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1 Finite-dimensional Semisimple Lie Algebras over C (Wednesday, August 17)

1 Finite-dimensional Semisimple Lie
Algebras over C (Wednesday, August 17)

E 1.1 Humphreys 1.1 e

Remark 1.1.1: Main goal: understand semisimple finite-dimensional Lie algebras over C. These
are extremely well-understood, but there are open problems in infinite-dimensional representations,
representations over other fields, and Lie superalgebras.

Remark 1.1.2: Recall that an associative algebras is a ring with the structure of a k-vector space,
and algebra generally means a non-associative algebra. Given any algebra, one can define a new
bilinear product

[−,−] : A⊗k A→ A

a⊗ b 7→ ab− ba

called the commutator bracket. This yields a new algebra AL which is an example of a Lie
algebra.

Definition 1.1.3 (Lie algebra)
For L ∈ FMod with an operation [−,−] : L× L→ L (called the bracket) is a Lie algebra if

1. [−,−] is bilinear,
2. [x, x] = 0 for all x ∈ L, and
3. the Jacobi identity holds: [x[yz]] + [y[zx]] + [z[xy]] = 0.

Exercise 1.1.4 (?)
Check that [ab] := ab− ba satisfies the Jacobi identity.

Remark 1.1.5:
• Expanding [x+ y, x+ y] = 0 yields [xy] = −[yx]. Note that this is equivalent to axiom 2 when

ch F ̸= 2 (given axiom 1).

• The Jacobi identity can be rewritten as [x[yz]] = [[xy]z] + [y[xz]], where the second term is an
error term measuring the failure of associativity. Note that this is essentially the Leibniz rule.

Definition 1.1.6 (Abelian Lie algebras)
A Lie algebra L ∈ LieAlg/F is abelian if [xy] = 0 for all x, y ∈ L.

Definition 1.1.7 (Morphisms of Lie algebras)
A morphism in LieAlg/F is a morphism φ ∈ FMod(L,L′) satisfying φ([xy]) = [φ(x)φ(y)].

Finite-dimensional Semisimple Lie Algebras over C (Wednesday, August 17) 7



1 Finite-dimensional Semisimple Lie Algebras over C (Wednesday, August 17)

Exercise 1.1.8 (?)
Check that if φ has an inverse in FMod, then φ automatically has an inverse in LieAlg/F.

Definition 1.1.9 (Subobjects)
A vector subspace K ≤ L is a Lie subalgebra if [xy] ∈ K for all x, y ∈ K.

Remark 1.1.10:
• Note that any nonzero x ∈ L determines a 1-dimensional Lie subalgebra K := F · x, which is

in fact abelian.
• A big source of Lie algebras: left-invariant vector fields on a Lie group.
• We’ll restrict to finite-dimensional algebras for the remainder of the class.

E 1.2 Humphreys 1.2: Linear Lie Algebras e

Remark 1.2.1: For V ∈ FMod, the endomorphisms A := EndF(V ) is an associative algebra over
F. Thus it can be made into a Lie algebra gl(V ) := AL by defining [xy] = xy − yx as above.

Definition 1.2.2 (Linear Lie algebras)
Any subalgebra K ≤ gl(V ) is a linear Lie algebra.

Remark 1.2.3: After picking a basis for V , there is a noncanonical isomorphism EndF(V ) ∼=
Matn×n(F) where n := dimF V . The resulting Lie algebra is gln(F) := Matn×n(F)L.

Fact 1.2.4
By Ado-Iwasawa, any finite-dimensional Lie algebra is isomorphic to some linear Lie algebra.

Example 1.2.5(?): The upper triangular matrices form a subalgebra tn(F) ≤ gln(F).1 This is
sometimes called the Borel and denoted b. There is also a subalgebra nn(F) of strictly upper
triangular matrices. The diagonal matrices form a maximal torus/Cartan subalgebra hn(F) which
is abelian.

Example 1.2.6(Classical Lie algebras):
• Type An ⇝ sln+1(F) is the special linear Lie algebra, traceless matrices.
• Type Bn ⇝ so2n+1(F) is the odd orthogonal Lie algebra.
• Type Cn ⇝ sp2n(F) is the symplectic Lie algebra.
• Type Dn ⇝ so2n(F) is the even orthogonal Lie algebra.
• The remaining 3 are defined by matrices satisfying sx = −xts where s is one of the following:

1You get something interesting if you take the commutator bracket of two upper triangular matrices.

1.2 Humphreys 1.2: Linear Lie Algebras 8



2 Friday, August 19

–

1 0 0
0 0 In
0 In 0

 corresponding to so2n+1,

–
[

0 In
−In 0

]
corresponding to sp2n,

–
[

0 In
In 0

]
corresponding to so2n.

These can be viewed as the matrices of a nodegenerate bilinear form: writing N for the size
of the matrices, the matrices act on V := FN by a bilinear form f : V × V → F given by
f(v, w) = vtsw. The form will be symmetric for so and skew-symmetric for sp. The equation
sx = −xts is a version of preserving the bilinear form s. Note that these are the Lie algebras of
the Lie groups G = SO2n+1(F), Sp2n(F), SO2n(F) defined by the condition f(gv, gw) = f(v, w) for
all v, w ∈ FN where G =

{
g ∈ GLN (F)

∣∣∣ f(gv, gw) = f(v, w)
}

. This is equivalent to the condition
that f(gv, w) = f(v, g−1w).

