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Talk 1: Jordan Ellenberg, Sparsity of rational points on moduli spaces

1 Talk 1: Jordan Ellenberg, Sparsity of
rational points on moduli spaces

ADDING Conference
Reference for this talk

Question 1.0.1

How many homogeneous forms in Z[xg,- - ,x,] are there with discriminant equal to 17 More
accurately, there is a PGL-action, so how many PGL orbits are there? More generally: how many
are there with discriminant divisible only by primes in some finite set S7

Conjecture 1.0.2(Shafarevich conjecture-esque).
There are finitely many.

Remark 1.0.3: The general philosophy is that there should be only finitely many classes of X with
good reduction outside of S — this is known e.g. for abelian varieties of dimension g, see Faltings’
proof of Mordell.

Remark 1.0.4: In terms of rational points, there is a trichotomy:

.9:07
Og:l7
e g> 1.

This in fact breaks into a dichotomy:

e g<1,
e g>1.

Definition 1.0.5 (Sparse points)
There are bounds on rational point counts on X with height at most B:

e g= 0 L x B2
¢ g=1~<x log B (Mordell)
o g>2~<x Cx where C is a constant depending on X (Faltings)

Here we’ll dichotomize this in a different way: g = 0 and g > 0. We say X has sparse points
if $4X(Q) < B,
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Theorem 1.0.6 (E, Lawrence, Venkatesh 2021).

Let K € Field/q,S € Places(K) finite, Ux — PN a quasiprojective variety with a geometric
variation of Hodge structure with finite-to-one period map, making Ux an interesting moduli
space of something. Then the periods of U(Og[L]) are sparse.

Remark 1.0.7: The anabelian part: U has large 71, so lots of etale covers. E.g. if U is a moduli of
hypersurfaces, take the universal curve H — U, then H"(H;; C,,) varies and this can be interpreted
as a moduli space with level structure. We try to show that large m; implies sparseness. This isn’t
quite true, since e.g. blowing up introduces lots of rational points, so a stronger condition is needed:
m1(U) is infinite and for every finite-dimensional V' C U, 7;(V') — m1(U) has infinite image.

Remark 1.0.8: Why is it useful to have lots of etale covers? Consider z —y =1 for z,y € Z[4]"
and S = {2,3}. The S-units theorem of Siegel guarantees there are only finitely many solutions.
One way to approach this: if x = 2a3b, we know x up to squares: x = s, 2s, 3s, 6s for s a square, as
is . This yields a system

m?—n?=1
m?—2n?=1

om? —n?=1

which e.g. some can be solved using techniques for Pell equations. Having higher degree rigidifies the
situation, so perhaps there are more techniques to solve them. Strategy: trade one hard equation
for a finite list of higher degree easier equations.

Fact 1.0.9

A partitioning trick for integral points: Y —Uisa finite etale cover, then there are a finite number
of twists {Y7,---, Y} (all isomorphic over Q) with ¥; — U such that every point in U(Z[{])is in
the image of Y (Z[L]) for some i. So

[LYi(Z[5]) = U(Z[3))-

Theorem 1.0.10 (Heath-Brown 2004 (determinantal methods)).
Let X C IP? be a plane curve of degree d, then there is a uniform bound:

t{pe X(@ | ut(p) < B} < Cy B>~

Note: missed the exponent on B, need to fix.

Remark 1.0.11: Useful to control numbers of points for curves you know nothing about. Walsh
removes the € in all terms, Selberg, Brolog generalized to higher dimensions, CCDN make the
constant effective. Pitch: these theorems are useful for other theorems which are not ostensibly
about uniformity!
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I Talk 2: Wanlin Li, Ceresa cycle and hyperellipticity

Remark 1.0.12: All we can control in this situation is the degree of ¥; — U and U C PV has a
n+1

degree, so we can control the degree of the Y;. Broberg gives a bound < B % where n = dim U.
It doesn’t actually matter what this is, just that it decreases in d, and we can take higher degree
covers.

Remark 1.0.13: “Anabelian”: 7 somehow tells the entire story.

