} There is a notion of "hyperelliptic" for tropical curves: quotienting by the involution yields a tree. ::: # Misc Notes :::{.remark} See Iwasawa group. ::: :::{.conjecture} Section conjecture: $\Sec(Y/K) \cong Y(K)$, i.e. every section comes from a rational point. ::: :::{.remark} See the recent Lawrence-Venkatesh proof of Mordell. See *Selmer section set* and *adelic sections*. ::: :::{.remark} Hyperbolic curves: - $g=0 \leadsto \PP^1\sm Z$ where $\size Z \geq 3$ - $g=1 \leadsto$ affine - $g\geq 2$: anything. For $X\slice K$ for $K\in \NF$ smooth hyperbolic with good reduction away from $S$, $\size X(\OO_{K, S}) < \infty$ by Faltings. See Bloch-Kato and Fontaine-Mazur conjectures. ::: # Sunday, May 01 :::{.remark} I missed the first two talks 😦 ::: # Kiran Kedlaya: Crystalline companions as an anabelian phenomenon :::{.remark} Setup: $k = \FF_q, q=p^n, X\in \Sch\slice k$ smooth geometrically connected, $\ell\neq p$ arbitrary. Recall \[ 1\to \pi_1 X_{\kbar} \to \pi_1 X \to G_k = \ZZhat \to 1 .\] Anabelian philosophy: everything you'd want to know about $X$ is contained in $\pi_1 X$. ::: :::{.theorem title="Tamagawa"} If $X$ is an affine curve, then $\pi_1^{\tame} X$ determines $X$. ::: :::{.remark} Problem: if $X$ is an affine genus $g$ curve with $m$ punctures, $\pi_1^{\primetop} X_{\kbar}$ is the prime-to-$p$ completion of $\Free(2g+m-1)$, independently of $X$. Since sections induce $G_k\to \Out(\pi_1 X_{\kbar})$, we have lots of tame continuous $\bar{\QQladic}$ reps of $\pi_1 X_{\kbar}$, but very few are fixed by Frobenius. ::: :::{.conjecture title="Deligne"} Such representations only have "geometric origins", i.e. if $\mce$ is a lisse $\QQladic\dash$sheaf, i.e. a lisse $F\dash$sheaf with $[F:\QQladic] < \infty$, which is irreducible with determinant of finite order, then it appears on relative etale cohomology of $\pi:Y\to X$ for some $Y$. ::: :::{.remark} This is known in $\dim X = 1$, due to Deligne, around the same time Drinfeld proved Langlands for $\GL_2(k(X))$ for $k(X)$ a function field (or really the adeles). So all arithmetic reps of $\pi_1$ *come from geometry*. ::: :::{.remark} Note that $Y$ will eventually not even be a scheme. The determinant condition rules out transcendental twists. Galois side: lisse sheaves on $X$; automorphic side: reps values in $\GL_n(\AA_K)$ for $K$ a field. The proof above involves exhibiting the Galois objects as coming from relative etale cohomology in moduli of shtukas. A priori one only knows Frobenius traces, but this turns out to be enough to uniquely characterize things in this situation. ::: :::{.conjecture} Later Lafforgue did this for $\GL_n$, but the corresponding statement about arithmetic reps is wide open. ::: :::{.remark} If $\mce$ as above, the Frobenius traces at all closed points $x\in \abs{X}$ are algebraic over $\QQ$. ::: :::{.definition title="Companion sheaves"} Fix an algebraic closure $\QQbar$ and two primes $\ell, \ell'\neq p$ and fix embeddings $\QQbar\injects \QQbar_\ell$ and $\QQbar \injects \QQbar_{\ell'}$. Let $\mce,\mce'$ be lisse $\QQbar_\ell, \QQbar_{\ell'}$ sheaves (resp.) on $X$. Say $\mce,\mce'$ are **companions** iff for every $x\in\abs{X}$ the Frobenius traces at $x$ are equal in $\QQbar$. ::: :::{.remark} Note that $\mce$ determines $\mce'$ up to semisimplification, using $L\dash$function techniques. Moreover properties like being irreducible or having finite determinant hold simultaneously for them. ::: :::{.theorem title="Drinfeld, L. Lafforgue, Deligne"} With this setup, a lisse $\QQbar_{\ell}$ sheaf $\mce_\ell$ admits a compantion $\mce'$ which is a $\QQbar_{\ell'}$ for chosen embeddings of $\QQ$ for which all traces are in $\QQbar$, i.e. irreducible and finite determinant. This is true in arbitrary dimension. ::: :::{.remark} What about when $\ell=p$? There are somehow too many and too few lisse $\QQbar_p$ sheaves! E.g. the Lefschetz trace formula doesn't hold. Instead use the Riemann-Hilbert correspondence -- the \(p\dash \)adic analogues of lisse sheaves are certain \(p\dash \)adic integrable connections. How to construct: start with $X$ affine and glue. Choose a smooth