# Aaron Pollack, Talk 2 :::{.remark} Last time: modular forms on $\G_2$. Note that $\G_2$ over $K$ does not have a $\G_2\dash$invariant complex structure, while $\SL_2(\RR)/\SO_2 = \mfh$ has an $\SL_2(\RR)\dash$invariant complex structure. ::: :::{.remark} Today: let $f(z) = \sum_{k\geq 0} a_f(k)q^k$ of weight $\ell$ where $\phi_f(g) = j(g, i)^{-\ell} f(gi)$ where $\phi_f: \SL_2(\RR) \to \CC$. Define \[ W_n: \SL_2(\RR) &\to \CC \\ g &\mapsto j(g, i)^{-\ell} \exp(2\pi i n (gi)) .\] Some properties: - $W_n\qty{\matt 1 * 0 1 g} = e^{2\pi i n x}W_n(g)$ - $W_n(gk_0) = e^{-i\ell \theta} W_n(g)$ where $k_\theta = \matt{\cos(\theta)}{-\sin(\theta)}{\sin(\theta)}{\cos(\theta)}$, - $X_- W_n = 0$ - $W_n \diag(y^{1\over 2}, y^{-{1\over 2}}) = y^{\ell\over 2} e^{2\pi i ny}$ is complete explicit - $\phi_f(g) = \sum a_f(k) W_k(g)$ is the Fourier expansion. ::: :::{.remark} What will happen: we'll define $\phi: \dcosetl{\Gamma}{\G_2}\to V_\ell$ where $V_\ell = \Sym^2(\CC^2)\tensor \one$ which admits an action by $K = \SU_2\times \SU_2/\pm I$. In this case, we'll essentially have $\phi \approx \sum_{f\in ?} a_\phi(f) W_f(g)$ where the $a_\pi(f) \in \CC$ are Fourier coefficients and $W_f$ satisfies similar properties. ::: :::{.remark} Recall that $\lieg_2 = \liesl_3 + V_3 + V_3\dual$, spanned by $\ts{E_{ij}}, \ts{v_1,v_2,v_3}, \ts{\delta_1, \delta_2, \delta_3}$ respectively. Note that - $\G_2$ has 2 conjugacy classes of maximal parabolics, - $P$ will be the parabolic where $\Lie(P)$ yields the top 3 layers of the root diagram - $P = MN$ where $M\cong \GL_2$ and $N\contains Z = [N, N]$ with $N/Z$ abelian. We want to define a Fourier expansion along the unipotent radical of $P$. ::: :::{.remark} Some facts: - $Z = \exp(\RR E_{13})$ - $W = \RR E_{12} + \RR v_1 + \RR \delta_3 + \RR E_{23}$ - $N/Z = \exp(W)$ - $M\actson Z$ by the determinant - $M\actson N/Z$ as $\Sym^3(V_3) \tensor \det(V_3)\inv$ - There is a symplectic form on $W$ where $[w, w'] = \inp{w}{w'} E_{13}$ - Explicitly, one can write $w = \sum a E_{12} + {b\over 3} v_1 + {c\over 3} \delta_3 + d E_{13}$ and $w'$ similarly, then $\inp{w}{w'} = ad' - {bc'\over 3} + {cb'\over 3}- da'$, and $\inp{mw}{mw'} = \det(m) \inp{w}{w'}$. ::: :::{.remark} What are the characters of $N$? Suppose - $\phi$ is an automorphic form on $\G_2(\AA)$ - $\psi: \dcosetl{\QQ}{\AA}\to \CC\units$ is a fixed adelic character - $w\in W(\QQ)$ Define \[ \phi_w(g) \da \int_{[N]} \psi\inv(\inp{w}{\bar n}) \phi(ng) \dn ,\] where $\bar n$ is the image of $n$ in $N/Z$ which we identify with $W$ via the exponential. Similarly define \[ \phi_Z(g) = \int_{[Z]} \phi(zg)\dz,\qquad \phi_N(g) = \int_{[N]} \phi(zg)\dz .\] Then \[ \phi_Z(g) = \phi_N(g) + \sum_{w\in W(\QQ)} \phi_w(g) ,\] and we'll produce a refinement. ::: :::{.proposition title="?"} \[ \phi_Z(g) \equiv 0 \implies \phi(g) \equiv 0 .