

Notes: Todo

2022 Cantrell Lectures: Akshay Vankatesh

Lectures by Akshay Venkatesh. University of Georgia, Spring 2022

1

D. Zack Garza University of Georgia dzackgarza@gmail.com Last updated: 2022-05-04

Table of Contents

Contents

Table of Contents		2	
1	Talk 1: Number Theory and 3-Dimensional Geometry	3	
2	Talk 2: Symplectic L-functions and their topological analogues2.1Symplectic Spaces2.2Surfaces	4 5 5	
3	3-manifolds 3.1 Symplectic <i>L</i> -functions	6 7	
4	Talk 3: Relative Langlands Duality	8	
То	Dos	8	
De	efinitions	9	
Tł	neorems	10	
Ex	tercises	11	
Fig	gures	12	

1 | Talk 1: Number Theory and 3-Dimensional Geometry

Abstract: There is a wonderful analogy between the theory of numbers, and 3-dimensional geometry. For example, prime numbers behave like knots! I will explain some of the history of this analogy and how it is evolving.

Remark 1.0.1: • 60s, Mazur's *Remarks on the Alexander polynomial*: primes are analogous to knots.

- Impetus: Thomson 1867, On vortex atoms.
- Idea: topological distinction of knots may explain distinct atoms, and links for molecules.
- P. G. Tait (and Kirkman? Around 1880) tabulates many knots.
- Rigorous tools to distinguish: Wirtinger, Dehn, Alexander in late 1800s/early 1990s.
- Dehn (1910), Wirtinger (1905): a presentation of the knot group $\pi_1(\mathbb{R}^3 \setminus K)$ in terms of generators and relations.
- Alexander (1927): *Topological invariants of knots and links*, observes difficulties distinguishing group presentations, introduces the simpler Alexander polynomial.
 - E.g. for the trefoil, $p(x) = 1 x + x^2$.
 - He gives a simple algorithm computing it as the determinant of a matrix, and shows how it can be derived from the knot group.
 - Succeeded in distinguishing many tabulated knots (but not all).
 - See SnapPy! You can fly around the hyperbolic space of a knot complement, and compute a large number of invariants.

Remark 1.0.2: • NT: consider solving $x^2 + y^2 = z^2$.

- Factor $x^2 + y^2 = (x iy)(x + iy)$ and write $x \pm iy = (m \pm in)^2$ to obtain $x^2 = m^2 n^2$, $y = 2mn, z = m^2 + n^2$.
- This yields all solutions, using unique factorization in $\mathbb{Z}[i].$
- Consider $x^p + y^p = z^p$ (Fermat)
 - To solve: factor $z^p = \prod_k x + \zeta_p^k y$.
- Lame (1847): an incorrect proof that falsely assumes $L_p := \mathbb{Z}[\zeta_p]$ is a UFD, since $cl(L_p) \neq 1$ for p = 23 (shown by Kummer) and factorization fails.
- Kummer fixes this proof assuming a weaker condition: $p \nmid cl(L_p)$, i.e. this is **regular**.
 - This fails for p = 37.
 - Kummer proves FLT fails for regular primes.
- Kummer (1850) shows p is irregular iff p divides on of the first p-3 coefficients of $\frac{x}{e^x-1}$.
- Iwasawa (59, 62) gives a polynomial P_p whose degree quantifies the irregularity of p; p is irregularity iff $P_p = 1$ is constant.
 - This definition uses a Galois group G_p .

Remark 1.0.3: Mazur (63) observes similarity between the Alexander polynomial and Iwasawa's polynomial. Both are pure group theory, and the construction arises from action of $G^{ab} \curvearrowright [G, G]^{ab}$ and taking a characteristic polynomial. Analogies:

- G_p is similar to $\pi_1(S^3 \setminus K)$,
- the linking number is similar to the quadratic residue $\left(\frac{p}{q}\right)$.
- Symmetry of linking numbers is analogous to quadratic reciprocity.
- Spec $\mathbb{Z}/p\mathbb{Z} \hookrightarrow$ Spec \mathbb{Z} is like a knot in a 3-manifold.
- Spec \mathbb{Z} is like S^3 , with primes corresponding to embedded knots.

Analogies (partially) due to Mazur, guided by results of Artin and Tate.

Remark 1.0.4: Defining G_p : take all rings over k with some finite rank r which admit *exactly* r embeddings in \bar{k} , take their union, take ring automorphisms. Constructing such rings: find polynomials p with disc_p = p^k for some k. Problem: G_p is very mysterious! Probably finitely generated but infinite, the only element we can produce is complex conjugation, $z \mapsto \bar{z}$. Tate (62) shows that G_p cohomologically looks like a knot group, currently the strongest formal analogy.

A Warning 1.0.5

Fixing a specific prime p, it is not analogous to any specific not, and \mathbb{Z} is not analogous to any specific manifold. Instead, there is some unknown refinement which recovers properties of both.

Remark 1.0.6: Idea: compare statistical properties of random knots vs random primes.

Question 1.0.7

If $\mathbb{Z} \sim M^3$ and $p \sim K_p \hookrightarrow M^3$, what object is analogous to K^c ?