Remark 1.2.7: Philosophy: G→ g sends products to sums. Check, might have
gotten this back-
ward.

Exercise 1.2.8 (?)
Check that the definitions of SOn(F),Spn(F) yield Lie algebras.

2 Friday, August 19

E 2.1 Humphreys 1.3 e

Definition 2.1.1 (Derivations)
Let A ∈ Alg/F, not necessarily associative (e.g. a Lie algebra). An F-derivation is a morphism
D : A → A such that D(ab) = D(a)b + aD(b). Equipped with the commutator bracket, this
defines a Lie algebra DerF(A) ≤ glF(A).a

aThe usual product somehow involves “second-order terms”, while the commutator product cancels higher
order terms to give something first-order.

△! Warning 2.1.2
If D,D′ are derivations, then the composition D ◦D′ is not generally a derivation.

Definition 2.1.3 (Adjoint)

Friday, August 19 9



2 Friday, August 19

If L ∈ LieAlg/F, for x ∈ L fixed define the adjoint operator

adx : L→ L

y 7→ [x, y].

Note that adx ∈ DerF(A) by the Jacobi identity. Any derivation of this form is an inner
derivation, and all other derivations are outer derivations.

Remark 2.1.4: Given x ∈ K ≤ L, note that K is a Lie subalgebra, and we’ll want to distinguish
adLx and adKx (which may differ). Note that gln(F) ≥ b = h⊕ n, where b are upper triangular, h
diagonal, and n strictly upper triangular matrices. If x ∈ h then note that adhx = 0, but adgxh ̸= 0.

E 2.2 Humphreys 2.1 e

Remark 2.2.1: Some notes:

• L ≥ I is an ideal if [ℓ, i] ∈ I. Note that this is like a left ideal in a ring, but since I is closed
under scalar multiplication and [i, ℓ] = −[ℓ, i], this is closed to a two-sided ideal.

• If A,B ⊆ L define [A,B] := spanF

{
[a, b]

∣∣∣ a ∈ A, b ∈ B}. Not taking the span generally won’t
even yield a subalgebra.

• For ideals I, J ⊴ L, I + J, [I, J ] ⊴ L.
• L/I :=

{
x+ I

∣∣∣ x ∈ L} with [x+ I, y + I] := [x, y] + I.2

• Ideals are subalgebras (since this only requires closure under bracketing), but subalgebras are
not necessarily ideals.

• Centers: Z(L) =
{
x ∈ L

∣∣∣ [xy] = 0∀y ∈ L
}
≤ L.

• Derived ideals L′ := L1 := [L,L] ⊴ L.
• If g ≥ b = h⊕ n, and n ⊴ b using the fact that products of upper-triangular matrices involve

multiplying diagonals, and bracketing/subtracting cancels the diagonal off. Moreover b/n ∼= b.
• For K ⊆ L a subspace, the normalizer is NL(K) :=

{
x ∈ L

∣∣∣ [x,K] ⊆ K
}

. If K = NL then
K is self-normalizing.

• The centralizer of K in L is CL(K) :=
{
x ∈ L

∣∣∣ [x,K] = 0
}
≤ L, which is a subalgebra by

the Jacobi identity.

Exercise 2.2.2 (?)
Is h ⊴ b?

Definition 2.2.3 (Simple Lie algebras)
A Lie algebra L is simple if L ̸= 0 and Id(L) = {0, L} and [L,L] ̸= 0. Note that [LL] ̸= 0 only
rules out the 1-dimensional Lie algebra, since [L,L] = 0 and if 0 < K < L then K ⊴ L since

2One should check that this is well-defined.

2.2 Humphreys 2.1 10



3 Friday, August 19

[L,K] = 0.

Example 2.2.4(?): Let L = sl2(C), so tr(x) = 0. This has standard basis

x =
[
0 1
0 0

]
, y =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
.

[xy] = h, [hx] = 2x, [hy] = −2y.

Exercise 2.2.5 (?)
Prove that sl2(C) is simple.

Exercise 2.2.6 (?)
Show that for K ≤ L, the normalizer NL(K) is the largest subalgebra of L in which K is an
ideal.

Exercise 2.2.7 (?)
Show that h ⊆ g := sln(C) is self-normalizing subalgebra of g.

Hint: use [h, eij ] = (hi − hj)eij where h =
diag(h1, · · · , hn). The standard basis is h =
⟨e11 − e22, e22 − e33, · · · , en−1,n−1 − en,n⟩.

Exercise 2.2.8 (?)
What is dim sl3(C)? What is the basis for g and h?

E 2.3 Humphreys 2.2 e

Remark 2.3.1: Notes:

• Let L,L′ ∈ C := LieAlg/F, φ ∈ C(L,L′), kerφ =
{
x ∈ L

∣∣∣ φ(x) = 0
}
⊴ L.

– Note that if x ∈ kerφ, y ∈ L then φ([xy]) = [φ(x)φ(y)] = [0φ(y)] = 0.