\] ::: ## Generalized Whittaker Functions :::{.definition title="Generalized Whittaker functions"} Suppose $\phi: \dcosetl{\G_2(\QQ)}{\G_2(\AA)} \to V_\ell$ is a modular form of weight $\ell$. These satisfy - $\phi_w(g)$ is of moderate growth. - $\phi_w(g) = \psi(\inp{w}{\bar n}) \psi_W(g)$ (equivariant for the Heisenberg parabolic) - $\phi_w(gk) = k\inv \phi_w(g)$ (equivariant for $K$) - $D_\ell \phi_w = 0$. Call such functions satisfying these properties **general Whittaker functions of type $(w ,\ell)$**. ::: :::{.remark} We'll show that such functions are uniquely determined up to a scalar multiple, i.e. for some explicit $W_w$, \[ \phi_w(g) = \lambda W_w(g) .\] From this, we'll obtain a Fourier expansion for $\phi$ a modular form of weight $\ell$: \[ \phi_Z(g) = \phi_N(g) + \sum_{w\neq 0} a_{\phi}(w) W_w(g) .\] ::: :::{.remark} Identify $W$ as a space $B$ of binary cubics under \[ W &\to B \\ w \da a E_{12} + {b\over 3} v_1 + {c\over 3} \delta_3 + d E_{23} &\mapsto f_w\da au^3 + bu^2v + cuv^2 + dv^3 .\] For $w\in W(\RR)\smz$, for $m\in \GL_2(\RR)$ define \[ \beta_w(m) \da \inp{w}{m\cdot (u-? v)^3} ,\] which will appear in Fourier expansions. ::: :::{.proposition title="?"} TFAE: - $\beta_w(m) \neq 0$ for all $m\in \GL_2(\RR)$, - $f_w(z, 1) \neq 0$ for $z\in \mfh$, - $f_w$ splits into linear factors over $\RR$. ::: :::{.definition title="PSD"} If $w$ satisfies these properties, say $w$ is **positive semidefinite** and write $w\geq 0$. ::: :::{.example title="of PSD binary cubics"} \envlist - $f_w(u, v) \da au^3 \geq 0$. - $f_w(u, v) \da -u^3 + uv^2 = u(v-u)(v+u)\geq 0$. - $f_w(u, v) \da u^3 + v^2 \not\geq 0$. ::: :::{.definition title="?"} For $m\in \GL_2(\RR) = M(\RR)$ and $w\geq 0$ PSD, \[ W_w(m) = \abs{\det w}\det(w)^\ell \sum_{-\ell \leq v\leq 0} \qty{\abs{\beta_w(m)} \over \beta_w(m) }^v K_v(\abs{\beta_w(m)}) {x^{\ell+v} y^{\ell -v} \over (\ell+v)! (\ell-v)!} .\] where $x,y$ are a fixed basis of $V_\ell$, and $K_v$ is a classical $K\dash$Bessel function \[ K_v(y) \da {1\over ?}\int_0^N e^{-{y(t+t\inv)\over 2 }} t^v {\dt\over t} ,\] which diverges at $y=0$. ::: :::{.remark} These functions $W_w: M(\RR) \to V_\ell$ extend uniquely to $\G_2\to V_\ell$, viz - $W_w(ng) = e^{2\pi i \inp w {\bar n}} W_w(g)$ for all $n\in N(\RR)$ - $W_w(gk) = k\inv W_w(g)$ for all $k\in K$. ::: :::{.theorem title="?"} Suppose $w\neq 0$ and $F$ is a generalized Whittaker function of type $(w, \ell)$. Then - $w\not\geq 0\implies F = 0$ - $w\geq 0\implies F(g) = \lambda W_w(g)$ for some $\lambda \in \CC$ Consequently, if $\phi$ is a modular form on $\G_2$ of weight $\ell$, there exist $a_\phi(w)\in \CC$ with \[ \phi_Z(g) = \phi_N(g) + \sum_{w\geq 0 \text{ integral}} a_\phi(w) W_w(g) .\] Moreover, $\phi_N$ can be explicitly described in terms of modular forms of weight $3\ell$ on $\GL_2$. ::: :::{.definition title="?"} The terms $a_\phi(w)$ are by definition the Fourier coefficients of $\phi$. ::: :::{.remark} Gan-Gross-Savim used a multiplicity 1 result of Wallach to define the Fourier coefficients without using the explicit function $W_w(s)$. :::