2 | Talk 2: Symplectic L-functions and their topological analogues

Abstract: The topology of the symplectic group enters into many different areas of mathematics. After discussing a couple of "classical" manifestations of this, I will explain a new one, in the theory of L-functions, as well as a purely topological analogue of the statement. I am not going to assume any familiarity with the theory of L-functions for the talk. Joint work with Amina Abdurrahman.

2.1 Symplectic Spaces

4

Remark 2.1.1: Note: for L a field,

$$L_{\Box} \coloneqq \left\{ a^2 \mid a \in L \right\}.$$

Remark 2.1.2: Recall that any symplectic vector space is isomorphic to $\begin{pmatrix} \mathbb{R}^{2g}, J \coloneqq \begin{bmatrix} 0 & \mathrm{id}_g \\ -\mathrm{id}_g & 0 \end{bmatrix}$. Write

$$SP(V) = \left\{ g: V \to V \mid \langle gx, gy \rangle = \langle x, y \rangle \right\} = \left\{ A \in GL_{2g}(\mathbb{R}) \mid A^t J A = J \right\}$$

Note

$$\operatorname{SP}_2(\mathbb{R}) = \left\{ M \in \operatorname{GL}_2(\mathbb{R}) \mid \det M = 1 \right\},$$

and $\operatorname{SP}_{2g}(\mathbb{R})$ is connected but $\operatorname{SP}_{2g}(\mathbb{R}) \simeq \mathbb{R}^2 \setminus \{0\}$. Let $p: G \to \operatorname{SP}_{2g}(\mathbb{R})$ be the universal cover; since the base is a topological group, picking any $p^{-1}(1)$ yields an essentially unique group structure on G by analytically continuing the group law. In fact G is a Lie group and $\ker p \cong \mathbb{Z} \in Z(G)$ is central, so there is a SES

$$\mathbb{Z} \to G \to \mathrm{SP}_{2q}(\mathbb{R}).$$

Note that there are not faithful finite-dimensional reps of G, but there are infinite-dimensional reps important to quantization in physics.

2.2 Surfaces

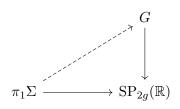
Remark 2.2.1: A theorem of Meyer on surfaces: let Σ be a (compact closed oriented smooth) surface and $\rho : \pi_1 \Sigma \to SP_{2g}\mathbb{R}$; this corresponds to a local system, so form the twisted cohomology $H^1(\Sigma; \rho)$. Using the cup product and symplectic pairing, one can produce a *symmetric* pairing

$$L: H^1(\Sigma; \rho)^{\otimes_{\mathbb{R}}^2} \to \mathbb{R}.$$

There is an isomorphism $(H^1, L) \cong (\mathbb{R}^{p+q}, \operatorname{diag}_p(-1) \oplus \operatorname{diag}_q(1))$, so $\operatorname{sig}(\Sigma, \rho) \coloneqq \operatorname{sig} L \coloneqq p-q$ is an interesting invariant.

Remark 2.2.2: Recall that 4-manifolds M also admit a signature on $H^2(M; \mathbb{R})$. Let $M \to \Sigma$ be surface bundle over a surface – if M is a product, sig M = 0. Chern-Hirzebruch-Serre: there is a monodromy morphism $\pi_1 \Sigma \to SP_{2g}\mathbb{R}$ which is trivial if sig M = 0. In fact sig $(M) = sig(\Sigma, \rho)$, so this situation naturally arises for fibered 4-manifolds.

Remark 2.2.3: Recall $\pi_1 \Sigma_g = \left\langle a_i, b_i \mid \prod_i [a_i, b_i] = e \right\rangle$. Consider trying to form a lift:



Link to Diagram

Note $m \coloneqq \prod [\tilde{\rho}a_i, \tilde{\rho}b_i] \in \ker p \cong \mathbb{Z}$, and it turns out that

$$\operatorname{sig}(\Sigma, \rho) = p - q = 4m.$$

The fact that ker $p \in Z(G)$ was essential in making sure this doesn't depend on choices. Note that this only determines m up to sign!

Remark 2.2.4: Toward generalizing, the above central extension determines a class $b \in H^2(SP_{2g}(\mathbb{R});\mathbb{Z})$ and $p^*b \in H^2(\Sigma;\mathbb{Z})$. Using the pairing against the fundamental class $[\Sigma]$ yields

$$\operatorname{sig}(\Sigma, \rho) = 4 \int_{\Sigma} p^* b.$$

When replacing \mathbb{R} with L, replace \mathbb{Z} by W_L , the Witt group of quadratic forms over L.

