# Wee Teck Gan (Talk 2) :::{.remark} Correction from last time: \[ \inp{v_2}{v_1} = \eps \inp{v_1}{v_2}^c .\] Notation from last time: - $V$ Hermitian, $W$ skew-Hermitian - An invariant $\disc(V) \da (-1)^m \det V\in F\units/\Norm(E\units)$ where $m\da {n\choose 2}$ and $n\da \dim V$ - $\disc(W) = \disc( \delta^{-n} V)$ where \( \delta\in E_0\units \). ::: :::{.fact} Over \(p\dash \)adic fields, $\disc(V)$ determines $V$. By composing with a quadratic character $w_{E/F}$, we obtain \[ \disc \circ w_{E/F} = (V \mapsvia{\disc} F\units/\Norm(E\units)) \mapsvia{w_{E/F}} \gens{\pm 1} ,\] so there are exactly two classes of Hermitian vector spaces of a given dimension, which we'll denote $V^+, V^-$. ::: :::{.remark} Over a real field, this is not enough -- one also needs the signature $\signature(V) = (p, q)$ where $p+q=n$, in which case \[ \disc(V_{p, q}) = (-1)^q (-1)^{p\choose 2} .\] For $E/K$ an extension of number fields, there is a local-global principle: \[ \Herm\Vect\slice K &\injects \prod_{v\in \Places(K)} \Herm\Vect \slice {K_v} \\ V &\mapsto \ts{V\tensor_K K_v}_{v\in \Places(K)} .\] We'll call spaces in the image of this correspondence **coherent**. ::: :::{.fact} $V$ is coherent iff for almost every place $v$, \[ V\text{ is coherent} \iff \eps(V_v) = 1 \ae \text{ and } \prod_v \eps(V_v) = 1 .\] ::: :::{.example title="of classification"} Let $k$ be a \(p\dash \)adic field. In rank 1: - $E_0\units / \Norm(E\units) = \ts{ \delta, \delta'}$, - $W_1^+ = \gens{ \delta}$, - $W_1^- = \gens{ \delta'}$. In rank 2: - $\HH = W_2^+ = E e_1 + E e_2$, - $\inp{e_i}{e_i} = 0$ and $\inp{e_1}{e_2} = 1$, which yields matrix $\matt 0 1 {-1} 0$, - $W_2^-$ is described by a quaternionic division algebra. In rank $2n$: - $W_{2n}^+ = \HH\sumpower{n}$ - $W_{2n}^- = W_2^- \oplus \HH\sumpower{(n-1)}$ In rank $2n+1$: - $W_{2n+1}^+ = \gens{ \delta} \oplus \HH\sumpower{n}$, - $W_{2n+1}^- = \gens{ \delta' } \oplus \HH\sumpower{n}$. ::: ## Howe-PS: Counterexample to the Ramanujan-Petersson Conjecture :::{.remark} Let $\dim W = 3$, so $U(W) = \U_3$, then $\Res_{E/K}(W)\in \Vect^{\dim = 6}\slice k$. The trace to $K$ yields a symplectic form: \[ \omega(\wait, \wait) \da \Tr_{E/k}\inp{\wait}{\wait}_W .\] There is an embedding $U(W) \embeds \Sp(\Res_{E/k}(W))$, so $\U_3 \embeds \Sp_6$ There is a simple something: \[ \Omega \subseteq \mca_2(\Sp(\wait)) ,\] which we'll call **theta functions**. Note that $ZU(W) = E^1 \da \ts{x\in E\units \st \Norm(x) = 1}$. Consider $i^* \Omega \subseteq \mca(U(W))$; there is a central character decomposition \[ i^*( \Omega) = \bigoplus _{\chi} \Omega_{\chi} ,\] where the sum is over automorphic characters of $E^1$. :::{.claim} $\Omega_\chi$ is an irreducible cuspidal representation, with at most one exception $\chi$, and this $\Omega_\chi$ produced a counterexample for the RP conjecture. ::: ::: :::{.warnings} A complication: the theta functions don't live on $\Sp_6$, but rather on a double cover, and this leads to many technicalities. ::: :::{.remark} Howe-PS produces a correspondence: \[ \ts{\text{Automorphic characters on } E^1\cong \U_1} &\mapstofrom \ts{\text{Automorphic reps of } \U_3} \\ \chi &\mapsto \Omega_{\chi} .\] ::: :::{.question} How can one produce an injective map \[ \Irr(G) \injects \Irr(H) ?\] ::: :::{.answer} Recall that \[ \Irr(G\times H) = \ts{\pi \tensor \sigma \st \pi \in \Irr(G), \sigma \in \Irr(H)} .\] The idea to produce this map: find $(G\times H)\dash$reps $\Omega$ and produce a subset \[ \Sigma_{ \Omega} = \ts{(\pi, \sigma) \st \Hom_{G\times H}(\Omega, \pi\tensor\sigma) \neq 1} \subseteq \Irr(G) \times \Irr(H) .\] ::: :::{.question} Is the correspondence $\Sigma_{\Omega}$ a graph? ::: :::{.remark} There is a decomposition \[ \Omega_{G\times H} &= \bigoplus _\pi \bigoplus _\sigma m(\pi, \sigma) \pi\tensor\sigma \\ &= \bigoplus _\pi \qty{\bigoplus _\sigma m(\pi, \sigma) \sigma }\tensor \pi \\ &\da \bigoplus _\pi \Theta(\pi) \tensor \pi .