• A representation of L is some φ ∈ C(L, gl(V )) for some V ∈ Vect/F.
• The usual 3 isomorphism theorems for groups hold for Lie algebras.
• ad : L→ gl(L) where x 7→ adx is a representation.
• ker ad = Z(L), so if L is simple then Z(L) = 0 and ad is injective. Thus any simple Lie

algebra is linear.

– Compare to: any finite dimensional Lie algebra is linear.

2.3 Humphreys 2.2 11
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3 Monday, August 22

E 3.1 Humphreys 2.3: Automorphisms e

Remark 3.1.1: Let L ∈ LieAlg/F, then Aut(L) is the group of isomorphisms L
∼−→L. Some

important examples: if L is linear and g ∈ GL(V ), if gLg−1 = L then x 7→ gxg−1 is an automorphism.
This holds for example if L = gln(F) or sln(F). Assume ch F = 0 and let x ∈ L with adx nilpotent,
say (adx)k = 0. Then the power series expansion eadx = ∑

n≥0(adx)n is a polynomial.

Claim: expadx ∈ Aut(L) is an automorphism. More generally, eδ ∈ Aut(L) for δ any nilpotent
derivation.

Lemma 3.1.2(Generalized Leibniz rule).

δn(xy) =
n∑
i=0

(
n

i

)
δn−i(x)δi(y).

Remark 3.1.3: One can prove this by induction. Then check that exp(δ(x)) exp(δ(y)) = exp(δ(xy))
and writing exp(δ) = 1 + η there is an inverse 1− η + η2 + · · · ± ηk−1. Automorphisms which are
of the form exp(δ) for δ nilpotent derivation are called inner automorphisms, and all others are
outer automorphisms.

4 Solvable and Nilpotent Lie Algebras
(Wednesday, August 24)

E 4.1 Humphreys 3.1 e

Definition 4.1.1 (Derived series)
Recall that if L ⊆ g is any subset, the derived algebra [LL] is the span of [xy] for x, y ∈ L.
This is the analog of needing to take products of commutators to generate a commutator
subgroup for groups. Define the derived series of L as

L(0) = [LL], L(1) = [L(0), L(0)], · · · L(i+1) = [L(i)L(i)].

Proposition 4.1.2(?).
These are all ideals.

Monday, August 22 12



4 Solvable and Nilpotent Lie Algebras (Wednesday, August 24)

Proof (?).
By induction on i – it STS that [x[ab]] ∈ L(i) for a, b ∈ L(i−1) and x ∈ L. Use the Jacobi
identity and the induction hypothesis that L(i−1) ⊴ L:

[x, [ab]] = [[xa]b] + [a[xb]] ∈ L(i−1) + L(i−1) ⊆ L(i).

■

Definition 4.1.3 (Solvable)
If L(n) = 0 for some n ≥ 01 then L is called solvable.

Remark 4.1.4: Note that

• L abelian implies solvable, since L(1) = 0.
• L simple implies non-solvable, since this forces L(1) = L.

Exercise 4.1.5 (?)
Let b := bn(F) be upper triangular matrices, show that b is solvable.

Use that [bb] = n is strictly upper triangular since
diagonals cancel. More generally, bracketing matri-
ces with n diagonals of zeros yields matrices with
about 2n diagonals of zeros.

Proposition 4.1.6(?).
Let L ∈ LieAlg/F, then

• L solvable implies solvability of all subalgebras and homomorphic images of L.
• If I ⊴ L and L/I are solvable, then L is solvable.
• If I, J ⊴ L are solvable then I + J is solvable.a

aUse the third isomorphism theorem.

Exercise 4.1.7 (?)
Prove these.

Definition 4.1.8 (Radical and semisimple)
Every L ∈ LieAlgfd

/F has a unique maximal solvable ideal, the sum of all solvable ideals, called
the radical of L, denote

√
(L). L is semisimple if

√
(L) = 0.

Exercise 4.1.9 (?)
Prove that any simple algebra is semisimple, and in general L/

√
(L) is semisimple (if nonzero).

4.1 Humphreys 3.1 13



5 Solvable and Nilpotent Lie Algebras (Wednesday, August 24)

Proposition 4.1.10(?).
Assume sln(C) is simple, then R :=

√
(gln(C)) = Z(g) ⊇ C idn for g := gln(C).

Proof (?).
⊇: Centers are always solvable ideals, since it’s abelian and brackets are ideals, and the radical
is sum of all solvable ideals.
⊆: Suppose Z ⊊ R is proper, then there is a non-scalar matrix x ∈ R. Write x = aIn + y
for a = tr(x)/n and 0 ̸= y ∈ sln(C) is traceless. Consider I = ⟨x⟩ ⊴ gln(C), i.e. the span
of all brackets [zx] for z ∈ g and their iterated brackets containing x, e.g. [z1[z2x]]. Note
that [zx] = [zy] since aIn is central. Since sln(C) is simple, so ⟨y⟩sln(C) = sln(C) and thus
sln(C) ⊆ I. This containment must be proper, since I ⊆

√
(g) and the latter is solvable, so I

must be solvable – but sln(C) is not solvable. We can thus choose x ∈ I such that x = aIn + y
with a ̸= 0 and 0 ̸= y ∈ sln(C), so x − y = aI ∈ I since y ∈ I because sln(C) ⊆ I. Since
a ̸= 0, we must have In ∈ I. Then C · In ⊆ I, forcing I = g since every matrix in gln(C) is
a scalar multiple of the identity plus a traceless matrix. This contradicts that I is solvable,
since g(1) := [gg] = sln(C). But g(1) = sln(C), so the derived series never terminates. E

■

E 4.2 Humphreys 3.2 e

Definition 4.2.1 (Lower central series and nilpotent algebras)
The descending/lower central series of L is defined as

L0 = L, L1 = [LL], · · ·Li = [L,Li−1].

