# Wee Teck Gan (Talk 4) :::{.remark} Take $V = \gens{1}$ and $W_r^\eps = W_0^\eps \oplus \HH^r$ which has dimension $2r+1$, and let $\chi \in \mca(\U(V))$. We know $\Theta_r^\eps(\chi)\neq 0$ for all $r>0$, which is the stable range. Note that $\Theta_r^\eps(\chi) \subseteq \mca_2( \U(W_r^\eps))$, i.e. these are square-integrable. What happens when $r=0$? ::: :::{.theorem title="?"} $\Theta_{W_0^\eps}(\chi) \neq 0 \iff$ several conditions hold: - For all $v$, $\Theta_{W_0}^{\eps_v}(\chi_v)\neq 0$, so it is controlled by local conditions, - $L(1/2, \chi_E \chi_W\inv)\neq 0$, a global condition. ::: :::{.remark} Note that \[ \eps_v &= \eps(1/2, \chi_E \chi_{W, v}\inv, \phi(\Trace ?)) \\ 1 = \prod_v \eps_v &= \eps(1/2, \chi_E \chi_W\inv) .\] ::: :::{.proof title="of theorem, sketch"} For $\psi\in W_\phi$, we produce $\Theta(\phi)$ and obtain an integral \[ \Theta(\phi, \chi)(g) = \int_{[\U(V)]} \phi(g,h) \chi(h)\inv \, dh \in \mca(\U(W_0)) .\] Is this function nonzero for some $\phi$? There isn't a good notion of Fourier expansion here, so one instead computes $\inp{\Theta(\phi, \chi)}{\Theta(\phi, \chi)}$. Write $V^\square = V \oplus -V$, where $-V$ is $V$ with the form negated. \begin{tikzcd} & {\U(V^\square)} && {\U(W_0)\times \U(W_0)} & \textcolor{rgb,255:red,92;green,92;blue,214}{\Theta(\phi,\chi) \overline{\Theta(\phi,\chi)}} \\ \\ \textcolor{rgb,255:red,92;green,92;blue,214}{(\chi, \chi\inv)} & {\U(V)\times \U(V^-)} && {\U(W_0)^\Delta} \\ & {} \arrow[hook, from=3-4, to=1-4] \arrow[hook, from=3-2, to=1-2] \arrow[hook, from=3-2, to=1-4] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNyxbMSwwLCJcXFUoVl5cXGJveCkiXSxbMSwyLCJcXFUoVilcXHRpbWVzIFxcVShWXi0pIl0sWzMsMCwiXFxVKFdfMClcXHRpbWVzIFxcVShXXzApIl0sWzMsMiwiXFxVKFdfMCleXFxEZWx0YSJdLFsxLDNdLFswLDIsIihcXGNoaSwgXFxjaGlcXGludikiLFsyNDAsNjAsNjAsMV1dLFs0LDAsIlxcVGhldGEoXFxwaGksXFxjaGkpIFxcb3ZlcmxpbmV7XFxUaGV0YShcXHBoaSxcXGNoaSl9IixbMjQwLDYwLDYwLDFdXSxbMywyLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsxLDAsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzEsMiwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=) One can them map $\U(V^\square) \to \U(W_0)^\square$; this diagram is called the **doubling see-saw**. Combining this with Siegel-Weil associates to the above inner product the doubling zeta integral $Z(0, \phi, \chi)$. By Ellen's lectures, this reduces to computing the central value of an \(L\dash \)function, $cL(1/2, \chi_E \chi_W\inv)$, up to a fudge factor $c$. The process is the **Rallis inner product formula**: \[ \inp{\Theta(\phi,\chi)}{\Theta(\phi,\chi)} \leadsto Z(0,\phi,\chi)\leadsto L(1/2, \chi_E \chi_W\inv) .\] ::: ## Howe-PS :::{.remark} Setup: - $V = \gens{1}$ a 1-dim space - $W = W_0 \oplus \HH$ - A nonzero irreducible theta lift $\Theta_W(1) \subseteq \mca_2(\U(W))$ We know that the local components are contained in non-tempered principal series, i.e. \[ \Theta_W(1)_v \injects \Ind_?^{\U(W_v)} \abs{\wait}_v^+ \tensor 1_v? .\] It only remains to check that happens when this is not cuspidal. If it is not, then $\Theta_{W_0}(1) \neq 0$, so pick 2 places $v_1, v_2$ of $K$ and swap the signs on $W_{0, v_i}$ to produce $W_0'$, and run the above argument on $W' = W_0' \oplus \HH$. ::: ## Arthur's Conjecture :::{.remark} Goal: classify constituents of $\mca_2(G)$, i.e. describe this as a $G(\AA)\dash$module. We'll make a basic hypothesis (global Langlands for $\GL_n$) that there exists a group $L_F$ (thought of as $\Gal(\bar F/F)$) such that there is a bijection \[ \Irr\Rep^{\dim = n} L_F \mapstofrom \Rep_\cusp \GL_n ,\] where for all $v$ there is a Weil-Deligne group $L_{F_v} \approx \Gal(\bar F_v/F_v)$ with a map $L_{F_v} \injects L_F$. ::: :::{.definition title="Near equivalence"} Two adelic representations $\pi = \Tensor_v \pi_v$ and $\pi' = \Tensor_v \pi_v'$ are **nearly equivalent** iff $\pi_v \cong \pi_v'$ for almost all places $v$. ::: :::{.remark} We can decompose into near-equivalence classes $\mca_w(G) = \bigoplus_\psi \mca_{\psi}$, where $\psi: L_F\times \SL_2 \to \langL{G}$ is a map to the Langlands $L$ group $\langL{G} = G\dual \semidirect \Gal(\bar F/F)$, such that - A tempered condition: the image is big, $\psi(L_F)$ is bounded, and - Centralizers are small: $Z_{G\dual}/Z_{G\dual}^{\Gamma_F}$ is finite. This has something to do with elliptic $A\dash$parameters. ::: :::{.question} Given $\psi$, how can we describe $\mca_\psi$? ::: :::{.remark} From $\psi$ we'll obtain - a global component group/centralizer $S_\psi = Z_{G\dual}/Z_{G\dual}^{\Gamma_F}$, - local factors $\psi_v: L_{F_v}\times \SL_2 \injects L_f \times \SL_2 \mapsvia{\psi} \langL{G}$, - Local component groups $\pi_0\qty{Z_{G\dual}(\psi_v) / Z(G\dual)^{\Gamma_F} }$ which are finite? - $S_\psi \mapsvia{\Delta} \prod_v S_{\psi_v} \da S_{\psi/\Delta}$ which is compact - Quadratic characters $\eps_\psi: S_\psi \to \gens{\pm 1}$. ::: :::{.remark} For all $v$, we should have a finite set of unitary reps of $G(F_v)$, \[ \prod_{\psi_v} = \ts{\pi_{\eta_v} \st \eta_v \in \Irr S_{\psi_v}} ,\] i.e. for almost all $v$, $\pi_{1_v}$ is irreducible unramified with Satake parameters \[ \psi_v\qty{\Frob_v, \diag(q_v^{1\over 2} , q_v^{-{1\over 2} })} \in \langL{G} .\] ::: :::{.observation} The key point: if $\psi(\SL_2) = 1$, then $\pi_{1_v}$ is tempered. If not, $\psi_{1_v}$ is non-tempered. > This explains how rigidity obstructs the Ramanujan-Petersson conjecture? ::: :::{.remark} Set $\pi_\psi = \Tensor_v \pi_{\psi_v}$ and let \[ \mca_\psi = \bigoplus_{\eta \in \Irr S_{\psi, ?}} m_\eta \pi_\eta, \qquad m_\eta = \dim \Hom_{S_\psi}(\eps_\psi, \eta) .\] To define $\eps_\psi$, define a map \[ (L_F\times \Omega_2)\times S_{\psi} \mapsvia{\psi\times \id} \langL{G}/ Z(G\dual)^{\Gamma_F} \actsonl \Ad \lieg\dual \] where $\lieg\dual = \Lie(G\dual) = \bigoplus _{i\in I} \rho_i \tensor S_{r_i} \tensor \eta_i$ for some index set $I$, and $S_r$ are $r\dash$dimensional irreps of $\SL_2$. Set $T \subseteq I$ to be the indices such that $r_i$ is even, $\eta_i$ is orthogonal, and $\rho_i$ is symplectic, and $\eps(1/2, \phi_i) = -1$. Then define \[ \eps_\psi: S_\psi &\to \gens{\pm 1} \\ s &\mapsto \prod_{i\in T} \eta_i(s) .\] ::: :::{.example title="?"} For $\psi(\SL_2) = \ts{1}$, $\eps_\psi = 1$ and $T = \emptyset$. ::: ## Specializing to $\U_n$ :::{.remark} Fix $G=\U_n$, let $E/F$ be an extension, and \[ G\dual = \GL_n(\CC) \normal \langL{G} = \GL_n(\CC) \semidirect \Gal(E/F) .\] An $L\dash$parameter is a map \[ \psi: L_F \times \SL_2 \to \langL{G} \] where the subset $L_E \times \SL_2$ maps to $G\dual$. By an email comment of Benedict Gross, $\psi$ is determined by this restriction. Not every such map extends, but conjugate self-dual reps of sign $(-1)^{n-1}$ will. ::: :::{.example title="?"} For $\U_3$, $\ro{\psi}{L_E}: L_E\times \SL_2 \to \GL_3(\CC)$ which decomposes as $\ro{\psi}{L_E} = \mu \oplus \chi \tensor S_2$ such that $\chi$ are not characters of $L_E$, but rather automorphic characters of $\dcosetl{E\units}{\AA_E\units}$ with $\ro{\mu}{\AA_F\units} = 1$ and $\ro{\chi}{\AA_F\units} = \omega_{E/F}$. For $S_\psi = \mu_2 \mapsvia{\Delta} \prod_v S_{\psi_v}$, we have $S_{\psi_v} = \mu_2$ if $v$ is inert in $E$ and 1 otherwise. Then $\eps_{\psi}: \mu_2 \to \gens{\pm 1}$ which is trivial when $\eps(1/2, \chi\mu\inv) = 1$ and nontrivial if this is $-1$. So $\prod_{\psi_v} = \ts{\pi^+_v, \pi_v^-}$ if $v$ is inert, and just $\ts{\pi_v^+}$ otherwise, meaning \[ m(\pi^{\eps}) = \begin{cases} 1 & \prod_v \eps_v = \eps(1/2) \\ 0 & \text{otherwise}. \end{cases} .\] For almost every $v$, $\pi_{1_v} = \pi_v^+$. Something about $\Ind_{B_v}^{U_?} \chi \abs{\wait}_v^{-{1\over 2}} \tensor \tilde \mu$. Something about Howe-PS. :::