

Notes: These are some sketchy personal notes from
the $A D D I N G 2022$ conference at $U G A$.

ADDING 2022

Conference Notes

[^0]
Table of Contents

Contents

Table of Contents 2
1 Talk 1: Jordan Ellenberg, Sparsity of rational points on moduli spaces 3
2 Talk 2: Wanlin Li, Ceresa cycle and hyperellipticity 5
3 Misc Notes 7
4 Sunday, May 01 8
5 Kiran Kedlaya: Crystalline companions as an anabelian phenomenon 8
5.1 Applications 10
6 Alex Smith: Simple abelian varieties over finite fields with extreme point counts 11
6.1 Schur-Segal-Smyth trace problem 12
ToDos 14
Definitions 15
Theorems 16
Exercises 17
Figures 18

1 Talk 1: Jordan Ellenberg, Sparsity of rational points on moduli spaces

Reference for this talk

Question 1.0.1

How many homogeneous forms in $\mathbb{Z}\left[x_{0}, \cdots, x_{n}\right]$ are there with discriminant equal to 1 ? More accurately, there is a PGL-action, so how many PGL orbits are there? More generally: how many are there with discriminant divisible only by primes in some finite set S ?

Conjecture 1.0.2(Shafarevich conjecture-esque).
There are finitely many.

Remark 1.0.3: The general philosophy is that there should be only finitely many classes of X with good reduction outside of S - this is known e.g. for abelian varieties of dimension g, see Faltings' proof of Mordell.

Remark 1.0.4: In terms of rational points, there is a trichotomy:

- $g=0$,
- $g=1$,
- $g>1$.

This in fact breaks into a dichotomy:

- $g \leq 1$,
- $g>1$.

Definition 1.0.5 (Sparse points)
There are bounds on rational point counts on X with height at most B :

- $g=0 \rightsquigarrow<_{X} B^{2}$
- $g=1 \rightsquigarrow<_{X} \log B$ (Mordell)
- $g \geq 2 \rightsquigarrow \ll_{X} C_{X}$ where C is a constant depending on X (Faltings)

Here we'll dichotomize this in a different way: $g=0$ and $g>0$. We say X has sparse points if $\sharp X(\mathbb{Q}) \ll B^{\varepsilon}$.

Theorem 1.0.6(E, Lawrence, Venkatesh 2021).
Let $K \in$ Field $_{\mathbb{Q}}, S \in \operatorname{Places}(K)$ finite, $U_{K} \hookrightarrow \mathbb{P}^{N}$ a quasiprojective variety with a geometric variation of Hodge structure with finite-to-one period map, making U_{X} an interesting moduli space of something. Then the periods of $U\left(\mathcal{O}_{K}\left[\frac{1}{S}\right]\right)$ are sparse.

Remark 1.0.7: The anabelian part: U has large π_{1}, so lots of etale covers. E.g. if U is a moduli of hypersurfaces, take the universal curve $\mathcal{H} \rightarrow U$, then $H^{n}\left(\mathcal{H}_{t} ; C_{m}\right)$ varies and this can be interpreted as a moduli space with level structure. We try to show that large π_{1} implies sparseness. This isn't quite true, since e.g. blowing up introduces lots of rational points, so a stronger condition is needed: $\pi_{1}(U)$ is infinite and for every finite-dimensional $V \subseteq U, \pi_{1}(V) \rightarrow \pi_{1}(U)$ has infinite image.

Remark 1.0.8: Why is it useful to have lots of etale covers? Consider $x-y=1$ for $x, y \in \mathbb{Z}\left[\frac{1}{S}\right]^{\times}$ and $S=\{2,3\}$. The S-units theorem of Siegel guarantees there are only finitely many solutions. One way to approach this: if $x=2^{a} 3^{b}$, we know x up to squares: $x=s, 2 s, 3 s, 6 s$ for s a square, as is y. This yields a system

$$
\begin{aligned}
m^{2}-n^{2} & =1 \\
m^{2}-2 n^{2} & =1 \\
2 m^{2}-n^{2} & =1
\end{aligned}
$$

which e.g. some can be solved using techniques for Pell equations. Having higher degree rigidifies the situation, so perhaps there are more techniques to solve them. Strategy: trade one hard equation for a finite list of higher degree easier equations.

