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1 Talk 1: Number Theory and 3-Dimensional Geometry

1 Talk 1: Number Theory and
3-Dimensional Geometry

Abstract: There is a wonderful analogy between the
theory of numbers, and 3-dimensional geometry. For
example, prime numbers behave like knots!
I will explain some of the history of this analogy and
how it is evolving.

Remark 1.0.1: • 60s, Mazur’s Remarks on the Alexander polynomial: primes are analogous
to knots.

• Impetus: Thomson 1867, On vortex atoms.
• Idea: topological distinction of knots may explain distinct atoms, and links for molecules.
• P. G. Tait (and Kirkman? Around 1880) tabulates many knots.
• Rigorous tools to distinguish: Wirtinger, Dehn, Alexander in late 1800s/early 1990s.
• Dehn (1910), Wirtinger (1905): a presentation of the knot group π1(R3 \ K) in terms of

generators and relations.
• Alexander (1927): Topological invariants of knots and links, observes difficulties distinguishing

group presentations, introduces the simpler Alexander polynomial.

– E.g. for the trefoil, p(x) = 1 − x + x2.
– He gives a simple algorithm computing it as the determinant of a matrix, and shows how

it can be derived from the knot group.
– Succeeded in distinguishing many tabulated knots (but not all).
– See SnapPy! You can fly around the hyperbolic space of a knot complement, and compute

a large number of invariants.

Remark 1.0.2: • NT: consider solving x2 + y2 = z2.

– Factor x2 +y2 = (x−iy)(x+iy) and write x±iy = (m±in)2 to obtain x2 = m2 −n2, y =
2mn, z = m2 + n2.

– This yields all solutions, using unique factorization in Z[i].

• Consider xp + yp = zp (Fermat)

– To solve: factor zp =
∏
k

x + ζk
p y.

• Lame (1847): an incorrect proof that falsely assumes Lp := Z[ζp] is a UFD, since cl(Lp) ̸= 1
for p = 23 (shown by Kummer) and factorization fails.

• Kummer fixes this proof assuming a weaker condition: p
∣∣∤ cl(Lp), i.e. this is regular.

– This fails for p = 37.
– Kummer proves FLT fails for regular primes.

• Kummer (1850) shows p is irregular iff p divides on of the first p − 3 coefficients of x
ex−1 .

• Iwasawa (59, 62) gives a polynomial Pp whose degree quantifies the irregularity of p; p is
irregularity iff Pp = 1 is constant.

– This definition uses a Galois group Gp.
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2 Talk 2: Symplectic L-functions and their topological analogues

Remark 1.0.3: Mazur (63) observes similarity between the Alexander polynomial and Iwasawa’s
polynomial. Both are pure group theory, and the construction arises from action of Gab ↷ [G, G]ab

and taking a characteristic polynomial. Analogies:

• Gp is similar to π1(S3 \ K),

• the linking number is similar to the quadratic residue
(

p

q

)
.

• Symmetry of linking numbers is analogous to quadratic reciprocity.
• SpecZ/pZ ↪→ SpecZ is like a knot in a 3-manifold.
• SpecZ is like S3, with primes corresponding to embedded knots.

Analogies (partially) due to Mazur, guided by results of Artin and Tate.

Remark 1.0.4: Defining Gp: take all rings over k with some finite rank r which admit exactly
r embeddings in k, take their union, take ring automorphisms. Constructing such rings: find
polynomials p with discp = pk for some k. Problem: Gp is very mysterious! Probably finitely
generated but infinite, the only element we can produce is complex conjugation, z 7→ z. Tate (62)
shows that Gp cohomologically looks like a knot group, currently the strongest formal analogy.

△! Warning 1.0.5
Fixing a specific prime p, it is not analogous to any specific not, and Z is not analogous to any
specific manifold. Instead, there is some unknown refinement which recovers properties of both.

Remark 1.0.6: Idea: compare statistical properties of random knots vs random primes.