affine formal scheme over $W(k)$ with special fiber $P_k \cong X$. Let $K = \ff W(k)$ and $P_K$ be the Raynaud generic fiber. See Tate model, Berkovich model, etc for rigid analytic geometry. Let $\AA_K^n \leadsto \hat{\AA^n}_{W(k)}$, a closed unit disc over $K$. ::: :::{.definition title="Convergent isocrystal"} Some definitions: - A **convergent isocrystal** is a vector bundle with an integrable connection on $P_K$. - A **convergent $F\dash$isocrystal** is this and a compatible action of (a lift of) Frobenius. - An **overconvergent $F\dash$isocrystal** is this on some structural enlargment of $P_K$ which takes the closed unit disc to the disc of radius $1+\eps$. ::: :::{.remark} These are similar to $\pi_1(X_{\kbar})\dash$representations. Issue: \(p\dash \)adic antidifferentiation is hard; the integral of a formal power series converging on the closed disc only converges on the open disc. ::: :::{.remark} If $X$ is smooth this recovers Berthelot's rigid cohomology, which is a refinement of crystalline cohomology if $X$ is proper. This yields a 6 functor formalism, and has the same moving parts as etale cohomology. ::: :::{.theorem title="Abe"} The Langlands correspondence extends to these when $\dim X = 1$. The content here: Lafforgue's original proof can now be run with \(p\dash \)adic coefficients instead of just \(\ell\dash \)adic coefficients. ::: :::{.theorem title="Abe-?, Drinfeld-Abe-Esmult, K"} The companion theorem extends to both $\ell=p$ and $\ell'=p$. ::: :::{.remark} Deligne posited the existence of a *petit camarade crystalline*, a little crystalline friend. ❇🙂 ::: ## Applications :::{.remark} A partial result toward a conjecture of Simpson. Let $X\slice \CC$ be a smooth cohomologically rigid local system (so no nontrivial deformations) which is irreducible with finite determinant. Are these of geometric origin? In particular, is there a $\ZVHS$? Esnault-Groecherig show that the monodromy representation factors through $\GL_n(\OO_K) \to \GL_n(\CC)$ for some $K\in \NF$. Idea: start from complex geometry, go to \(p\dash \)adic geometry, yields an overconvergent $F\dash$crystal. This yields integrality at $p$; use companions to go back to a lisse \(\ell\dash \)adic sheaf, then back to $\CC$ to get integrality at $\ell$. ::: :::{.remark} Going the other way, $\ell\to p$: one can prove "of geometric origin" results when $\rank \mce = 2$ (Krishnmorthy-Pal). Idea: go from $\ell\to p$, make a candidate for the crystalline Dieudonne module for some family of AVs. One will have a bound on the motivic weight, which is at most $\rank \mce - 1$. A word on the proof: define a moduli stack $M_n$ of mod $p^n$ $F\dash$crystals, which is a horrendous algebraic stack. These are roughly coherent sheaves with extra data. Study some finite-type pieces using slops, and is universally closed since one can take flat limits along curves. Take the Zariski closure of companion points, then take stable images to get some $M_n''$. Show that every point in each component of it is a companion point using horizontal companions (as opposed to vertical in the fiber direction). Then show each component maps isomorphically to $S$, which is a pointwise condition on $S$. This only uses the companion on the fiber, which is easier to study. ::: # Alex Smith: Simple abelian varieties over finite fields with extreme point counts :::{.theorem title="Howe-Kedlaya"} Given $n > 0$, there is an $A\in \Ab\Var\slice{\FF_2}$ with $\size A(\FF_2) = n$. ::: :::{.remark} Recall the Weil bounds: given $A\slice{\FF_q}$, \[ (q-2q^{1\over 2} + 1)^g \leq \size A(\FF_q) \leq (q+2q^{1\over 2} +1)^g .