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1 Talk 1: Jordan Ellenberg, Sparsity of rational points on moduli spaces

1 Talk 1: Jordan Ellenberg, Sparsity of
rational points on moduli spaces

ADDING Conference

Reference for this talk

Question 1.0.1
How many homogeneous forms in Z[x0, · · · , xn] are there with discriminant equal to 1? More
accurately, there is a PGL -action, so how many PGL orbits are there? More generally: how many
are there with discriminant divisible only by primes in some finite set S?

Conjecture 1.0.2(Shafarevich conjecture-esque).
There are finitely many.

Remark 1.0.3: The general philosophy is that there should be only finitely many classes of X with
good reduction outside of S – this is known e.g. for abelian varieties of dimension g, see Faltings’
proof of Mordell.

Remark 1.0.4: In terms of rational points, there is a trichotomy:

• g = 0,
• g = 1,
• g > 1.

This in fact breaks into a dichotomy:

• g ≤ 1,
• g > 1.

Definition 1.0.5 (Sparse points)
There are bounds on rational point counts on X with height at most B:

• g = 0⇝≪X B2

• g = 1⇝≪X log B (Mordell)
• g ≥ 2⇝≪X CX where C is a constant depending on X (Faltings)

Here we’ll dichotomize this in a different way: g = 0 and g > 0. We say X has sparse points
if ♯X(Q) ≪ Bε.
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1 Talk 1: Jordan Ellenberg, Sparsity of rational points on moduli spaces

Theorem 1.0.6(E, Lawrence, Venkatesh 2021).
Let K ∈ Field/Q, S ∈ Places(K) finite, UK ↪→ PN a quasiprojective variety with a geometric
variation of Hodge structure with finite-to-one period map, making UX an interesting moduli
space of something. Then the periods of U(OK [ 1

S
]) are sparse.

Remark 1.0.7: The anabelian part: U has large π1, so lots of etale covers. E.g. if U is a moduli of
hypersurfaces, take the universal curve H → U , then Hn(Ht; Cm) varies and this can be interpreted
as a moduli space with level structure. We try to show that large π1 implies sparseness. This isn’t
quite true, since e.g. blowing up introduces lots of rational points, so a stronger condition is needed:
π1(U) is infinite and for every finite-dimensional V ⊆ U , π1(V ) → π1(U) has infinite image.

Remark 1.0.8: Why is it useful to have lots of etale covers? Consider x − y = 1 for x, y ∈ Z[ 1
S
]×

and S = {2, 3}. The S-units theorem of Siegel guarantees there are only finitely many solutions.
One way to approach this: if x = 2a3b, we know x up to squares: x = s, 2s, 3s, 6s for s a square, as
is y. This yields a system

m2 − n2 = 1
m2 − 2n2 = 1
2m2 − n2 = 1

... ,

which e.g. some can be solved using techniques for Pell equations. Having higher degree rigidifies the
situation, so perhaps there are more techniques to solve them. Strategy: trade one hard equation
for a finite list of higher degree easier equations.

Fact 1.0.9
A partitioning trick for integral points: Y → U is a finite etale cover, then there are a finite number
of twists {Y1, · · · , Ym} (all isomorphic over Q) with Yi → U such that every point in U(Z[ 1

S
])is in

the image of Y (Z[ 1
S
]) for some i. So ∐

iYi(Z[ 1
S
])⇒ U(Z[ 1

S
]).

Theorem 1.0.10(Heath-Brown 2004 (determinantal methods)).
Let X ⊂ P2 be a plane curve of degree d, then there is a uniform bound:

♯
{

p ∈ X(Q)
∣∣∣ ht(p) ≤ B

}
≤ Cd,εB2d+ε.

Note: missed the exponent on B, need to fix.

Remark 1.0.11: Useful to control numbers of points for curves you know nothing about. Walsh
removes the ε in all terms, Selberg, Brolog generalized to higher dimensions, CCDN make the
constant effective. Pitch: these theorems are useful for other theorems which are not ostensibly
about uniformity!
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Remark 1.0.12: All we can control in this situation is the degree of Yi → U and U ⊆ PN has a

degree, so we can control the degree of the Yi. Broberg gives a bound ≪ B
n+1

d
1
n where n = dim U .

It doesn’t actually matter what this is, just that it decreases in d, and we can take higher degree
covers.