Question 1.0.7
If Z ∼ M3 and p ∼ Kp ↪→ M3, what object is analogous to Kc?

2 Talk 2: Symplectic L-functions and their
topological analogues

Abstract: The topology of the symplectic group enters
into many different areas of mathematics. After dis-
cussing a couple of “classical” manifestations of this,
I will explain a new one, in the theory of L-functions,
as well as a purely topological analogue of the state-
ment. I am not going to assume any familiarity with
the theory of L-functions for the talk. Joint work with
Amina Abdurrahman.

E 2.1 Symplectic Spaces e
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2 Talk 2: Symplectic L-functions and their topological analogues

Remark 2.1.1: Note: for L a field,

L□ :=
{

a2
∣∣∣ a ∈ L

}
.

Remark 2.1.2: Recall that any symplectic vector space is isomorphic to
(
R2g, J :=

[
0 idg

− idg 0

])
.

Write

SP(V ) =
{

g : V → V
∣∣∣ ⟨gx, gy⟩ = ⟨x, y⟩

}
=
{

A ∈ GL2g(R)
∣∣∣ AtJA = J

}
.

Note

SP2(R) =
{

M ∈ GL2(R)
∣∣∣ det M = 1

}
,

and SP2g(R) is connected but SP2g(R) ≃ R2 \ {0}. Let p : G → SP2g(R) be the universal cover;
since the base is a topological group, picking any p−1(1) yields an essentially unique group structure
on G by analytically continuing the group law. In fact G is a Lie group and ker p ∼= Z ∈ Z(G) is
central, so there is a SES

Z → G → SP2g(R).

Note that there are not faithful finite-dimensional reps of G, but there are infinite-dimensional reps
important to quantization in physics.

E 2.2 Surfaces e

Remark 2.2.1: A theorem of Meyer on surfaces: let Σ be a (compact closed oriented smooth)
surface and ρ : π1Σ → SP2gR; this corresponds to a local system, so form the twisted cohomology
H1(Σ; ρ). Using the cup product and symplectic pairing, one can produce a symmetric pairing

L : H1(Σ; ρ)⊗2
R → R.

There is an isomorphism (H1, L) ∼= (Rp+q, diagp(−1) ⊕ diagq(1)), so sig(Σ, ρ) := sig L := p − q is an
interesting invariant.

Remark 2.2.2: Recall that 4-manifolds M also admit a signature on H2(M ;R). Let M → Σ be
surface bundle over a surface – if M is a product, sig M = 0. Chern-Hirzebruch-Serre: there is a
monodromy morphism π1Σ → SP2gR which is trivial if sig M = 0. In fact sig(M) = sig(Σ, ρ), so
this situation naturally arises for fibered 4-manifolds.

Remark 2.2.3: Recall π1Σg =
〈

ai, bi

∣∣∣ ∏
i

[ai, bi] = e

〉
. Consider trying to form a lift:

2.1 Symplectic Spaces 5



3 3-manifolds

G

π1Σ SP2g(R)

Link to Diagram

Note m :=
∏

[ρ̃ai, ρ̃bi] ∈ ker p ∼= Z, and it turns out that

sig(Σ, ρ) = p − q = 4m.

The fact that ker p ∈ Z(G) was essential in making sure this doesn’t depend on choices. Note that
this only determines m up to sign!

Remark 2.2.4: Toward generalizing, the above central extension determines a class b ∈ H2(SP2g(R);Z)
and p∗b ∈ H2(Σ;Z). Using the pairing against the fundamental class [Σ] yields

sig(Σ, ρ) = 4
∫

Σ
p∗b.

When replacing R with L, replace Z by WL, the Witt group of quadratic forms over L.

3 3-manifolds

Remark 3.0.1: Consider now varying the situation in a 1-dimensional family – take Σ → M → S1

a surface bundle over a circle with fibers Σt, each yielding ρt : π1Σt → SP2g(R) for t ∈ S1. Each
t yields a quadratic vector space H1(Σt, ρt) of signature (p, q). Monodromy yields an element
m ∈ Aut H1(Σ0, ρ0) ⊆ Op,q. If p, q > 0 then ♯π0Op,q = 4 – which connected component does this
land in? How to separate the components: there is a determinant map

det : Op,q → {±1} .