Fact 1.0.9

A partitioning trick for integral points: $Y \rightarrow U$ is a finite etale cover, then there are a finite number of twists $\left\{Y_{1}, \cdots, Y_{m}\right\}$ (all isomorphic over $\overline{\mathbb{Q}}$) with $Y_{i} \rightarrow U$ such that every point in $U\left(\mathbb{Z}\left[\frac{1}{S}\right]\right)$ is in the image of $Y\left(\mathbb{Z}\left[\frac{1}{S}\right]\right)$ for some i. So

$$
\amalg_{i} Y_{i}\left(\mathbb{Z}\left[\frac{1}{S}\right]\right) \rightrightarrows U\left(\mathbb{Z}\left[\frac{1}{S}\right]\right) .
$$

Theorem 1.0.10(Heath-Brown 2004 (determinantal methods)).
Let $X \subset \mathbb{P}^{2}$ be a plane curve of degree d, then there is a uniform bound:

$$
\sharp\{p \in X(\mathbb{Q}) \mid \operatorname{ht}(p) \leq B\} \leq C_{d, \varepsilon} B^{2 d+\varepsilon} .
$$

Note: missed the exponent on B, need to fix.

Remark 1.0.11: Useful to control numbers of points for curves you know nothing about. Walsh removes the ε in all terms, Selberg, Brolog generalized to higher dimensions, CCDN make the constant effective. Pitch: these theorems are useful for other theorems which are not ostensibly about uniformity!

Remark 1.0.12: All we can control in this situation is the degree of $Y_{i} \rightarrow U$ and $U \subseteq \mathbb{P}^{N}$ has a degree, so we can control the degree of the Y_{i}. Broberg gives a bound $\ll B^{\frac{n+1}{d^{\frac{1}{n}}}}$ where $n=\operatorname{dim} U$. It doesn't actually matter what this is, just that it decreases in d, and we can take higher degree covers.

Remark 1.0.13: "Anabelian": π_{1} somehow tells the entire story.

Remark 1.0.14: Heath-Brown's technique uses p-adic repulsion of points for $X(\mathbb{Q}) \rightarrow X\left(\mathbb{Q}_{p}\right)$ where low-height points do not end up nearby. Recall that there is a SES

$$
1 \rightarrow \pi_{1}^{\text {ét }}\left(X_{\overline{\mathbb{Q}}}\right) \rightarrow \pi_{1}^{\mathrm{ett}}\left(X_{\mathbb{Q}}\right) \rightarrow G_{\mathbb{Q}} \rightarrow 1
$$

and any point $p \in X(\mathbb{Q})$ gives a section, thought of as $X(\mathbb{Q}) \rightarrow H^{1}\left(G_{\mathbb{Q}} ; \pi_{1}^{\text {ét }}\left(X_{\overline{\mathbb{Q}}}\right)\right)$. Anabelian-ness: embed into some large interesting geometric space like this.

This cohomology group has a topology where $p, q \in X(\mathbb{Q})$ are nearby iff there exists a higher degree etale cover $Y \rightarrow X$ (small subsets correspond to large index subgroups in the profinite topology) such that p, q both lift to $Y(\mathbb{Q})$.

Remark 1.0.15: How this goes for curves: $C(\mathbb{Q}) \rightarrow \operatorname{Jac}(\mathbb{Q})$, and one can tensor up to $\operatorname{Jac}(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Z}_{\widehat{p}}$. Modern take: points are close if they differ by a power of p in the Mordell-Weil group. Interpretation of the main theorem: Heath-Brown in more general profinite topologies.

2 Talk 2: Wanlin Li, Ceresa cycle and hyperellipticity

Remark 2.0.1: A hyperbolic curve is determined by its $\pi_{1}^{\text {ét }}$.
Remark 2.0.2: Recall $y^{2}=f(x)$ defines a hyperelliptic curve C, which admits an involution $(x, y) \rightarrow(x,-y)$ and produces a degree 2 map

$$
\begin{aligned}
C & \rightarrow \mathbb{P}^{1} \\
(x, y) & \mapsto x
\end{aligned}
$$

Let \bar{k} be a separable closure of k. There is a fibration induced by taking a geometric point of Spec k and pulling back:

Link to Diagram

As in topology, this induces a LES in homotopy, which here splits into SESs. In particular,

$$
1 \rightarrow \pi_{1}\left(C_{\bar{k}}\right) \rightarrow \pi_{1}\left(C_{k}\right) \rightarrow \operatorname{Gal}(\bar{k} / k) .
$$

A point induces a section and thus a map $\operatorname{Gal}(\bar{k} / k) \rightarrow$ Aut $\pi_{1}\left(C_{\bar{k}}\right)$. Take the lower central series of $\pi:=\pi_{1}\left(C_{\bar{k}}\right)$, this induces

$$
1 \rightarrow L^{2} \pi / L^{3} \pi \rightarrow \pi / L^{3} \pi \rightarrow \pi / L^{1} \pi=\pi^{\mathrm{ab}} \rightarrow 1
$$

where the first term is abelian.
See Davis-Pries-Wickelgren for applications to Fermat curves.

Question 2.0.3

This extension corresponds to an element in $\mu(C) \in H^{1}\left(G_{\bar{k}} ; \operatorname{Hom}\left(\pi^{\mathrm{ab}}, L^{2} \pi / L^{3} \pi\right)\right)$, and when C is hyperelliptic $\mu(C)=0$. Does the converse hold?

Theorem 2.0.4(Bisogno-L-Litt-Srinivasan).

There exist non-hyperelliptic curves C over k such that $\mu(C)$ is torsion - in particular, the Fricke-Macbeath curve, which is genus 7 Hurwitz. Moreover if $C_{1} \rightarrow C_{2}$ then $\mu\left(C_{1}\right)$ torsion implies $\mu\left(C_{2}\right)$ torsion.

See https: // arxiv. org/abs/2004.06146?

Theorem 2.0.5 (Harris-Pulte (Hain-Matsumoto)).
$\mu(C)$ is the ℓ-adic cycles class associated to the Ceresa cycle.
See Hain-Matsumoto and Pulte

Remark 2.0.6: For $C_{/ k}$ and $p \in C(K)$, the Abel-Jacobi map yields

$$
\text { AJ : } \begin{aligned}
C & \hookrightarrow \mathrm{Jac}(C) \\
q & \mapsto[q-p] .
\end{aligned}
$$

So define the Ceresa cycle as

$$
\tilde{c}:=\mathrm{AJ}(C)-\overline{\mathrm{AJ}(C)}:=[q-p]-[p-q] .
$$

Note that \tilde{c} is homologically trivial in Chow, but algebraically nontrivial for a very general $C_{/ \mathbb{C}}$ with $g \geq 3$.

Theorem 2.0.7 (Beauville).
There is an explicit non-hyperelliptic curve C with \tilde{c} torsion:

$$
x^{4}+x z^{3}+y^{3} z=0 \subseteq \mathbb{P}^{2}, \quad p=[0,0,1]
$$

Remark 2.0.8: Consider curves over the local field $K=\mathbb{C}[[t]]$. Note Gal $(\overline{\mathbb{C}}[[t]] / \mathbb{C}[[t]])=\widehat{\mathbb{Z}}$, so this resembles a circle, and one can degenerate a family over the punctured disc. Apply nonabelian Picard-Lefschetz due to Asada-Matsumoto-Oda: if C has semistable reduction then the monodromy of $C / \mathbb{C}[t t]]$ is given by a multi-twist, i.e. a product of Dehn twists about simple closed curves. One can explicitly compute the Ceresa class in this situation. The degeneration data can be encoded as a tropical curve (essentially the dual graph of the special fiber).

See Asada-Matsumoto-Oda

Theorem 2.0.9(?).
$\mu(C)$ is always torsion for C defined over $\mathbb{C}[[t]]$.

Remark 2.0.10: There is a notion of "hyperelliptic" for tropical curves: quotienting by the involution yields a tree.

3 Misc Notes

Remark 3.0.1: See Iwasawa group.
Conjecture 3.0.2.
Section conjecture: $\operatorname{Sec}(Y / K) \cong Y(K)$, i.e. every section comes from a rational point.

Remark 3.0.3: See the recent Lawrence-Venkatesh proof of Mordell. See Selmer section set and adelic sections.

Remark 3.0.4: Hyperbolic curves:

- $g=0 \rightsquigarrow \mathbb{P}^{1} \backslash Z$ where $\sharp Z \geq 3$
- $g=1 \rightsquigarrow$ affine
- $g \geq 2$: anything.

