# Wee Teck Gan (Talk 3) :::{.remark} Last time: we describe the Howe-PS correspondence \[ \text{Automorphic characters of } \U_1 &\mapstofrom \text{Automorphic reps of } \U_3 \\ \chi &\mapsto \Omega_\chi .\] A correction: it's not true that $\Omega_\chi$ is cuspidal except for at most one $\chi$; instead if can be cuspidal for many $\chi$. We defined $\Omega, \Theta(\pi)$ with a $\U(W)$ action, and Howe duality which took $\Theta(\pi)\neq 0$ to a unique irreducible quotient $\theta(\pi)$. Thus $\Theta: \Irr \U(V)\injects \Irr \U(W) \disjoint \ts{0}$ is injective away from the zero locus. ::: :::{.question} When is $\Theta(\pi)\neq 0$? ::: :::{.remark} Let $\dim W$ be odd, and label $W_r^\eps = 2r+1$. We know all skew-Hermitian spaces of a particular dimension, so we obtain towers: \begin{tikzcd} {\U W_r^-} &&&& {\U W_r^+} \\ \vdots && {\U(V), \pi} && \vdots \\ {\U W_1^-} &&&& {\U W_1^+} \\ {\U W_0^-} &&&& {\U W_0^+} \arrow["{\oplus \HH}", from=4-1, to=3-1] \arrow["{\oplus \HH}", from=3-1, to=2-1] \arrow[from=2-1, to=1-1] \arrow["{\oplus \HH}"', from=4-5, to=3-5] \arrow["{\oplus \HH}"', from=3-5, to=2-5] \arrow[from=2-5, to=1-5] \arrow["{\theta_1^+}", dashed, from=2-3, to=3-5] \arrow["{\theta_r^-}"', dashed, from=2-3, to=1-1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsOSxbMCwzLCJcXFUgV18wXi0iXSxbMCwyLCJcXFUgV18xXi0iXSxbMCwwLCJcXFUgV19yXi0iXSxbMCwxLCJcXHZkb3RzIl0sWzQsMywiXFxVIFdfMF4rIl0sWzQsMiwiXFxVIFdfMV4rIl0sWzQsMCwiXFxVIFdfcl4rIl0sWzQsMSwiXFx2ZG90cyJdLFsyLDEsIlxcVShWKSwgXFxwaSJdLFswLDEsIlxcb3BsdXMgXFxISCJdLFsxLDMsIlxcb3BsdXMgXFxISCJdLFszLDJdLFs0LDUsIlxcb3BsdXMgXFxISCIsMl0sWzUsNywiXFxvcGx1cyBcXEhIIiwyXSxbNyw2XSxbOCw1LCJcXHRoZXRhXzFeKyIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs4LDIsIlxcdGhldGFfcl4tIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) Note that $W_{r+1}^+ = W_r^+ \oplus \HH$. ::: :::{.question} Which $\theta_r^\eps(\pi)$ are nonzero? ::: :::{.theorem title="?"} \envlist - For $\pi \in \Irr \U(V)$ and a fixed $\eps = 1$, there is a smallest $r_0^\eps(\pi) \leq \dim V$ such that this is the first occurrence of $\pi$ in the $\eps$ tower, i.e. $\theta_{r_0^\eps(\pi)}^\eps (\pi) \neq 0$. - For all $r>r_0, \Theta^\eps(\pi)\neq 0$, - If $\pi$ is a supercuspidal rep, then by Kudla, $\Theta_r^\eps(\pi)$ is irreducible and is s.c. at the first occurrence but not after. ::: :::{.remark} \envlist - Nonvanishing is reduced to determining $r_0^+(\pi)$ and $r_0^-(\pi)$. - If $r\geq \dim V$, so $r$ is in the stable range and $\Theta_r^\eps(\pi)\neq 0$. Thus reduces checking infinitely many nonzero conditions to just computing the values of these two numbers. We can reduce this further to just checking *one* number by the following: ::: :::{.theorem title="Conservation relation (B.Y. Sun, C.B. Zhu, Kudla-Rallis)"} \[ \dim W_{r_0^+(\pi)}^+ + \dim W_{r_0^-(\pi)} = 2\dim V + 2 .