Remark 1.0.14: Heath-Brown’s technique uses p-adic repulsion of points for X (Q) — X(Qp)
where low-height points do not end up nearby. Recall that there is a SES

1— 71" (Xg) = 71" (Xq) = Gg = 1,

and any point p € X (Q) gives a section, thought of as X(Q) — H'(Go; Wft(X@)). Anabelian-ness:
embed into some large interesting geometric space like this.

This cohomology group has a topology where p, ¢ € X (Q) are nearby iff there exists a higher degree
etale cover Y — X (small subsets correspond to large index subgroups in the profinite topology)
such that p, ¢ both lift to Y(Q).

Remark 1.0.15: How this goes for curves: C(Q) — Jac(Q), and one can tensor up to Jac(Q) ®z Zs.
Modern take: points are close if they differ by a power of p in the Mordell-Weil group. Interpretation
of the main theorem: Heath-Brown in more general profinite topologies.

2 Talk 2: Wanlin Li, Ceresa cycle and
hyperellipticity

Remark 2.0.1: A hyperbolic curve is determined by its 7<*.

Remark 2.0.2: Recall 42> = f(x) defines a hyperelliptic curve C, which admits an involution
(z,y) — (x,—y) and produces a degree 2 map

C — P!
(z,y) — x.

Let k be a separable closure of k. There is a fibration induced by taking a geometric point of Spec k
and pulling back:

C, ————— C

-

Speck —— Speck
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Link to Diagram

As in topology, this induces a LES in homotopy, which here splits into SESs. In particular,
1 — m(Cy) = m1(Ck) — Gal(k/k).

A point induces a section and thus a map Gal(k/k) — Aut 7 (Cf). Take the lower central series of
7 = m1(C%), this induces

1= L?n/L7 — n/LPn —» n/L'r =7 — 1
where the first term is abelian.

See Davis-Pries- Wickelgren for applications to Fer-
mat curves.

Question 2.0.3
This extension corresponds to an element in ;(C) € H*(Gy; Hom(7*?, L /L?r)), and when C' is
hyperelliptic x(C) = 0. Does the converse hold?

Theorem 2.0.4(Bisogno-L-Litt-Srinivasan).
There exist non-hyperelliptic curves C over k such that p(C) is torsion — in particular, the
Fricke-Macbeath curve, which is genus 7 Hurwitz. Moreover if C; — Co then u(Cp) torsion
implies p1(Cs) torsion.

See https: //arziv. org/abs/ 2004 . 061467

Theorem 2.0.5 (Harris-Pulte (Hain-Matsumoto)).
p(C) is the f-adic cycles class associated to the Ceresa cycle.
See Hain-Matsumoto and Pulte

Remark 2.0.6: For C);, and p € C(K), the Abel-Jacobi map yields
AJ: C = Jac(C)
q g —pl

So define the Ceresa cycle as

¢:=AJ(C) - AJC) =[g—pl - [p—d]
Note that ¢ is homologically trivial in Chow, but algebraically nontrivial for a very general C¢
with g > 3.
Theorem 2.0.7 (Beauville).

There is an explicit non-hyperelliptic curve C' with ¢ torsion:

zt + 222 + 432 =0 C P?, p=1[0,0,1].
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I Misc Notes

I See https: //arziv. org/abs/2105. 071607

Remark 2.0.8: Consider curves over the local field K = C[[t]]. Note Gal(C[[t]]/C[[t]]) = Z, so this
resembles a circle, and one can degenerate a family over the punctured disc. Apply nonabelian
Picard-Lefschetz due to Asada-Matsumoto-Oda: if C' has semistable reduction then the monodromy
of C/C][t]] is given by a multi-twist, i.e. a product of Dehn twists about simple closed curves. One
can explicitly compute the Ceresa class in this situation. The degeneration data can be encoded as
a tropical curve (essentially the dual graph of the special fiber).

See Asada-Matsumoto-Oda

Theorem 2.0.9(7?).
wu(C) is always torsion for C' defined over CI[¢]].

Remark 2.0.10: There is a notion of “hyperelliptic” for tropical curves: quotienting by the
involution yields a tree.