There is a spinor norm

spinornorm : Op,q → {±1} = R×/R□
×

reflectionv 7→ ⟨v, v⟩.

This works with R replaced by L, using the fact that Op,q is generated by reflections. For (V, L) a
symmetric space, one gets

det : O(V ) → {±1}

and

spinornorm : O(V ) → L×/L□
×.

3-manifolds 6
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3 3-manifolds

Theorem 3.0.2(?).
It turns out that

• m ∈ O(H1(Σ0, ρ0)),
• det m = 1, and
• spinornorm(m) =

∫
M

p∗c ∈ L×/L□
×.

Note that there is a Soulé etale Chern class

m ∈ H3(SP2g(L), L×/L□
×).

Pulling this back and integrating yields

p∗c ∈ H3(M ; L×/L□
×)

∫
M−−→ L×/L□

×.

Proof (?).
Re-interplay spinornorm(m) as a quantity RT(M, ρ) where RT is the Reidemeister torsion,
which makes sense for any (M, ρ) (not just those fibered over S1). This is a bordism invariant,
i.e. if M ∼ N are bordant then RT(M, ρ) = RT(N, ρ′). Thus there exists some formula of the
desired type, where c is unknown – the trick is to compute enough examples to determine c.

■

E 3.1 Symplectic L-functions e

Remark 3.1.1: For X ∈ sm proj Var/Fq
and ρ : π1X → SP2gk for k finite containing √

q, there is
an associated L-function L(X, ρ; T ) ∈ k(T ) where T ≈ q−s. There is a functional equation relating
T ⇌

1
qT

. Evaluate at the center of symmetry T = 1
√

q
to define L(X, ρ) := L(X, ρ; 1/

√
q).

Theorem 3.1.2(?).
Suppose L(X, ρ) ̸= 0; then modulo squares

L(X, ρ) =
∫

X
ρ∗c ∈ k×/k□

×,

which is a spinor norm of Frobenius (see Zassenhaus). This requires some conditions, e.g. ρ
∣∣∣
π1X

is surjective, congruences on ♯k and q mod 8, and gcd(q, ♯SP2g(k)) = 1 (which may not be
necessary).

Remark 3.1.3: Interpretation: L(X, ρ) = ab2 where a is simple and b is complicated. BSD gives a
conjectural formula for this which includes a lot of squares. So there is a cohomological obstruction
to the existence of a square root of L(X, ρ).

3.1 Symplectic L-functions 7



4 ToDos

Remark 3.1.4: On the proof: try to pass validity from one known example (X, ρ) to other examples
(X ′, ρ′) with X/Fq

, X ′
/F′

q
and images in SP2g(k), SP2g(k′) respectively.

• Pass from q to q′ using a moduli space of pairs (X, ρ) where a topological theorem controls
the fiber over C.

• Pass from k to k′ using compatible local systems from NT.

Remark 3.1.5: Final comparison:

• For 2-manifolds, sig(Σ, ρ) =
∫

Σ
p∗b.

• For 3-manifolds, RT(M, ρ) =
∫

M
p∗c.

• Symplectic L-functions: ?

4 Talk 3: Relative Langlands Duality

Abstract: If we are given a compact Lie group G act-
ing on a space X, a powerful tool in “approximately”
decomposing the G-action on functions on X is the
orbit method. I will describe this method and how
it sometimes refines to an exact algebraic statement
which involves a “dual” group Gˆ and dual space
Xˆ. This is part of a joint work with David Ben-Zvi
and Yiannis Sakellaridis about duality in the relative
Langlands program. I will do my best to make the
talk comprehensible without any familiarity with the
framework of the Langlands program.

ToDos

List of Todos
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