\] Let $\ts{\alpha_i}_{1\leq i\leq 2g}$ be the eigenvalues of $\Frob\actson H_{\et}^1(A \fiberprod{\FF_q} \bar{\FF_q}; \ZZladic )$. Recall the Weil conjectures: - All embeddings $\QQ( \alpha_i) \injects \CC$ satisfy $\abs{ \alpha_i} = q^{1\over 2}$. - Lefschetz trace: $\size A(\FF_q) = \prod_{1\leq i\leq 2g}( \alpha_i - 1) = \prod(q+1 - \alpha_i - \bar{ \alpha_i} )^{1\over 2}$ Note that these real numbers sit in $[-2q^{1\over 2}, 2q^{1\over 2}] \subseteq \RR$. ::: :::{.definition title="Totally $\Sigma$"} Given $\Sigma \subseteq \CC$ we say $\alpha$ is **totally $\Sigma$** iff all conjugates of $\alpha$ are contained in $\Sigma$. ::: :::{.remark} Remarkably for AVs, the $\alpha_i$ tell the entire story! Honda-Tate theory gives a correspondence \[ \correspond{ \text{Abelian varieties over $\FF_q$} }/\sim_{\scriptscriptstyle \text{isogeny}} &\mapstofrom \correspond{ \text{Totally $I_q$ algebraic integers} }/\sim_{\scriptscriptstyle\text{conjgacy}} \] where $I = [-2\sqrt q, 2\sqrt q]$. Tate showed injectivity, Honda used CM theory to show surjectivity. ::: :::{.theorem title="von Bomel-Costa-Li-Poonen-S."} Given any $q$ and any $n \gg_q 0$, there is an $A\in\Ab\Var\slice{\FF_q}$ with $\size A(\FF_q) = n$. ::: :::{.remark} Idea: Howe-Kedlaya works infinitely often. One can't attain *every* integer in the Weil bound interval, but you can get pretty close: ::: :::{.theorem title="?"} Given $g \gg_q 0$ and \[ n\in [(q-2\sqrt q + 3)^g, (q+2\sqrt q - 1 - q\inv)^g] ,\] there exists $A$ with $\size A(\FF_q) = n$. ::: :::{.proof title="Sketch"} Given $\alpha\in \RR$ and $\eps$, one can produce totally $I$ algebraic integers for $I = [ \alpha, 4+ \alpha+\eps]$ fitting the arcsin distribution: ![](figures/2022-05-01_15-53-12.png) For $\eps = \alpha = 0$, choose a large cyclotomic polynomial, whose roots are roughly equidistributed in $S^1$, then map to $[-2, 2]$. Solving this for non-rational $\alpha$ and $\eps=0$ is a big open problem. ::: ## Schur-Segal-Smyth trace problem :::{.problem title="?"} Find the minimal $t$ such that for any $\eps > 0$, infinitely many totally positive algebraic integers satisfy \[ \trace(\alpha)/\deg(\alpha) < t + \eps .\] ::: :::{.remark} Idea: all conjugates greater than zero, how can you minimize the average trace? The cyclotomic method above infinitely many whose trace is at most 2. So using the arcsin distribution yields $t< 2$, open question: is $t=2$? Progress has been slow and revolves around an old trick. ::: :::{.proposition title="?"} $t\geq 1$. ::: :::{.proof title="?"} Take a totally positive algebraic integer with conjugates \( \ts{\alpha_i}_{i\leq n} \) with minimal polynomial $p$. Now apply AMGM: \[ 1\leq \abs{p(0)} = \qty{\prod a_i}^{n\over n}\leq_{\AMGM}\qty{\sum a_i \over n}^n .\] ::: :::{.remark} We can do slightly better. If $\abs{p(1)}\geq 1$, then $t\geq 1.05$. If $\abs{p(a)p(\bar a)} \geq 1$ for $a\da {3+\sqrt 5\over 2}$, then $t\geq 1.1$. More generally this is written as a resultant, i.e. $\resultant(p, x^3+3x+1)$. Smyth shows that $t = \trace(\alpha)/\deg( \alpha)\geq 1.771$ with 14 exceptions; Wang-Wu-Wu shows $t\geq 1.793$. Serre showed this argument can never show $t\geq 1.899$, Alex showed it can not show $t\geq 1.81$, so we're approaching the limit of Smyth's method. ::: :::{.theorem title="Alex"} Smyth's method limits to the right answer, and thus $t\leq 1.81$. In particular, $t\neq 2$. ::: :::{.remark} Consequence: there are things that work better than the arcsin distribution. ::: :::{.theorem title="?"} Given sufficiently large square $q$, there are infinitely many $A\slice{\FF_q}$ with \[ \size A(\FF_q) \geq (q + 2\sqrt q - 0.81)^{\dim A} ,\] but only finitely many with \[ \size A(\FF_q) \geq (q+2\sqrt q - 0.8)^{\dim A} .\] ::: :::{.definition title="?"} Given algebraic integers $\alpha$ with conjugates $\ts{\alpha_i}_{i\leq n}$, let \[ \mu_{\alpha}= {1\over n}\sum \delta_{ \alpha_i} .\] ::: :::{.remark} There is a weak-$*$ topology on the space of such measures. ::: :::{.theorem title="?"} Choose $\Sigma \subseteq \RR$ with countably many components (e.g. excluding Cantor sets) of *capacity* $c > 1$. TFAE are equivalent for a probability measure $\mu$ on $\Sigma$: - There are totally $\Sigma$ algebraic integers $\alpha_i$ whose distributions $\mu_{\alpha_i}$ as above conver to $\mu$. - For any integer polynomial $Q\neq 0$, \[ \int_{\Sigma} \log\abs{Q} \dmu \geq 0 .\] ::: :::{.remark} Idea of proof: apply Minkowski's 2nd theorem as a source of promising polynomials. Use an optimized distribution that avoids the 14 exceptions, whose average traces beat the previous averages: ![](figures/2022-05-01_16-31-56.png) :::