L is nilpotent if Ln = 0 for some n.

Exercise 4.2.2 (?)
Check that Li ⊴ L.

Exercise 4.2.3 (?)
Show that L nilpotent is equivalent to there existing a finite n such that for any set of elements
{xi}ni=1,

(adx1 ◦ adx2 ◦ · · · ◦ adxn)(y) = 0 ∀y ∈ L.

4.2 Humphreys 3.2 14
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5 Friday, August 26

E 5.1 3.2: Engel’s theorem e

Proposition 5.1.1(Nilpotent implies solvable).
Recall L is nilpotent if Ln = 0 for some n ≥ 0 (the descending central series) where Li+1 = [LLi].
Equivalently, ∏i≤n adxi = 0 for any {xi}i≤n ⊆ L. Note that Li ⊇ L(i) by induction on i –
these coincide for i = 0, 1, and one can check

L(i+1) = [L(i)L(i)] ⊆ [LLi] = Li+1.

Example 5.1.2(Solvable does not imply nilpotent): bn is solvable but not nilpotent, since
b1
n = nn but b2

n = nn and the series never terminates.

Example 5.1.3(?): nn is nilpotent, since the number of diagonals with zeros adds when taking
brackets [LLi].

△! Warning 5.1.4
h is also nilpotent, since any abelian algebra is nilpotent.

Proposition 5.1.5(?).
Let L ∈ LieAlg/F, then

• If L is nilpotent then any subalgebra or homomorphic image of L is nilpotent.
• If L/Z(L) is nilpotent then L is nilpotent.a
• If L ̸= 0 is nilpotent, then Z(L) ̸= 0.b

aLift a series for the quotient, which is eventually in Z(L) since it was zero in the quotient, and then bracketing
with Z(L) terminates.

bIf Ln = n− 1 ⊇ Ln = 0 then [LLn−1] = 0 and thus Ln−1 ⊆ Z(G).

Exercise 5.1.6 (?)
Show that if L/I and I ⊴ L are nilpotent, then L need not be nilpotent.

Remark 5.1.7: Distinguish End(L) whose algebra structure is given by associative multiplication
and gl(L) with the bracket multiplication.

Definition 5.1.8 (ad-nilpotent)
An element x ∈ L is ad-nilpotent if adx ∈ End(L) is a nilpotent endomorphism.

Remark 5.1.9: If L is nilpotent then x ∈ L is ad-nilpotent by taking xi = x for all i. It turns out

Friday, August 26 15



5 Friday, August 26

that the converse is true:

Theorem 5.1.10(Engel’s theorem).
If all x ∈ L are ad-nilpotent, then L is nilpotent.

Proof (?).
To be covered in an upcoming section.

■

Lemma 5.1.11(?).
Let x ∈ gl(V ) be a nilpotent linear transformation for V finite-dimensional. Then

adx : gl(V )→ gl(V )
y 7→ x ◦ y − y ◦ x

is a nilpotent operator.

Proof (?).
Let λx, ρx ∈ End(gl(V )) be left and right multiplication by x, which are commuting nilpotent
operators. The binomial theorem shows that if D1, D2 are any two commuting nilpotent
endomorphisms of a vector space, then D1 ±D2 is again nilpotent. But then one can write
adx = λx − ρx.

■

Remark 5.1.12: If x ∈ gl(V ) is nilpotent then so is adx. Conversely, if all adx for x ∈ L ≤ gl(V )
are nilpotent operators then L is nilpotent by Engel’s theorem.

△! Warning 5.1.13
The converse of the above lemma is not necessarily true: x being ad-nilpotent does not imply that
x is nilpotent. As a counterexample, take x = In ∈ gln(C), then adx = 0 but xk = x for any k ≥ 1.

E 5.2 3.3: Proof of Engel’s theorem e

Remark 5.2.1: The following is related to the classical linear algebra theorem that commuting
operators admit a simultaneous eigenvector:

Theorem 5.2.2(?).
Let L be a Lie subalgebra of gl(V ) for V finite-dimensional. If L consists of nilpotent endo-
morphisms, then there exists a nonzero v ∈ V such that Lv = 0.

5.2 3.3: Proof of Engel’s theorem 16



6 Monday, August 29

Proof (?).
Proceed by induction on n = dimL (assuming it holds for all vector spaces), where the
n = 1 case is clear – the characteristic polynomial of such an operator is f(t) = tn, which has
roots t = 0 and every field contains zero. Once one has an eigenvalue, there is at least one
eigenvector.
For n > 1, suppose K ≤ L is a proper Lie subalgebra. By hypothesis, K consists of nilpotent
elements in End(V ), so apply the previous lemma to see that ad(K) ⊆ End(L) acts by
nilpotent endomorphisms of L since they are restrictions to L of nilpotent endomorphisms of
gl(V ). Since [KK] ⊆ K, we can view ad(K) ⊆ End(L/K) where L/K is a vector space.
By the IH with V = L/K, where End(L/K) has smaller dimension, one can find a nonzero
x+K ∈ L/K such that ad(K)(x+K) = 0. Hence one can find an x ∈ L \K such that for all
y ∈ K one has [yx] ∈ K, so x ∈ NL(K) \K. Thus K ⊊ NL(K) is a proper containment.