Remark 1.0.13: “Anabelian”: π1 somehow tells the entire story.

Remark 1.0.14: Heath-Brown’s technique uses p-adic repulsion of points for X(Q) → X(Qp)
where low-height points do not end up nearby. Recall that there is a SES

1 → πét
1 (XQ) → πét

1 (XQ) → GQ → 1,

and any point p ∈ X(Q) gives a section, thought of as X(Q) → H1(GQ; πét
1 (XQ)). Anabelian-ness:

embed into some large interesting geometric space like this.

This cohomology group has a topology where p, q ∈ X(Q) are nearby iff there exists a higher degree
etale cover Y → X (small subsets correspond to large index subgroups in the profinite topology)
such that p, q both lift to Y (Q).

Remark 1.0.15: How this goes for curves: C(Q) → Jac(Q), and one can tensor up to Jac(Q)⊗ZZp̂.
Modern take: points are close if they differ by a power of p in the Mordell-Weil group. Interpretation
of the main theorem: Heath-Brown in more general profinite topologies.

2 Talk 2: Wanlin Li, Ceresa cycle and
hyperellipticity

Remark 2.0.1: A hyperbolic curve is determined by its πét
1 .

Remark 2.0.2: Recall y2 = f(x) defines a hyperelliptic curve C, which admits an involution
(x, y) → (x, −y) and produces a degree 2 map

C → P1

(x, y) 7→ x.

Let k be a separable closure of k. There is a fibration induced by taking a geometric point of Spec k
and pulling back:

Ck C

Spec k Spec k

⌟
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Link to Diagram

As in topology, this induces a LES in homotopy, which here splits into SESs. In particular,

1 → π1(Ck) → π1(Ck) → Gal(k/k).

A point induces a section and thus a map Gal(k/k) → Aut π1(Ck). Take the lower central series of
π := π1(Ck), this induces

1 → L2π/L3π → π/L3π → π/L1π = πab → 1

where the first term is abelian.

See Davis-Pries-Wickelgren for applications to Fer-
mat curves.

Question 2.0.3
This extension corresponds to an element in µ(C) ∈ H1(Gk; Hom(πab, L2π/L3π)), and when C is
hyperelliptic µ(C) = 0. Does the converse hold?

Theorem 2.0.4(Bisogno-L-Litt-Srinivasan).
There exist non-hyperelliptic curves C over k such that µ(C) is torsion – in particular, the
Fricke-Macbeath curve, which is genus 7 Hurwitz. Moreover if C1 → C2 then µ(C1) torsion
implies µ(C2) torsion.

See https: // arxiv. org/ abs/ 2004. 06146?

Theorem 2.0.5(Harris-Pulte (Hain-Matsumoto)).
µ(C) is the ℓ-adic cycles class associated to the Ceresa cycle.

See Hain-Matsumoto and Pulte

Remark 2.0.6: For C/k and p ∈ C(K), the Abel-Jacobi map yields

AJ : C ↪→ Jac(C)
q 7→ [q − p].

So define the Ceresa cycle as

c̃ := AJ(C) − AJ(C) := [q − p] − [p − q].

Note that c̃ is homologically trivial in Chow, but algebraically nontrivial for a very general C/C
with g ≥ 3.

Theorem 2.0.7(Beauville).
There is an explicit non-hyperelliptic curve C with c̃ torsion:

x4 + xz3 + y3z = 0 ⊆ P2, p = [0, 0, 1].
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4 Misc Notes

See https: // arxiv. org/ abs/ 2105. 07160?

Remark 2.0.8: Consider curves over the local field K = C[[t]]. Note Gal(C[[t]]/C[[t]]) = Ẑ, so this
resembles a circle, and one can degenerate a family over the punctured disc. Apply nonabelian
Picard-Lefschetz due to Asada-Matsumoto-Oda: if C has semistable reduction then the monodromy
of C/C[[t]] is given by a multi-twist, i.e. a product of Dehn twists about simple closed curves. One
can explicitly compute the Ceresa class in this situation. The degeneration data can be encoded as
a tropical curve (essentially the dual graph of the special fiber).

See Asada-Matsumoto-Oda

Theorem 2.0.9(?).
µ(C) is always torsion for C defined over C[[t]].

Remark 2.0.10: There is a notion of “hyperelliptic” for tropical curves: quotienting by the
involution yields a tree.