For $X_{/ K}$ for $K \in$ Field $_{/ \mathbb{Q}}$ smooth hyperbolic with good reduction away from $S, \sharp X\left(\mathcal{O}_{K, S}\right)<\infty$ by Faltings. See Bloch-Kato and Fontaine-Mazur conjectures.

4 Sunday, May 01

Remark 4.0.1: I missed the first two talks \because

5
 Kiran Kedlaya: Crystalline companions as an anabelian phenomenon

Remark 5.0.1: Setup: $k=\mathbb{F}_{q}, q=p^{n}, X \in \operatorname{Sch}_{/ k}$ smooth geometrically connected, $\ell \neq p$ arbitrary. Recall

$$
1 \rightarrow \pi_{1} X_{\bar{k}} \rightarrow \pi_{1} X \rightarrow G_{k}=\widehat{\mathbb{Z}} \rightarrow 1 .
$$

Anabelian philosophy: everything you'd want to know about X is contained in $\pi_{1} X$.

Theorem 5.0.2(Tamagawa).

If X is an affine curve, then $\pi_{1}^{\text {tame }} X$ determines X.

Remark 5.0.3: Problem: if X is an affine genus g curve with m punctures, $\pi_{1}^{\text {prime-to-p }} X_{\bar{k}}$ is the prime-to- p completion of Free $(2 g+m-1)$, independently of X. Since sections induce $G_{k} \rightarrow$ Out $\left(\pi_{1} X_{\bar{k}}\right)$, we have lots of tame continuous $\overline{\mathbb{Q}_{\ell}}$ reps of $\pi_{1} X_{\bar{k}}$, but very few are fixed by Frobenius.

Conjecture 5.0.4(Deligne).

Such representations only have "geometric origins", i.e. if \mathcal{E} is a lisse \mathbb{Q}_{ℓ}-sheaf, i.e. a lisse F-sheaf with $\left[F: \mathbb{Q}_{\ell}\right]<\infty$, which is irreducible with determinant of finite order, then it appears on relative etale cohomology of $\pi: Y \rightarrow X$ for some Y.

Remark 5.0.5: This is known in $\operatorname{dim} X=1$, due to Deligne, around the same time Drinfeld proved Langlands for $\mathrm{GL}_{2}(k(X))$ for $k(X)$ a function field (or really the adeles). So all arithmetic reps of π_{1} come from geometry.

Remark 5.0.6: Note that Y will eventually not even be a scheme. The determinant condition rules out transcendental twists. Galois side: lisse sheaves on X; automorphic side: reps values in $\mathrm{GL}_{n}\left(\mathbb{A}_{K}\right)$ for K a field. The proof above involves exhibiting the Galois objects as coming from relative etale cohomology in moduli of shtukas. A priori one only knows Frobenius traces, but this turns out to be enough to uniquely characterize things in this situation.

Conjecture 5.0.7.

Later Lafforgue did this for GL_{n}, but the corresponding statement about arithmetic reps is wide open.

Remark 5.0.8: If \mathcal{E} as above, the Frobenius traces at all closed points $x \in|X|$ are algebraic over Q.

Definition 5.0.9 (Companion sheaves)
Fix an algebraic closure $\overline{\mathbb{Q}}$ and two primes $\ell, \ell^{\prime} \neq p$ and fix embeddings $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{\ell}$ and $\overline{\mathbb{Q}}^{4} \overline{\mathbb{Q}}_{\ell^{\prime}}$. Let $\mathcal{E}, \mathcal{E}^{\prime}$ be lisse $\overline{\mathbb{Q}}_{\ell}, \overline{\mathbb{Q}}_{\ell^{\prime}}$ sheaves (resp.) on X. Say $\mathcal{E}, \mathcal{E}^{\prime}$ are companions iff for every $x \in|X|$ the Frobenius traces at x are equal in $\overline{\mathbb{Q}}$.

Remark 5.0.10: Note that \mathcal{E} determines \mathcal{E}^{\prime} up to semisimplification, using L-function techniques. Moreover properties like being irreducible or having finite determinant hold simultaneously for them.