3 ‘ Misc Notes

Remark 3.0.1: See Iwasawa group.

Conjecture 3.0.2.
Section conjecture: Sec(Y/K) = Y (K), i.e. every section comes from a rational point.

Remark 3.0.3: See the recent Lawrence-Venkatesh proof of Mordell. See Selmer section set and
adelic sections.

Remark 3.0.4: Hyperbolic curves:
e g=0~ P'\ Z where 17 >3
e g=1~ affine

e g > 2: anything.

For X, for K € Field g smooth hyperbolic with good reduction away from S, X (Ok s) < oo by
Faltings. See Bloch-Kato and Fontaine-Mazur conjectures.
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I Kiran Kedlaya: Crystalline companions as an anabelian phenomenon

P
4 ‘ Sunday, May 01
Remark 4.0.1: I missed the first two talks ‘'« s
5 Kiran Kedlaya: Crystalline companions as
an anabelian phenomenon
Remark 5.0.1: Setup: k =F,,q = p", X € Sch/;, smooth geometrically connected, ¢ # p arbitrary.
Recall
1—>7T1XE—>7T1X—>G]€:Z—>1.
Anabelian philosophy: everything you’d want to know about X is contained in 7 X. ~

Theorem 5.0.2 (Tamagawa).
If X is an affine curve, then 7{*™°X determines X.

Remark 5.0.3: Problem: if X is an affine genus g curve with m punctures, w}"™ "7 Xz, is the
prime-to-p completion of Free(2g + m — 1), independently of X. Since sections induce Gy —
Out(71X7), we have lots of tame continuous Q, reps of 71 X3, but very few are fixed by Frobenius. =

Conjecture 5.0.4 (Deligne).

Such representations only have “geometric origins”, i.e. if £ is a lisse Q-sheaf, i.e. a lisse
F-sheaf with [F : Q] < oo, which is irreducible with determinant of finite order, then it
appears on relative etale cohomology of 7 : Y — X for some Y.

Remark 5.0.5: This is known in dim X = 1, due to Deligne, around the same time Drinfeld proved
Langlands for GLa(k(X)) for £(X) a function field (or really the adeles). So all arithmetic reps of
w1 come from geometry. il

Remark 5.0.6: Note that Y will eventually not even be a scheme. The determinant condition
rules out transcendental twists. Galois side: lisse sheaves on X; automorphic side: reps values in
GL,(Ak) for K a field. The proof above involves exhibiting the Galois objects as coming from
relative etale cohomology in moduli of shtukas. A priori one only knows Frobenius traces, but this
turns out to be enough to uniquely characterize things in this situation. v
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Kiran Kedlaya: Crystalline companions as an anabelian phenomenon

Conjecture 5.0.7.
Later Lafforgue did this for GL,,, but the corresponding statement about arithmetic reps is
wide open.

Remark 5.0.8: If £ as above, the Frobenius traces at all closed points x € | X| are algebraic over

Q.

Definition 5.0.9 (Companion sheaves)
Fix an algebraic closure Q and two primes ¢, ¢ # p and fix embeddings Q — Q; and Q — Q.
Let &, &' be lisse Qy, Qp sheaves (resp.) on X. Say &, & are companions iff for every x € | X|

the Frobenius traces at x are equal in Q.

Remark 5.0.10: Note that £ determines £ up to semisimplification, using L-function techniques.
Moreover properties like being irreducible or having finite determinant hold simultaneously for
them.

Theorem 5.0.11 (Drinfeld, L. Lafforgue, Deligne).

With this setup, a lisse Q, sheaf & admits a compantion £ which is a Q, for chosen embeddings
of Q for which all traces are in Q, i.e. irreducible and finite determinant. This is true in arbitrary
dimension.

Remark 5.0.12: What about when ¢ = p? There are somehow too many and too few lisse
@p sheaves! E.g. the Lefschetz trace formula doesn’t hold. Instead use the Riemann-Hilbert
correspondence — the p-adic analogues of lisse sheaves are certain p-adic integrable connections.
How to construct: start with X affine and glue. Choose a smooth affine formal scheme over W (k)
with special fiber P, = X. Let K = ff W (k) and Pk be the Raynaud generic fiber. See Tate model,
Berkovich model, etc for rigid analytic geometry. Let A ~» A"y 4y, a closed unit disc over K.

