# Setup - \(x=\mathbb{P}^{1} / k, \quad k=\mathbb{F}_{q}\), \(\quad\) char \(k=p\) - \(F=K(X), \mathcal{O}_{x}\) valuation rings for \(x \in|X|\) \(S=\{0, \infty\} \subseteq|X|, \quad G=S_{p}(V)\) --- - Fix a symplectic basis of \(V\) were \( \langle e_i,\, e_{-j}\rangle = 1\) and \( \langle e_{\pm i},\, e_{\pm j}\rangle = 0 \), so e.g. $\langle e_n,\, e_{-n} \rangle = \pm 1$: \[ \left\{ \underbrace{e_{1}, \cdots, e_{n} }_{0},\,\, e_{-n}, \cdots, e_{-1} \right\} \] - Choose the following level structures: - For $t$ a uniformizer at $x=0$: \[ K_0 = \left\{ \left[\begin{array}{c|c} \theta_{0} & t \theta_{0} \\ \hline \theta_{0} & \theta_{0} \end{array}\right] \right\},\qquad \text{each block }2\times 2 \text{ in the above basis} \] - For $\tau$ a uniformizer at $x=0\infty$: \[ K_\infty = \left\{ \left[\begin{array}{c|c} I_{2}+\tau \theta_{\infty} & \theta_{\infty} \\ \hline \tau \theta_{\omega} & I_{2}+\tau \theta_{\infty} \end{array}\right]\right\} \] Then define \[ \operatorname{Bun}_{{\mathrm{Sp}_{2 n}}}\left(K_{0}, K_{\infty}\right)=\left\{ \begin{array}{r} \left(V, \hspace{5.6em}\right. \text { Vect. bun. rk } 2n \\ \omega\hspace{6em} \text{a symplectic form}\\ L_{0} \subseteq V_{0}, \hspace{10.5em}\\ L_{\infty} \subseteq V_{\infty}, \hspace{4em}\text { Lagrangians } \\ \left.\left\{l_{1}, \cdots, l_{n}\right\}\right) \hspace{3em} \text { a basis for }L_{\infty} \\ \end{array}\right\} \]