3 Misc Notes

Remark 3.0.1: See Iwasawa group.

Conjecture 3.0.2.
Section conjecture: Sec(Y/K) ∼= Y (K), i.e. every section comes from a rational point.

Remark 3.0.3: See the recent Lawrence-Venkatesh proof of Mordell. See Selmer section set and
adelic sections.

Remark 3.0.4: Hyperbolic curves:

• g = 0⇝ P1 \ Z where ♯Z ≥ 3
• g = 1⇝ affine
• g ≥ 2: anything.

For X/K for K ∈ Field/Q smooth hyperbolic with good reduction away from S, ♯X(OK,S) < ∞ by
Faltings. See Bloch-Kato and Fontaine-Mazur conjectures.

Misc Notes 7

https://arxiv.org/abs/2105.07160
https://www.sciencedirect.com/science/article/pii/002240499400112V


5 Kiran Kedlaya: Crystalline companions as an anabelian phenomenon

4 Sunday, May 01

Remark 4.0.1: I missed the first two talks

5 Kiran Kedlaya: Crystalline companions as
an anabelian phenomenon

Remark 5.0.1: Setup: k = Fq, q = pn, X ∈ Sch/k smooth geometrically connected, ℓ ̸= p arbitrary.
Recall

1 → π1Xk → π1X → Gk = Ẑ → 1.

Anabelian philosophy: everything you’d want to know about X is contained in π1X.

Theorem 5.0.2(Tamagawa).
If X is an affine curve, then πtame

1 X determines X.

Remark 5.0.3: Problem: if X is an affine genus g curve with m punctures, πprime−to−p

1 Xk is the
prime-to-p completion of Free(2g + m − 1), independently of X. Since sections induce Gk →
Out(π1Xk), we have lots of tame continuous Qℓ reps of π1Xk, but very few are fixed by Frobenius.

Conjecture 5.0.4(Deligne).
Such representations only have “geometric origins”, i.e. if E is a lisse Qℓ-sheaf, i.e. a lisse
F -sheaf with [F : Qℓ] < ∞, which is irreducible with determinant of finite order, then it
appears on relative etale cohomology of π : Y → X for some Y .

Remark 5.0.5: This is known in dim X = 1, due to Deligne, around the same time Drinfeld proved
Langlands for GL2(k(X)) for k(X) a function field (or really the adeles). So all arithmetic reps of
π1 come from geometry.

Remark 5.0.6: Note that Y will eventually not even be a scheme. The determinant condition
rules out transcendental twists. Galois side: lisse sheaves on X; automorphic side: reps values in
GLn(AK) for K a field. The proof above involves exhibiting the Galois objects as coming from
relative etale cohomology in moduli of shtukas. A priori one only knows Frobenius traces, but this
turns out to be enough to uniquely characterize things in this situation.
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5 Kiran Kedlaya: Crystalline companions as an anabelian phenomenon

Conjecture 5.0.7.
Later Lafforgue did this for GLn, but the corresponding statement about arithmetic reps is
wide open.

Remark 5.0.8: If E as above, the Frobenius traces at all closed points x ∈ |X| are algebraic over
Q.

Definition 5.0.9 (Companion sheaves)
Fix an algebraic closure Q and two primes ℓ, ℓ′ ̸= p and fix embeddings Q ↪→ Qℓ and Q ↪→ Qℓ′ .
Let E , E ′ be lisse Qℓ,Qℓ′ sheaves (resp.) on X. Say E , E ′ are companions iff for every x ∈ |X|
the Frobenius traces at x are equal in Q.

Remark 5.0.10: Note that E determines E ′ up to semisimplification, using L-function techniques.
Moreover properties like being irreducible or having finite determinant hold simultaneously for
them.

Theorem 5.0.11(Drinfeld, L. Lafforgue, Deligne).
With this setup, a lisse Qℓ sheaf Eℓ admits a compantion E ′ which is a Qℓ′ for chosen embeddings
of Q for which all traces are in Q, i.e. irreducible and finite determinant. This is true in arbitrary
dimension.