Definition 5.0.13 (Convergent isocrystal)
Some definitions:

e A convergent isocrystal is a vector bundle with an integrable connection on Pk.

o A convergent F-isocrystal is this and a compatible action of (a lift of) Frobenius.

e An overconvergent F'-isocrystal is this on some structural enlargment of Px which
takes the closed unit disc to the disc of radius 1 + €.

Remark 5.0.14: These are similar to 7 (X} )-representations. Issue: p-adic antidifferentiation is
hard; the integral of a formal power series converging on the closed disc only converges on the open
disc.

Remark 5.0.15: If X is smooth this recovers Berthelot’s rigid cohomology, which is a refinement of
crystalline cohomology if X is proper. This yields a 6 functor formalism, and has the same moving
parts as etale cohomology.
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Kiran Kedlaya: Crystalline companions as an anabelian phenomenon

Theorem 5.0.16 (Abe).

The Langlands correspondence extends to these when dim X = 1.

The content here: Lafforgue’s original proof can now be run with p-adic coefficients instead of
just f-adic coefficients.

Theorem 5.0.17 (Abe-?, Drinfeld-Abe-Esmult, K).
The companion theorem extends to both £ = p and ¢/ = p.

Remark 5.0.18: Deligne posited the existence of a petit camarade crystalline, a little crystalline

. A
friend. &Y' -

- 5.1 Applications ~

Remark 5.1.1: A partial result toward a conjecture of Simpson. Let X ¢ be a smooth cohomolog-
ically rigid local system (so no nontrivial deformations) which is irreducible with finite determinant.
Are these of geometric origin? In particular, is there a ZVHS? Esnault-Groecherig show that the
monodromy representation factors through GL,(Ok) — GL,(C) for some K € Field /.

Idea: start from complex geometry, go to p-adic geometry, yields an overconvergent F-crystal. This
yields integrality at p; use companions to go back to a lisse f-adic sheaf, then back to C to get
integrality at £.

Remark 5.1.2: Going the other way, £ — p: one can prove “of geometric origin” results when
rank & = 2 (Krishnmorthy-Pal). Idea: go from ¢ — p, make a candidate for the crystalline
Dieudonne module for some family of AVs. One will have a bound on the motivic weight, which is
at most rank & — 1.

A word on the proof: define a moduli stack M, of mod p" F-crystals, which is a horrendous
algebraic stack. These are roughly coherent sheaves with extra data. Study some finite-type pieces
using slops, and is universally closed since one can take flat limits along curves. Take the Zariski
closure of companion points, then take stable images to get some M,,.

Show that every point in each component of it is a companion point using horizontal companions
(as opposed to vertical in the fiber direction). Then show each component maps isomorphically to
S, which is a pointwise condition on S. This only uses the companion on the fiber, which is easier
to study.

5.1 Applications 10



I Alex Smith: Simple abelian varieties over finite fields with extreme point counts

6 Alex Smith: Simple abelian varieties over
finite fields with extreme point counts

Theorem 6.0.1 (Howe-Kedlaya).
Given n > 0, there is an A € AbVar p, with §A(F2) = n.

Remark 6.0.2: Recall the Weil bounds: given A4,

(a—29% +1)? < 4A(F,) < (g+24* +1)%
Let {a};<;<o, De the eigenvalues of Frob ~ Hélt(A?IETq; Zg). Recall the Weil conjectures:
q

o All embeddings Q(cy;) — C satisfy || = ¢2.

o Lefschetz trace: fA(F,) = H (; —1) = H(q+ 1—o;— (T,)% Note that these real numbers
1<i<2g

sit in [—2q%, 2q%] CR.

Definition 6.0.3 (Totally X)
Given X C C we say « is totally X iff all conjugates of a are contained in X.