Theorem 5.0.11(Drinfeld, L. Lafforgue, Deligne).
With this setup, a lisse $\overline{\mathbb{Q}}_{\ell}$ sheaf \mathcal{E}_{ℓ} admits a compantion \mathcal{E}^{\prime} which is a $\overline{\mathbb{Q}}_{\ell^{\prime}}$ for chosen embeddings of \mathbb{Q} for which all traces are in $\overline{\mathbb{Q}}$, i.e. irreducible and finite determinant. This is true in arbitrary dimension.

Remark 5.0.12: What about when $\ell=p$? There are somehow too many and too few lisse $\overline{\mathbb{Q}}_{p}$ sheaves! E.g. the Lefschetz trace formula doesn't hold. Instead use the Riemann-Hilbert correspondence - the p-adic analogues of lisse sheaves are certain p-adic integrable connections. How to construct: start with X affine and glue. Choose a smooth affine formal scheme over $W(k)$ with special fiber $P_{k} \cong X$. Let $K=\mathrm{ff} W(k)$ and P_{K} be the Raynaud generic fiber. See Tate model, Berkovich model, etc for rigid analytic geometry. Let $\mathbb{A}_{K}^{n} \rightsquigarrow \widehat{\mathbb{A}}^{n}{ }_{W(k)}$, a closed unit disc over K.

Definition 5.0.13 (Convergent isocrystal)
Some definitions:

- A convergent isocrystal is a vector bundle with an integrable connection on P_{K}.
- A convergent F-isocrystal is this and a compatible action of (a lift of) Frobenius.
- An overconvergent F-isocrystal is this on some structural enlargment of P_{K} which takes the closed unit disc to the disc of radius $1+\varepsilon$.

Remark 5.0.14: These are similar to $\pi_{1}\left(X_{\bar{k}}\right)$-representations. Issue: p-adic antidifferentiation is hard; the integral of a formal power series converging on the closed disc only converges on the open disc.

Remark 5.0.15: If X is smooth this recovers Berthelot's rigid cohomology, which is a refinement of crystalline cohomology if X is proper. This yields a 6 functor formalism, and has the same moving parts as etale cohomology.

Theorem 5.0.16 (Abe).
The Langlands correspondence extends to these when $\operatorname{dim} X=1$.
The content here: Lafforgue's original proof can now be run with p-adic coefficients instead of just ℓ-adic coefficients.

Theorem 5.0.17 (Abe-?, Drinfeld-Abe-Esmult, K).
The companion theorem extends to both $\ell=p$ and $\ell^{\prime}=p$.

Remark 5.0.18: Deligne posited the existence of a petit camarade crystalline, a little crystalline friend. \qquad

5.1 Applications

Remark 5.1.1: A partial result toward a conjecture of Simpson. Let $X_{/ \mathbb{C}}$ be a smooth cohomologically rigid local system (so no nontrivial deformations) which is irreducible with finite determinant. Are these of geometric origin? In particular, is there a $\mathbb{Z V H S}$? Esnault-Groecherig show that the monodromy representation factors through $\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right) \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ for some $K \in$ Field $_{\mathbb{Q}}$.

Idea: start from complex geometry, go to p-adic geometry, yields an overconvergent F-crystal. This yields integrality at p; use companions to go back to a lisse ℓ-adic sheaf, then back to \mathbb{C} to get integrality at ℓ.

Remark 5.1.2: Going the other way, $\ell \rightarrow p$: one can prove "of geometric origin" results when $\operatorname{rank} \mathcal{E}=2$ (Krishnmorthy-Pal). Idea: go from $\ell \rightarrow p$, make a candidate for the crystalline Dieudonne module for some family of AVs. One will have a bound on the motivic weight, which is at most $\operatorname{rank} \mathcal{E}-1$.

A word on the proof: define a moduli stack M_{n} of $\bmod p^{n} F$-crystals, which is a horrendous algebraic stack. These are roughly coherent sheaves with extra data. Study some finite-type pieces using slops, and is universally closed since one can take flat limits along curves. Take the Zariski closure of companion points, then take stable images to get some $M_{n}^{\prime \prime}$.

Show that every point in each component of it is a companion point using horizontal companions (as opposed to vertical in the fiber direction). Then show each component maps isomorphically to S, which is a pointwise condition on S. This only uses the companion on the fiber, which is easier to study.