Remark 5.0.12: What about when ℓ = p? There are somehow too many and too few lisse
Qp sheaves! E.g. the Lefschetz trace formula doesn’t hold. Instead use the Riemann-Hilbert
correspondence – the p-adic analogues of lisse sheaves are certain p-adic integrable connections.
How to construct: start with X affine and glue. Choose a smooth affine formal scheme over W (k)
with special fiber Pk

∼= X. Let K = ff W (k) and PK be the Raynaud generic fiber. See Tate model,
Berkovich model, etc for rigid analytic geometry. Let An

K ⇝ Ân
W (k), a closed unit disc over K.

Definition 5.0.13 (Convergent isocrystal)
Some definitions:

• A convergent isocrystal is a vector bundle with an integrable connection on PK .
• A convergent F -isocrystal is this and a compatible action of (a lift of) Frobenius.
• An overconvergent F -isocrystal is this on some structural enlargment of PK which

takes the closed unit disc to the disc of radius 1 + ε.

Remark 5.0.14: These are similar to π1(Xk)-representations. Issue: p-adic antidifferentiation is
hard; the integral of a formal power series converging on the closed disc only converges on the open
disc.

Remark 5.0.15: If X is smooth this recovers Berthelot’s rigid cohomology, which is a refinement of
crystalline cohomology if X is proper. This yields a 6 functor formalism, and has the same moving
parts as etale cohomology.

Kiran Kedlaya: Crystalline companions as an anabelian phenomenon 9
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Theorem 5.0.16(Abe).
The Langlands correspondence extends to these when dim X = 1.
The content here: Lafforgue’s original proof can now be run with p-adic coefficients instead of
just ℓ-adic coefficients.

Theorem 5.0.17(Abe-?, Drinfeld-Abe-Esmult, K).
The companion theorem extends to both ℓ = p and ℓ′ = p.

Remark 5.0.18: Deligne posited the existence of a petit camarade crystalline, a little crystalline
friend.

E 5.1 Applications e

Remark 5.1.1: A partial result toward a conjecture of Simpson. Let X/C be a smooth cohomolog-
ically rigid local system (so no nontrivial deformations) which is irreducible with finite determinant.
Are these of geometric origin? In particular, is there a ZVHS? Esnault-Groecherig show that the
monodromy representation factors through GLn(OK) → GLn(C) for some K ∈ Field/Q.

Idea: start from complex geometry, go to p-adic geometry, yields an overconvergent F -crystal. This
yields integrality at p; use companions to go back to a lisse ℓ-adic sheaf, then back to C to get
integrality at ℓ.

Remark 5.1.2: Going the other way, ℓ → p: one can prove “of geometric origin” results when
rank E = 2 (Krishnmorthy-Pal). Idea: go from ℓ → p, make a candidate for the crystalline
Dieudonne module for some family of AVs. One will have a bound on the motivic weight, which is
at most rank E − 1.

A word on the proof: define a moduli stack Mn of mod pn F -crystals, which is a horrendous
algebraic stack. These are roughly coherent sheaves with extra data. Study some finite-type pieces
using slops, and is universally closed since one can take flat limits along curves. Take the Zariski
closure of companion points, then take stable images to get some M ′′

n .

Show that every point in each component of it is a companion point using horizontal companions
(as opposed to vertical in the fiber direction). Then show each component maps isomorphically to
S, which is a pointwise condition on S. This only uses the companion on the fiber, which is easier
to study.

5.1 Applications 10
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6 Alex Smith: Simple abelian varieties over
finite fields with extreme point counts

Theorem 6.0.1(Howe-Kedlaya).
Given n > 0, there is an A ∈ AbVar/F2 with ♯A(F2) = n.

Remark 6.0.2: Recall the Weil bounds: given A/Fq
,

(q − 2q
1
2 + 1)g ≤ ♯A(Fq) ≤ (q + 2q

1
2 + 1)g.

Let {αi}1≤i≤2g be the eigenvalues of Frob ↷ H1
ét(A×

Fq

Fq;Zℓ). Recall the Weil conjectures:

• All embeddings Q(αi) ↪→ C satisfy |αi| = q
1
2 .

• Lefschetz trace: ♯A(Fq) =
∏

1≤i≤2g

(αi − 1) =
∏

(q + 1 − αi − αi)
1
2 Note that these real numbers

sit in [−2q
1
2 , 2q

1
2 ] ⊆ R.

Definition 6.0.3 (Totally Σ)
Given Σ ⊆ C we say α is totally Σ iff all conjugates of α are contained in Σ.