3 | 3-manifolds

Remark 3.0.1: Consider now varying the situation in a 1-dimensional family – take $\Sigma \to M \to S^1$ a surface bundle over a circle with fibers Σ_t , each yielding $\rho_t : \pi_1 \Sigma_t \to \operatorname{SP}_{2g}(\mathbb{R})$ for $t \in S^1$. Each t yields a quadratic vector space $H^1(\Sigma_t, \rho_t)$ of signature (p, q). Monodromy yields an element $m \in \operatorname{Aut} H^1(\Sigma_0, \rho_0) \subseteq \operatorname{O}_{p,q}$. If p, q > 0 then $\sharp \pi_0 \operatorname{O}_{p,q} = 4$ – which connected component does this land in? How to separate the components: there is a determinant map

$$\det: \mathcal{O}_{p,q} \to \{\pm 1\}.$$

There is a *spinor norm*

spinornorm :
$$O_{p,q} \to \{\pm 1\} = \mathbb{R}^{\times} / \mathbb{R}_{\Box}^{\times}$$

reflection $_{v} \mapsto \langle v, v \rangle$.

This works with \mathbb{R} replaced by L, using the fact that $O_{p,q}$ is generated by reflections. For (V, L) a symmetric space, one gets

$$\det: \mathcal{O}(V) \to \{\pm 1\}$$

and

spinornorm :
$$O(V) \to L^{\times}/L_{\Box}^{\times}$$

Theorem 3.0.2(?). It turns out that

- $m \in \mathcal{O}(H^1(\Sigma_0, \rho_0)),$
- det m = 1, and

• spinornorm
$$(m) = \int_M p^* c \in L^{\times}/L_{\square}^{\times}.$$

Note that there is a Soulé etale Chern class

 $m \in H^3(\mathrm{SP}_{2g}(L), L^{\times}/L_{\square}^{\times}).$

Pulling this back and integrating yields

$$p^*c \in H^3(M; L^{\times}/L_{\square}^{\times}) \xrightarrow{\int_M} L^{\times}/L_{\square}^{\times}.$$

Proof (?).

Re-interplay spinornorm(m) as a quantity $\operatorname{RT}(M, \rho)$ where RT is the *Reidemeister torsion*, which makes sense for any (M, ρ) (not just those fibered over S^1). This is a bordism invariant, i.e. if $M \sim N$ are bordant then $\operatorname{RT}(M, \rho) = \operatorname{RT}(N, \rho')$. Thus there exists some formula of the desired type, where c is unknown – the trick is to compute enough examples to determine c.

3.1 Symplectic *L*-functions

Remark 3.1.1: For $X \in \text{sm proj Var}_{/\mathbb{F}_q}$ and $\rho : \pi_1 X \to \operatorname{SP}_{2g} k$ for k finite containing \sqrt{q} , there is an associated L-function $L(X,\rho;T) \in k(T)$ where $T \approx q^{-s}$. There is a functional equation relating $T \rightleftharpoons \frac{1}{qT}$. Evaluate at the center of symmetry $T = \frac{1}{\sqrt{q}}$ to define $L(X,\rho) \coloneqq L(X,\rho;1/\sqrt{q})$.

Theorem 3.1.2(?). Suppose $L(X, \rho) \neq 0$; then modulo squares

$$L(X,\rho) = \int_X \rho^* c \qquad \in k^\times / k_{\square}^\times,$$

which is a spinor norm of Frobenius (see Zassenhaus). This requires some conditions, e.g. $\rho \Big|_{\pi_1 X}$ is surjective, congruences on $\sharp k$ and $q \mod 8$, and $\gcd(q, \sharp SP_{2g}(k)) = 1$ (which may not be necessary).

Remark 3.1.3: Interpretation: $L(X, \rho) = ab^2$ where *a* is simple and *b* is complicated. BSD gives a conjectural formula for this which includes a lot of squares. So there is a cohomological obstruction to the existence of a square root of $L(X, \rho)$.

Remark 3.1.4: On the proof: try to pass validity from one known example (X, ρ) to other examples (X', ρ') with $X_{/\mathbb{F}_q}, X'_{/\mathbb{F}_q'}$ and images in $\mathrm{SP}_{2g}(k), \mathrm{SP}_{2g}(k')$ respectively.

- Pass from q to q' using a moduli space of pairs (X, ρ) where a topological theorem controls the fiber over \mathbb{C} .
- Pass from k to k' using compatible local systems from NT.

Remark 3.1.5: Final comparison:

- For 2-manifolds, $\operatorname{sig}(\Sigma, \rho) = \int_{\Sigma} p^* b.$
- For 3-manifolds, $\operatorname{RT}(M, \rho) = \int_{M}^{2} p^* c.$ Symplectic *L*-functions: ?

Talk 3: Relative Langlands Duality

Abstract: If we are given a compact Lie group G acting on a space X, a powerful tool in "approximately" decomposing the G-action on functions on X is the orbit method. I will describe this method and how it sometimes refines to an exact algebraic statement which involves a "dual" group G^{\uparrow} and dual space $X^{\text{.}}$. This is part of a joint work with David Ben-Zvi and Yiannis Sakellaridis about duality in the relative Langlands program. I will do my best to make the talk comprehensible without any familiarity with the framework of the Langlands program.

ToDos

List of Todos

Definitions

4

Theorems

3.0.2	Theorem – ? \ldots \ldots \ldots \ldots \ldots	7
3.1.2	Theorem – ?	7

Exercises

Figures

List of Figures