To be continued.
■

6 Monday, August 29

E 6.1 Continuation of proof and corollaries e

Remark 6.1.1: Recall: we were proving that if L ≤ gl(V ) with V finite dimensional and L consists
of nilpotent endomorphisms, then there exists a common eigenvector v, so Lv = 0.

Proof (continued).
We’re inducting on dimL (over all V ). Assuming dimV > 1, we showed that proper subalge-
bras are strictly contained in their normalizers:

K ⪇ L =⇒ K ⊊ NL(K).
Let K be a maximal proper subalgebra of L, then NL(K) = L by maximality and thus K is a
proper ideal of L. Then L/K is a Lie algebra of some dimension, which must be 1 – otherwise
the preimage in L under L ↠ L/K would be a subalgebra of L properly between K and L.
Thus K is a codimension 1 ideal in L.Minimal model program Choosing any z ∈ L \K yields
a decomposition L = K

⊕
Fz as vector spaces. Let W :=

{
v ∈ V

∣∣∣ Kv = 0
}

, then W ̸= 0 by
the IH.

Claim: W is an L-stable subspace.
To see this, let x ∈ L, y ∈ K,w ∈W . A useful trick:

y.(x.w) = w.(y.w)− [xy].w = 0,
since the first term is zero and [xy] ∈ K ⊴ L.
Since z ↷ W nilpotently, choose an eigenvector v for z in W for the eigenvalue zero. Then
z.v = 0, so Lv = 0.

■

Monday, August 29 17
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Corollary 6.1.2(Engel’s theorem).
If all elements of a Lie algebra L are ad-nilpotent, then L is nilpotent as an algebra.

Proof (?).
Induct on dimL. Note that ad(L) ≤ gl(V ) consists of nilpotent endomorphisms. Use the
theorem to pick x ∈ L such that ad(L).x = 0, i.e. [L, x] = 0, i.e. x ∈ Z(L) and thus Z(L) is
nonzero. Now dimL/Z(L) < dimL, and a fortiori its elements are still ad-nilpotent so L/Z(L)
is nilpotent. By proposition 3.2b, L is nilpotent.a

■
aNote that for arbitrary SESs, the 2-out-of-3 property does not hold for nilpotency, but for the special cases

of a quotient by the center it does.

Corollary 6.1.3(?).
Let o ̸= L ≤ gl(V ) with dimV < ∞ be a Lie algebra of nilpotent endomorphisms (as in the
theorem).a Then V has a basis in which the matrices of L are all strictly upper triangular.

aNote that the assumption is not that L is a nilpotent algebra, but rather the stronger assumption on
endomorphisms.

Proof (?).
Induct on dimV . Use the theorem to pick a nonzero v1 with Lv1 = 0. Consider W := V/Fv1,
and view L ⊆ End(V ) as a subspace of End(W ) – these are still nilpotent endomorphisms. By
the IH, W has a basis {vi}2≤i≤n with respect to the matrices in L (viewed as a subspace of
End(W )) are strictly upper triangular. Let {vi} ⊆ V be their preimages in L; this basis has
the desired properties. This results in a matrix of the following form:

6.1 Continuation of proof and corollaries 18
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■

E 6.2 Chapter 4: Theorems of Lie and Cartan e

Remark 6.2.1: From now on, assume F = F is algebraically closed and ch(k) = 0.

E 6.3 4.1: Lie’s Theorem e

Theorem 6.3.1(Lie’s Theorem).
Let L ̸= 0 be a solvable Lie subalgebra of gl(V ) with dimV <∞. Then V contains a common
eigenvector for all of L.

Proof (?).
Induct on dimL. If dimL = 1, then L is spanned by 1 linearly operator x and over an

6.2 Chapter 4: Theorems of Lie and Cartan 19
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algebraically closed field, x has at least one eigenvector. For dimL > 1, take the following
strategy:

1. Identify K ⊴ L proper of codimension 1,
2. By IH, find a common eigenvector for K,
3. Verify that L stabilizes “the” subspace of all such common eigenvectors (much harder

than before!)
4. In this subspace, find an eigenvector for some z ∈ L \K with L = K ⊕ Fz.

Off we go!
Step 1: Since L is solvable, we have [LL] properly contained in L. In L/[LL] choose any
codimension 1 subspace – it is an ideal, which lifts to a codimension 1 ideal K ⊂ L.
Step 2: Since subalgebras of solvable algebras are again solvable, K is solvable. By the IH,
pick a common nonzero eigenvector v for K. There exists a linear map λ : K → F such that
x.v = λ(x)v for all x ∈ K. Let W :=

{
v ∈ V

∣∣∣ y.v = λ(y)v ∀y ∈ K
}

, which is nonzero.
Step 3: Note L.W ⊆W . Let w ∈W,x ∈ L, y ∈ K; we WTS y.(x.w) = λ(y)x.w. Write

y.(x.w) = x.(y.w)− [xy].w
= λ(y)(x.w)− λ([xy])w,

where the second line follows since [xy] ∈ K. We then need λ([xy]) = 0 for all x ∈ L and y ∈ K.
Since dimV <∞, choose n minimal such that

{
w, x.w, x2.w, · · · , xn.w

}
is linearly dependent.