Remark 6.0.4: Remarkably for AVs, the αi tell the entire story! Honda-Tate theory gives a
correspondence

{Abelian varieties over Fq} / ∼isogeny ⇌ {Totally Iq algebraic integers} / ∼conjgacy

where I = [−2√
q, 2√

q]. Tate showed injectivity, Honda used CM theory to show surjectivity.

Theorem 6.0.5(von Bomel-Costa-Li-Poonen-S.).
Given any q and any n ≫q 0, there is an A ∈ AbVar/Fq

with ♯A(Fq) = n.

Remark 6.0.6: Idea: Howe-Kedlaya works infinitely often. One can’t attain every integer in the
Weil bound interval, but you can get pretty close:

Theorem 6.0.7(?).
Given g ≫q 0 and

n ∈ [(q − 2√
q + 3)g, (q + 2√

q − 1 − q−1)g],

there exists A with ♯A(Fq) = n.

Alex Smith: Simple abelian varieties over finite fields with extreme point counts 11
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Proof (Sketch).
Given α ∈ R and ε, one can produce totally I algebraic integers for I = [α, 4 + α + ε] fitting
the arcsin distribution:

For ε = α = 0, choose a large cyclotomic polynomial, whose roots are roughly equidistributed
in S1, then map to [−2, 2]. Solving this for non-rational α and ε = 0 is a big open problem.

■

E 6.1 Schur-Segal-Smyth trace problem e

Problem 6.1.1 (?)
Find the minimal t such that for any ε > 0, infinitely many totally positive algebraic integers
satisfy

tr(α)/ deg(α) < t + ε.

Remark 6.1.1: Idea: all conjugates greater than zero, how can you minimize the average trace?
The cyclotomic method above infinitely many whose trace is at most 2. So using the arcsin
distribution yields t < 2, open question: is t = 2? Progress has been slow and revolves around an
old trick.

Proposition 6.1.2(?).
t ≥ 1.

6.1 Schur-Segal-Smyth trace problem 12
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Proof (?).
Take a totally positive algebraic integer with conjugates {αi}i≤n with minimal polynomial p.
Now apply AMGM:

1 ≤ |p(0)| =
(∏

ai

) n
n ≤AMGM

(∑
ai

n

)n

.

■

Remark 6.1.3: We can do slightly better. If |p(1)| ≥ 1, then t ≥ 1.05. If |p(a)p(a)| ≥ 1 for

a := 3 +
√

5
2 , then t ≥ 1.1. More generally this is written as a resultant, i.e. res(p, x3 + 3x + 1).

Smyth shows that t = tr(α)/ deg(α) ≥ 1.771 with 14 exceptions; Wang-Wu-Wu shows t ≥ 1.793.
Serre showed this argument can never show t ≥ 1.899, Alex showed it can not show t ≥ 1.81, so
we’re approaching the limit of Smyth’s method.

Theorem 6.1.4(Alex).
Smyth’s method limits to the right answer, and thus t ≤ 1.81. In particular, t ̸= 2.

Remark 6.1.5: Consequence: there are things that work better than the arcsin distribution.

Theorem 6.1.6(?).
Given sufficiently large square q, there are infinitely many A/Fq

with

♯A(Fq) ≥ (q + 2√
q − 0.81)dim A,

but only finitely many with

♯A(Fq) ≥ (q + 2√
q − 0.8)dim A.

Definition 6.1.7 (?)
Given algebraic integers α with conjugates {αi}i≤n, let

µα = 1
n

∑
δαi .

Remark 6.1.8: There is a weak-∗ topology on the space of such measures.

Theorem 6.1.9(?).
Choose Σ ⊆ R with countably many components (e.g. excluding Cantor sets) of capacity c > 1.
TFAE are equivalent for a probability measure µ on Σ:

• There are totally Σ algebraic integers αi whose distributions µαi as above conver to µ.

6.1 Schur-Segal-Smyth trace problem 13



6 ToDos

• For any integer polynomial Q ̸= 0, ∫
Σ

log |Q| dµ ≥ 0.

Remark 6.1.10: Idea of proof: apply Minkowski’s 2nd theorem as a source of promising polyno-
mials. Use an optimized distribution that avoids the 14 exceptions, whose average traces beat the
previous averages:

ToDos

List of Todos
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