\] Is $\Theta(\pi)$ an irreducible rep, or zero? If so, this produces a map \[ \Theta: \Irr(G) \to \Irr(H)\union\ts{0} .\] ::: :::{.remark} Upshot: one needs $\dim \Omega$ to be small. Suppose $G\times H \to E$, take the smallest non-trivial representation $\Omega$ of $E$ and pull it back to $G\times H$. If $G\times H \subseteq E$, this can be done by restriction. ::: :::{.remark} The **theta correspondence** is an instance of all of these ideas. ::: ## The Theta Correspondence :::{.remark} Let - $F\in\Field$ be a \(p\dash \)adic, - $E/F$ a quadratic extension, - $V$ Hermitian and $W$ skew-Hermitian so that $V \tensor_E W$ is skew-Hermitian under the symplectic form induced by the trace, This yields a map of the form $G\times H\to E$: \[ \U(V) \times \U(W) \to \Sp(V\tensor_E W) .\] What is $\Omega$? To get small enough weights, one needs to pass to the **metaplectic cover** $\Mp$. ::: ## Metaplectic Groups and Weil Reps :::{.remark} For $\psi: F\to \CC\units$ a nontrivial character: \begin{tikzcd} {S^1} && {\Mp(V\tensor_E W)} \\ &&&& {\GL(S)} \\ && {\Sp(V\tensor_E W)} \arrow["{\Omega = \omega_\psi}", from=1-3, to=2-5] \arrow[two heads, from=1-3, to=3-3] \arrow[from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJTXjEiXSxbMiwwLCJcXE1wKFZcXHRlbnNvcl9FIFcpIl0sWzIsMiwiXFxTcChWXFx0ZW5zb3JfRSBXKSJdLFs0LDEsIlxcR0woUykiXSxbMSwzLCJcXE9tZWdhID0gXFxvbWVnYV9cXHBzaSJdLFsxLDIsIiIsMix7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFswLDFdXQ==) Here $\ts{\omega_\psi}$ is the smallest infinite-dimensional representation of $\Mp$ and referred to as the **Weil representation**. ::: :::{.remark} On where this comes from: QM. One looks at the Heisenberg group, uses the Stone-von-Neumann theorem, see 2.3 and 2.4 in the notes. ::: :::{.remark} One needs a lift of the following form: \begin{tikzcd} && {\Mp(V\tensor_E W)} \\ \\ {\U(V)\times \U(W)} && {\Sp(V\tensor_E W)} \arrow["i", from=3-1, to=3-3] \arrow["{\exists\, \tilde i?}", from=3-1, to=1-3] \arrow[from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMiwwLCJcXE1wKFZcXHRlbnNvcl9FIFcpIl0sWzIsMiwiXFxTcChWXFx0ZW5zb3JfRSBXKSJdLFswLDIsIlxcVShWKVxcdGltZXMgXFxVKFcpIl0sWzIsMSwiaSJdLFsyLDAsIlxcZXhpc3RzXFwsIFxcdGlsZGUgaT8iXSxbMCwxXV0=) By Xudle, $\tilde i$ exists and is determined by a pair of characters $(\chi_V, \chi_W)$ of $E\units$ such that - $\ro{ \chi_V}{F\units} = \omega_{E/F}^{\dim V}$ - $\ro{\chi_W}{F\units} = \omega_{E/F}^{\dim W}$ Such a $\chi_V$ gives $\tilde \U(W) \to \Mp$, and similarly for $W$. ::: :::{.remark} Set \[ \Omega_{V, W, \chi_V, \chi_W, \psi} \da \tilde\iota_{\chi_V, \chi_W}^*(\omega_\psi) ,\] which has properties described in the lecture notes. ::: :::{.definition title="The big theta lift as a multiplicity space"} For $\pi \in \Irr \U(V)$, define \[ \Theta(\pi) \da \coinv_{\U(V)}(\Omega \tensor \pi \dual) .\] ::: :::{.remark} Note that there is a $\U(W)$ action on both sides. Moreover, \[ \Hom( \coinv_G (\Omega\tensor \pi\dual), \CC) \cong \Hom_G(\Omega\tensor\pi\dual, \CC) \cong \Hom_G(\Omega, ?) .\] ::: :::{.theorem title="Howe-Kudla"} \envlist - $\Theta(\pi)$ has finite length as a $\U(W)$ rep, and thus has finitely many irreducible quotients. - For any pair $(\pi, \sigma)$, \[ \dim \Hom_{\U(V)\times \U(W)}(\Omega,\pi\tensor \sigma) < \infty .\] ::: :::{.definition title="Small theta lift"} Define $\theta(\pi)$ to be the maximal semisimple quotient of $\Theta(\pi)$. This is a finite length semisimple rep. ::: :::{.theorem title="Howe Duality"} \envlist - $\theta(\pi)$ is irreducible if $\Theta(\pi) \neq 0$. - Uniqueness: $\theta(\pi) \cong \theta(\pi') \implies \pi \cong \pi'$. Thus $\theta: \Irr \U(V) \to \Irr \U(W) \smz$ is injective on $\supp \theta$, those reps which are not sent to zero. ::: :::{.question} Is $\theta(\pi)$ zero or not? :::