Set Wi := spanF
{
w, x.w, · · · , xi.w

}
, so W0 = 0,W1 = spanF {w}, and so on, noting that

• dimWn = n,
• Wn+k = Wn for all k ≥ 0,
• x.Wn ⊆Wn.

Claim: For all y ∈ K,

y.xi.w = λ(y)xi.wmodWi.

To be continued!
■

7 Wednesday, August 31

E 7.1 Section 4.1, continuing the proof e

Remark 7.1.1: Recall dimL,dimV <∞, F is algebraically closed, and ch F = 0. For L ≤ gl(V )
solvable, we want a common eigenvector v ∈ V for L. Steps for the proof:

Wednesday, August 31 20
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1. Find a K ⊴ L proper of codimension 1.
2. Set W =

{
v ∈ V

∣∣∣ x.v = λ(x)v ∀x ∈ K
}
̸= 0 for some linear λ : K → F.

3. Show L.W ⊆W ; we needed to show λ([LK]) = 0.

Proof (Continued).
Step 3: Fix x ∈ L,w ∈W and n minimal such that

{
xiw

}
i≤n is linearly dependent. For i ≥ 0

set Wi = F
〈
w, xw, · · · , xi−1w

〉
. Then dimWn = n,Wn = Wn+i for i ≥ 0, and xWn ⊆Wn.

Claim: For all y ∈ K,

yxi.w = λ(y)xiwmodWi.

Proof (?).
This is proved by induction on i, where i = 0 follows from how W is defined. For i ≥ 1,
use the commuting trick:

yxi.w = yxxi−1w

= (xy − [xy])xi−1w

= x(yxi−1w)− [xy]xi−1w

≡ λ(y)xiw − λ([xy])xi−1wmodWi−1

≡ λ(y)xiw − λ([xy])xi−1wmodWi since Wi−1 ≤Wi

≡ λ(y)xiwmodWi.

■

Given this claim, for i = n this says that the matrices of any y ∈ K with respect to the basis{
xiw

}
0≤i≤n−1 is upper triangular with diagonal entries all equal to λ(y). Thus tr(y)|Wm

=
nλ(y), and so [xy] ↷Wn with trace nλ([xy]). On the other hand, x, y both act on Wn (e.g. by
the formula in the claim for yxi.w) and so

[xy]|Wn
= xy|Wn

− yx|Wn
,

thus tr([xy])|Wn
= 0. Since F is characteristic zero, we have nλ([xy]) = 0 =⇒ λ([xy]) = 0.

Step 4: By step 1, L = K ⊕Fz for some z ∈ L \K. Viewing z : W →W and using F = F, z
has an eigenvector v ∈ W . Since v ∈ W , it is also a common eigenvector for K and thus an
eigenvector for L by additivity.

■

Corollary 7.1.2(A: Lie’s theorem).
Let L ≤ gl(V ) be a solvable subalgebra, then L stabilizes some flag in V . In particular, there
exists a basis for V with respect to which the matrices in L are all upper triangular.

Remark 7.1.3: Recall that for V ∈ Vect/F, a complete flag is an element of

Fl(V ) :=
{

0 = V 0 ⊊ V 1 ⊊ · · · ⊊ V n = V
∣∣∣ dimV i = i

}
.

7.1 Section 4.1, continuing the proof 21
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A subalgebra L stabilizes a flag if LV i ⊆ V i for all i, which implies there is a compatible basis
(got by extending one vector at a time from a basis for V 1) for which L acts by upper triangular
matrices.

Proof (?).
Use the theorem and induct on n = dimV as in Engel’s theorem – find a common eigenvector
for V 1, since L stabilizes one gets an action L↷ V i/V i−1 which is smaller dimension. Then
just lift through the quotient.

■

Corollary 7.1.4(B).
Let L be a solvable Lie algebra, then there exists a chain of ideals

0 = L0 ⊊ L1 ⊊ · · · ⊊ Ln = L

such that dimLi = i.

Proof (?).
Consider adL ≤ gl(L). Apply Lie’s theorem: (adL)Li ⊆ Li ⇐⇒ [LLi] ⊆ Li, making Li ⊴ L
an ideal.

■

Corollary 7.1.5(C).
Let L be solvable, then x ∈ [LL] =⇒ adLx is nilpotent. Hence [LL] is nilpotent by Lie’s
theorem.

Proof (?).
Find a flag of ideals by Corollary 7.1.4 and let {x1, · · · , xn} be a compatible basis. Then
the matrices

{
adx

∣∣∣ x ∈ L} are all upper triangular. If x ∈ [LL], without loss of generality
x = [yz] for some y, z ∈ L. Then

adx = [adyadz] = adyadz − adzady

will be strictly upper triangular (since these are upper triangular and the commutator cancels
diagonals) and hence nilpotent.