6
 Alex Smith: Simple abelian varieties over finite fields with extreme point counts

Theorem 6.0.1 (Howe-Kedlaya).

Given $n>0$, there is an $A \in \mathrm{AbVar}_{/ \mathbb{F}_{2}}$ with $\sharp A\left(\mathbb{F}_{2}\right)=n$.

Remark 6.0.2: Recall the Weil bounds: given $A_{/ \mathbb{F}_{q}}$,

$$
\left(q-2 q^{\frac{1}{2}}+1\right)^{g} \leq \sharp A\left(\mathbb{F}_{q}\right) \leq\left(q+2 q^{\frac{1}{2}}+1\right)^{g} .
$$

Let $\left\{\alpha_{i}\right\}_{1 \leq i \leq 2 g}$ be the eigenvalues of Frob $\curvearrowright H_{\text {ett }}^{1}\left(A \times \overline{\mathbb{F}_{q}} ; \mathbb{Z}_{\ell}\right)$. Recall the Weil conjectures:

- All embeddings $\mathbb{Q}\left(\alpha_{i}\right) \hookrightarrow \mathbb{C}$ satisfy $\left|\alpha_{i}\right|=q^{\frac{1}{2}}$.
- Lefschetz trace: $\sharp A\left(\mathbb{F}_{q}\right)=\prod_{1 \leq i \leq 2 g}\left(\alpha_{i}-1\right)=\prod\left(q+1-\alpha_{i}-\overline{\alpha_{i}}\right)^{\frac{1}{2}}$ Note that these real numbers sit in $\left[-2 q^{\frac{1}{2}}, 2 q^{\frac{1}{2}}\right] \subseteq \mathbb{R}$.

Definition 6.0.3 (Totally Σ)
Given $\Sigma \subseteq \mathbb{C}$ we say α is totally Σ iff all conjugates of α are contained in Σ.

Remark 6.0.4: Remarkably for AVs, the α_{i} tell the entire story! Honda-Tate theory gives a correspondence

$$
\left\{\text { Abelian varieties over } \mathbb{F}_{q}\right\} / \sim_{\text {isogeny }} \rightleftharpoons\left\{\text { Totally } I_{q} \text { algebraic integers }\right\} / \sim_{\text {conjgacy }}
$$

where $I=[-2 \sqrt{q}, 2 \sqrt{q}]$. Tate showed injectivity, Honda used CM theory to show surjectivity.

Theorem 6.0.5 (von Bomel-Costa-Li-Poonen-S.).
Given any q and any $n \gg_{q} 0$, there is an $A \in \mathrm{AbVar}_{/ \mathbb{F}_{q}}$ with $\sharp A\left(\mathbb{F}_{q}\right)=n$.

Remark 6.0.6: Idea: Howe-Kedlaya works infinitely often. One can't attain every integer in the Weil bound interval, but you can get pretty close:

Theorem 6.0.7(?).
Given $g \ggg_{q} 0$ and

$$
n \in\left[(q-2 \sqrt{q}+3)^{g},\left(q+2 \sqrt{q}-1-q^{-1}\right)^{g}\right],
$$

there exists A with $\sharp A\left(\mathbb{F}_{q}\right)=n$.

Proof (Sketch).

Given $\alpha \in \mathbb{R}$ and ε, one can produce totally I algebraic integers for $I=[\alpha, 4+\alpha+\varepsilon]$ fitting the arcsin distribution:

For $\varepsilon=\alpha=0$, choose a large cyclotomic polynomial, whose roots are roughly equidistributed in S^{1}, then map to $[-2,2]$. Solving this for non-rational α and $\varepsilon=0$ is a big open problem.

6.1 Schur-Segal-Smyth trace problem

Problem 6.1.1 (?)

Find the minimal t such that for any $\varepsilon>0$, infinitely many totally positive algebraic integers satisfy

$$
\operatorname{tr}(\alpha) / \operatorname{deg}(\alpha)<t+\varepsilon
$$

Remark 6.1.1: Idea: all conjugates greater than zero, how can you minimize the average trace? The cyclotomic method above infinitely many whose trace is at most 2 . So using the arcsin distribution yields $t<2$, open question: is $t=2$? Progress has been slow and revolves around an old trick.

Proposition 6.1.2(?).
$t \geq 1$.

Proof (?).