\] ::: :::{.corollary title="Dichotomy"} If $\dim W^+ + \dim W^- = 2\dim V$, then for any $\pi\in \Irr \U(V)$, exactly one of $\Theta_{W^+}(\pi)$ or $\Theta_{W^-}(\pi)$ is nonzero. ::: :::{.example title="?"} Take $\U_1\times \U_1 = \U(V) \times \U(W_0)$ where $\U(V) = E^1$, and let $\chi\in \Irr E^1$. Then \[ \dim W_{r^+(\chi)}^+ + \dim W_{r^-(\chi)}^- = 4 ,\] These two dimensions are numbers in $\ts{1,3}$, and exactly one of $\theta_0^{\pm}(\chi)$ is nonzero, and for $r>0$ we have $\theta_r^\eps(\chi) \neq 0$. Which $\theta_0^\eps(\chi)$ are nonzero? ::: :::{.theorem title="Moen, Rogawski?, Hams-Kudla-Sweat"} \[ \theta_{V, W_0, \psi}(\pi) \neq 0 \iff \eps(v) \eps(W_0) = \eps_E\qty{ {1\over 2}, \chi_E \chi_W\inv, \psi(\Trace_{E/F} (\delta-1)) } \] where $\eps_E$ is the local epsilon factor defined in Tate's thesis. Here $\chi_E$ is the composite character $\chi_E(x) = \chi\qty{x\over x^?}$ defined by \begin{tikzcd} {E\units/F\units} && {E^1} && \CC\units \\ x && {{x\over x^c}} \arrow["\chi", from=1-3, to=1-5] \arrow["\cong", from=1-1, to=1-3] \arrow["{\chi_E}"', curve={height=-30pt}, dashed, from=1-1, to=1-5] \arrow[maps to, from=2-1, to=2-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMCwwLCJFXFx1bml0cy9GXFx1bml0cyJdLFsyLDAsIkVeMSJdLFs0LDAsIlxcQ0NcXHVuaXRzIl0sWzAsMSwieCJdLFsyLDEsInt4XFxvdmVyIHheY30iXSxbMSwyLCJcXGNoaSJdLFswLDEsIlxcY29uZyJdLFswLDIsIlxcY2hpX0UiLDIseyJjdXJ2ZSI6LTUsInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDQsIiIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=) The $\delta\in E_0\units$ appears because a Hermitian space depends on a choice of a traceless element. ::: :::{.example title="?"} Applying Howe-PS to $\U_1\times \U_3$: let $V = \gens{1} = V_0^+$ and $\chi \in \Irr E^1 = \Irr \U(V)$. Since $\dim W^\eps = 3$, $\Omega^\eps$ is semisimple and decomposes as \[ \Omega^\eps = \bigoplus _{\chi\in\Irr E^1} \chi \tensor \Theta^\eps(\chi) .\] - Since $\dim V = 1$, we're in the stable range and thus $\Theta^\eps(\chi)\neq 0$ for all $\chi$. - $\Theta^\eps(\chi)$ is irreducible by Howe duality and s.c. - If $\eps = \eps_E\qty{{1\over 2}, \cdots}$ as in the theorem, $\Theta^\eps(\chi)$ is non-supercuspidal and $\Theta^{-\eps}(\chi)$ is supercuspidal. In fact, $\Theta^\eps(\chi) \embeds \Ind_B^{\U(W)}\qty{ \chi_v \abs{\wait}^{- {1\over 2} } \tensor \chi }$ where $B = \diag(a, b, (a^c)\inv) + N^+$ (upper triangular) with $a\in E\units$ and $b\in E^1$. ::: ## Global Setting :::{.remark} For $K\in \NF$, writing $\theta = \prod_v \theta_v$, one might hope for a map $\Irr \U(V)(\AA) \to \U(W)(\AA)$. Instead, we'll want a map \[ \theta: \ts{\text{Automorphic reps of } \U(V)} &\to \ts{\text{Automorphic reps of } \U(W)} ,\] i.e. a concrete way to transfer functions from a space $X$ to a space $Y$. If $K\in C(X\times Y)$, we can define \[ T_K: C(X) &\to C(Y) \\ T_k(f)(y) &\da \int_X K(x, y) f(x) \dx ,\] so $K$ acts like a matrix. In our case, we'll want a lift \begin{tikzcd} &&& {\Mp(V\tensor W)(\AA)} \\ \\ {(\U(V)\times \U(W))(\AA)} &&& {\Sp(V\tensor W)(\AA)} \arrow["\iota", from=3-1, to=3-4] \arrow["{\exists \tilde\iota\,?}"', from=3-1, to=1-4] \arrow[from=1-4, to=3-4] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwyLCIoXFxVKFYpXFx0aW1lcyBcXFUoVykpKFxcQUEpIl0sWzMsMCwiXFxNcChWXFx0ZW5zb3IgVykoXFxBQSkiXSxbMywyLCJcXFNwKFZcXHRlbnNvciBXKShcXEFBKSJdLFswLDIsIlxcaW90YSJdLFswLDEsIlxcZXhpc3RzIFxcdGlsZGVcXGlvdGFcXCw/IiwyXSxbMSwyXV0=) Here $\Omega = \tilde{\iota}^* W_\psi$. For $\pi \in \mca_\cusp(\U(V))$, we have a map \begin{tikzcd} {W_\psi} &&&& {\mca_2(\Mp(\cdots))} \\ \\ &&&& {C([\U(V)\times \U(W)])} \arrow["{\tilde\iota^*}", from=1-5, to=3-5] \arrow[from=1-1, to=1-5] \arrow["\theta"', from=1-1, to=3-5] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJXX1xccHNpIl0sWzQsMCwiXFxtY2FfMihcXE1wKCkpIl0sWzQsMiwiQyhbXFxVKFYpXFx0aW1lcyBcXFUoVyldKSJdLFsxLDIsIlxcdGlsZGVcXGlvdGFeKiJdLFswLDFdLFswLDIsIlxcdGhldGEiLDJdXQ==) This yields \[ w_\psi \tensor \pi &\to \mca(\U(V)) \\ \phi \tensor f &\mapsto \theta(\phi, f), \qquad \theta(\phi, f)(g) \da \int_{[\U(V)]} \theta(\phi)(g, h) \bar{f(h)}\, dh .\] So define the **global theta lift of $\pi$** as \[ \Theta(\pi) \da \gens{\theta(\phi, f) \st \phi\in w_\phi, f\in \pi} \subseteq \mca(\U(W)) .\] ::: :::{.question} \envlist - Is $\Theta(\pi)$ nonzero? - Does it land in $\mca_2$ or $\mca_\cusp$? - What is the relation with the local picture? ::: :::{.proposition title="?"} If $\Theta(\pi) \subset \mca_2(\U(W))$ is a proper subset, then $\Theta(\pi)$ is either zero or isomorphic to $\Tensor_v \theta(\pi_v)$. ::: :::{.theorem title="?"} Let $\pi \subseteq \mca_\cusp(\U(V))$, 1. There exists a smallest $r_0 = r_0^\eps(\pi)$ such that $\Theta_{r_0}^\eps(\pi) \neq 0$. In this case, $\Theta_{r_0}^\eps(\pi) \subseteq \mca_\cusp(\U(W))$. 2. For all $r > r_0$,$\Theta_r^\eps(\pi)\neq 0$ and is noncuspidal, i.e. not contained in $\mca_\cusp(\U(W))$. 3. For all $r\geq \dim V$ in the stable range, $0\neq \Theta_r^\eps(\pi) \subseteq \mca_2(\U(W))$. Note that being nonzero follows from 1 and 2. :::