■

E 7.2 Section 4.3 e

Remark 7.2.1: We’ll come back to 4.2 next time. For this section, assume F = F and ch F = 0.
Cartan’s criterion for a semisimple L (i.e. Rad(L) = 0) involves the Killing form, a certain

7.2 Section 4.3 22



8 Wednesday, August 31

nondegenerate bilinear form on L. Recall that if L is solvable then [LL] is nilpotent, or equivalently
every x ∈ [LL] is ad-nilpotent.

Lemma 7.2.2(Checking nilpotency with a trace condition (technical)).
Let A ⊆ B be subspaces of gl(V ) (really End(V ) as a vector space) with V finite-dimensional.
Let

M :=
{
w ∈ gl(V )

∣∣∣ [wB] ⊆ A
}

and suppose some w ∈M satisfies tr(wz) = 0 for all z ∈M . Then w is nilpotent.

Proof (?).
Later!

■

Definition 7.2.3 (Bilinear form terminology)
A bilinear form is a map

β(−,−) : L× L→ F,

which is symmetric if β(x, y) = β(y, x) and associative if β([xy], z) = β(x, [yz]) for all
x, y, z ∈ L. The radical of β is

Rad(β) :=
{
w ∈ V

∣∣∣ β(w, V ) = 0
}
,

and β is nondegenerate if Rad(β) = 0.

Example 7.2.4(?): For L = gl(V ), take β(x, y) := tr(xy). One can check this is symmetric,
bilinear, and associative – associativity follows from the following:

[xy]z = xyz − yxz
x[yz] = xyz − xzy.

Then note that y(xz) and (xz)y have the same trace, since tr(AB) = tr(BA).

Proposition 7.2.5(?).
If β is associative, then Rad(β) ⊴ L.

Proof (?).
Let z ∈ Rad(β) and x, y ∈ L. To see if [zx] ∈ Rad(β), check

β([zx], y) = β(z, [xy]) = 0

since z ∈ Rad(β). Thus [zx] ∈ Rad(β).
■

7.2 Section 4.3 23
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8 Friday, September 02

E 8.1 4.2: Jordan-Chevalley decomposition e

Remark 8.1.1: Let F = F of arbitrary characteristic and V ∈ Vectfd
/F with x ∈ EndF(V ). The

JCF of x is of the form D+N where D is diagonal and N is nilpotent where D,N commute. Recall
x is semisimple (diagonalizable) iff the minimal polynomial of x has distinct roots.

Proposition 8.1.2(?).
If x ∈ End(V ),

a. There is a decomposition x = xs + xn where xs is semisimple and xn is nilpotent. This
is unique subject to the condition that xs, xn commute.

b. There are polynomials p(T ), q(T ) without constant terms with xs = p(x), xn = q(x). In
particular, xs, xn commute with any endomorphism which commutes with x.

Lemma 8.1.3(?).
Let x ∈ gl(V ) with Jordan decomposition x = xs + xn. Then adx = adxs + adxn is the Jordan
decomposition of adx in End(End(V )).

Proof (?).
If x ∈ gl(V ) is semisimple then so is adx since the eigenvalues for adx are differences of
eigenvalues of x. I.e. if {v1, · · · , vn} is an eigenbasis for V and x.vi = aivi in this bases, we
have [xeij ] = (ai − aj) = eij , so {eij} is an eigenbasis for adx. If x is nilpotent then adx is
nilpotent, since adx(y) = λx(y)− ρx(y) where λ, ρ are left/right multiplication, and sums of
nilpotents are nilpotent. One can check [adxsadxn ] = ad[xsxn

= 0 since they commute.
■

Remark 8.1.4: One can show that if L is semisimple then ad(L) = Der(L), which is used to show
that if L is an arbitrary Lie algebra then one has

• x = xs + xn,
• [xsxn] = 0,
• adxs is semisimple and adxn is nilpotent.

This gives a notion of semisimplicity and nilpotency for Lie algebras not of the form gl(V ).

Lemma 8.1.5(?).
Let U ∈ Algfd

/F, then Der(U) is closed under taking semisimple and nilpotent parts.

Friday, September 02 24
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Proof (?).
Let δ ∈ Der(U) and write δ = σ + v be the Jordan decomposition of δ in End(U). It STS σ is
a derivation, so for a ∈ F define

Ua :=
{
x ∈ U

∣∣∣ (δ − a)kx = 0 for some k
}
.

Note U = ⊕
a∈Λ Ua where Λ is the set of eigenvalues of δ, which are also the eigenvalues of σ –

this is because σ, v are commuting operators, so eigenvalues of δ are sums of eigenvalues of s
and v.

Claim: For any a, b ∈ F, UaUb ⊆ Ua+b.
Assuming this, it STS σ(xy) = σ(x)y + xσ(y) when x ∈ Ua, y ∈ Ub where a, b are eigenvalues.
Using that eigenvalues of δ are also eigenvalues of σ, since xy ∈ Ua+b by the claim, σ(xy) =
(a+ b)xy and thus

σ(x)y + xσ(y) = axy + xby = (a+ b)xy.