Take a totally positive algebraic integer with conjugates $\left\{\alpha_{i}\right\}_{i \leq n}$ with minimal polynomial p. Now apply AMGM:

$$
1 \leq|p(0)|=\left(\prod a_{i}\right)^{\frac{n}{n}} \leq_{\mathrm{AMGM}}\left(\frac{\sum a_{i}}{n}\right)^{n}
$$

Remark 6.1.3: We can do slightly better. If $|p(1)| \geq 1$, then $t \geq 1.05$. If $|p(a) p(\bar{a})| \geq 1$ for $a:=\frac{3+\sqrt{5}}{2}$, then $t \geq 1.1$. More generally this is written as a resultant, i.e. $\operatorname{res}\left(p, x^{3}+3 x+1\right)$.

Smyth shows that $t=\operatorname{tr}(\alpha) / \operatorname{deg}(\alpha) \geq 1.771$ with 14 exceptions; Wang-Wu-Wu shows $t \geq 1.793$. Serre showed this argument can never show $t \geq 1.899$, Alex showed it can not show $t \geq 1.81$, so we're approaching the limit of Smyth's method.

Theorem 6.1.4(Alex).

Smyth's method limits to the right answer, and thus $t \leq 1.81$. In particular, $t \neq 2$.

Remark 6.1.5: Consequence: there are things that work better than the arcsin distribution.

Theorem 6.1.6(?).

Given sufficiently large square q, there are infinitely many $A_{/ \mathbb{F}_{q}}$ with

$$
\sharp A\left(\mathbb{F}_{q}\right) \geq(q+2 \sqrt{q}-0.81)^{\operatorname{dim} A},
$$

but only finitely many with

$$
\sharp A\left(\mathbb{F}_{q}\right) \geq(q+2 \sqrt{q}-0.8)^{\operatorname{dim} A}
$$

Definition 6.1.7 (?)
Given algebraic integers α with conjugates $\left\{\alpha_{i}\right\}_{i \leq n}$, let

$$
\mu_{\alpha}=\frac{1}{n} \sum \delta_{\alpha_{i}}
$$

Remark 6.1.8: There is a weak-* topology on the space of such measures.

Theorem 6.1.9(?).

Choose $\Sigma \subseteq \mathbb{R}$ with countably many components (e.g. excluding Cantor sets) of capacity $c>1$. TFAE are equivalent for a probability measure μ on Σ :

- There are totally Σ algebraic integers α_{i} whose distributions $\mu_{\alpha_{i}}$ as above conver to μ.
- For any integer polynomial $Q \neq 0$,

$$
\int_{\Sigma} \log |Q| d \mu \geq 0
$$

Remark 6.1.10: Idea of proof: apply Minkowski's 2 nd theorem as a source of promising polynomills. Use an optimized distribution that avoids the 14 exceptions, whose average traces beat the previous averages:

ToDos

List of Todos

Definitions

1.0.5 Definition - Sparse points 3
5.0.9 Definition - Companion sheaves 9
5.0.13 Definition - Convergent isocrystal 9
6.0.3 Definition - Totally Σ 11
6.1.7 Definition - ? 13

Theorems

1.0.6 Theorem - E, Lawrence, Venkatesh 2021 4
1.0.10 Theorem - Heath-Brown 2004 (determinantal methods) 4
2.0.4 Theorem - Bisogno-L-Litt-Srinivasan 6
2.0.5 Theorem - Harris-Pulte (Hain-Matsumoto) 6
2.0.7 Theorem - Beauville 6
2.0.9 Theorem - ? 7
5.0.2 Theorem - Tamagawa 8
5.0.11 Theorem - Drinfeld, L. Lafforgue, Deligne 9
5.0.16 Theorem - Abe 10
5.0.17 Theorem - Abe-?, Drinfeld-Abe-Esmult, K 10
6.0.1 Theorem - Howe-Kedlaya 11
6.0.5 Theorem - von Bomel-Costa-Li-Poonen-S. 11
6.0.7 Theorem - ? 11
6.1.2 Proposition - ? 12
6.1.4 Theorem - Alex 13
6.1.6 Theorem - ? 13
6.1.9 Theorem - ? 13

Exercises

Figures
List of Figures

[^0]: D. Zack Garza

 University of Georgia
 dzackgarza@gmail.com
 Last updated: 2022-05-01