Remark 6.0.4: Remarkably for AVs, the «; tell the entire story! Honda-Tate theory gives a
correspondence

{Abelian varieties over Fq} / ~ = {Totally 14 algebraic integers} / ~

isogeny conjgacy

where I = [—2,/q,2,/q]. Tate showed injectivity, Honda used CM theory to show surjectivity.

Theorem 6.0.5 (von Bomel-Costa-Li-Poonen-S.).
Given any q and any n >4 0, there is an A € AbVar p_ with §A(F;) = n.

Remark 6.0.6: Idea: Howe-Kedlaya works infinitely often. One can’t attain every integer in the
Weil bound interval, but you can get pretty close:

Theorem 6.0.7(7).
Given g >, 0 and

n€[(g—2va+3)% (¢ +2va—1-¢")7),

there exists A with fA(F,) = n.

Alex Smith: Simple abelian varieties over finite fields with extreme point counts 11



Alex Smith: Simple abelian varieties over finite fields with extreme point counts

Proof (Sketch).

Given « € R and e, one can produce totally I algebraic integers for I = [a, 4 + o + ¢] fitting
the arcsin distribution:

rd

\ \ L SYdAfam
(2]

|

E%
il ! A 5 ] AN \ A T
Ty v y Y T TR

440t €

For ¢ = a = 0, choose a large cyclotomic polynomial, whose roots are roughly equidistributed
in S, then map to [—2,2]. Solving this for non-rational a and & = 0 is a big open problem.
|

— 6.1 Schur-Segal-Smyth trace problem ~

-

Problem 6.1.1 (7)

Find the minimal ¢ such that for any € > 0, infinitely many totally positive algebraic integers
satisfy

tr(a)/ deg(a) < t+e.

Remark 6.1.1: Idea: all conjugates greater than zero, how can you minimize the average trace?
The cyclotomic method above infinitely many whose trace is at most 2. So using the arcsin
distribution yields t < 2, open question: is ¢ = 27 Progress has been slow and revolves around an
old trick.

Proposition 6.1.2(?).
t>1.
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Proof (?).
Take a totally positive algebraic integer with conjugates {O‘i}ign with minimal polynomial p.
Now apply AMGM:

1< |p(0)] = (H ai)% <AMGM (Znaz')n.

Remark 6.1.3: We can do slightly better. If |p(1)] > 1, then ¢ > 1.05. If |p(a)p(a)] > 1 for
L 3+5
2

, then ¢t > 1.1. More generally this is written as a resultant, i.e. res(p, 3+ 3z + 1).

Smyth shows that ¢ = tr(«)/deg(a) > 1.771 with 14 exceptions; Wang-Wu-Wu shows ¢ > 1.793.
Serre showed this argument can never show ¢t > 1.899, Alex showed it can not show t > 1.81, so
we’re approaching the limit of Smyth’s method. Vs

Theorem 6.1.4 (Alex).
Smyth’s method limits to the right answer, and thus ¢ < 1.81. In particular, ¢ # 2.

Remark 6.1.5: Consequence: there are things that work better than the arcsin distribution. s

Theorem 6.1.6(?).
Given sufficiently large square g, there are infinitely many Ay, with

HA(F,) > (q+2y/q — 0.81)4™ 4
but only finitely many with

1A(F,) > (¢ +2y/q — 0.8) 4,

Definition 6.1.7 (7)
Given algebraic integers a with conjugates {a;},,,, let

1
Ho = ﬁzdai-

Remark 6.1.8: There is a weak-* topology on the space of such measures. A

Theorem 6.1.9(%).
Choose ¥ C R with countably many components (e.g. excluding Cantor sets) of capacity ¢ > 1.
TFAE are equivalent for a probability measure p on 3:

o There are totally > algebraic integers «; whose distributions f, as above conver to p.

6.1 Schur-Segal-Smyth trace problem 13



e For any integer polynomial @ # 0,

/ log |Q|dp > 0.
3

Remark 6.1.10: Idea of proof: apply Minkowski’s 2nd theorem as a source of promising polyno-
mials. Use an optimized distribution that avoids the 14 exceptions, whose average traces beat the
previous averages:
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