So σ ∈ Der(U).
■

Proof (of claim).
A sub-claim:

(δ − (a+ b)1)(xy) =
∑

0≤i≤n

(
n

i

)
(δ − aI)n−ix(δ − b1)iy.

■

9 Wednesday, September 07

E 9.1 4.3: Cartan’s criterion for semisimplicity e

Remark 9.1.1: For the rest of the course, V is a vector space of finite dimension. Goal: get a
criterion for semisimplicity.

Theorem 9.1.2(Cartan’s criterion for linear Lie algebras).
Let L ≤ gl(V ) be a linear Lie algebra and suppose tr(xz) = 0 for all x ∈ [LL] and z ∈ L. Then
L is solvable.

Lemma 9.1.3(?).
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Let A ⊆ B be subspaces of End(V ) = gl(V ) and define

M =
{
w ∈ gl(V )

∣∣∣ [w,B] ⊆ A
}
.

Suppose that w ∈M satisfies tr(wz) = 0 for all z ∈M . Then w is nilpotent.

Proof (of Cartan, assuming the lemma).
To show L is solvable, it STS that [LL] is nilpotent since the ideals used to check nilpotency
are bigger than those to check solvability. By Engel’s theorem, it STS to show each w ∈ [LL]
is ad-nilpotent. Since L ≤ gl(V ), it STS to show each w ∈ [LL] is a nilpotent endomorphism.
As in the setup of the lemma, set B = L,A = [LL], then

M :=
{
z ∈ gl(V )

∣∣∣ [zL] ⊆ [LL]
}
⊇ L ⊇ [LL].

Let w ∈ [LL] ⊆M , then note that tr(wz) = 0 for all z ∈ L, but we need to know this for all
z ∈M . Letting z ∈M be arbitrary; by linearity of the trace it STS tr(wz) = 0 on generators
w = [xy] on [LL] for x, y ∈ L. We thus WTS tr([xy]z) = 0:

tr([xy]z) = tr(x[yz])
= tr([yz]x) ∈ tr(LMx) ⊆ tr([LL]L)
= 0

by assumption. By the lemma, w is nilpotent.
■

Corollary 9.1.4(Cartan’s criterion for general Lie algebras).
Let L ∈ LieAlg with tr(adxady) = 0 for all x ∈ [LL] and y ∈ L. Then L is solvable.

Proof (of corollary).
Use ad : L → gl(V ), a morphism of Lie algebras. Its image is solvable by Cartan’s criterion
above, and ker ad = Z(L) which is abelian and hence a solvable ideal.a Therefore L is solvable.

■
aThe derived series terminates immediately for an abelian algebra.

Proof (of lemma).
Let w = s+ n be the Jordan-Chevalley decomposition of w. Choose a basis for V such that
this is the JCF of w, i.e. s = diag(a1, · · · , an) and n is strictly upper triangular. Idea: show
s = 0 by showing A := Q ⟨a1, · · · , an⟩ = 0 by showing A∨ = 0, i.e. any Q-linear functional
f : A→ Q is zero. If ∑ aif(ai) = 0 then

0 = f(
∑

aif(ai)) =
∑

f(ai)2 =⇒ f(ai) = 0 ∀i,

so we’ll show this. Let y = diag(f(a1), · · · , f(an)), then ady is a polynomial (explicitly
constructed using Lagrange interpolation) in ads without a constant term. So do this for ady
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and ads (see exercise). Since ads is a polynomial in adw with zero constant term, and since
adw : B → A, we have ads(B) ⊆ A and the same is thus true for ady. So y ∈M and w ∈M ,
and applying the trace condition in the lemma with z := y we get

0 = tr(wy) =
∑

aif(ai),

noting that w is upper triangular and y is diagonal. So s = 0 and w = n is nilpotent.
■

Exercise 9.1.5 (?)
Show ady is a polynomial in ads.

Remark 9.1.6: Recall that RadL is the unique maximal (not necessarily proper) solvable ideal
of L. This exists, e.g. because sums of solvable ideals are solvable. Note that L is semisimple iff
RadL = 0.

Definition 9.1.7 (Killing form)
Let L ∈ LieAlgfd and define the Killing form

κ : L× L→ F
κ(x, y) = tr(adx ◦ ady).

This is an associativea bilinear form on L.
aAssociative is f([xy]z) = f(x[yz]), sometimes called invariant.

Example 9.1.8(?): Let L = C ⟨x, y⟩ with [xy] = x. In this ordered basis,

adx =
[
0 1
0 0

]
ady =

[
−1 0
0 0

]
,

and one can check κ(x, x) = κ(x, y) = κ(y, x) = 0 and κ(y, y) = 1. Moreover Radκ = C ⟨x⟩.

See the text for κ defined on sl2.

Lemma 9.1.9(?).
Let I ⊴ L. If κ is the Killing form of L ad κI that of I, then

κI = κ|I×I .

Proof (?).
Let x ∈ I, then adx(L) ⊆ I since I is an ideal. Choosing a basis for I yields a matrix:
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So if x, y ∈ I, we have

κ(x, y) = tr(adx ◦ ady)
= tr(adI,x ◦ adI,y)
= κI(x, y).

■

10 Friday, September 09

E 10.1 5.1: The Killing form e

Remark 10.1.1: For the rest of the course: k = k and ch k = 0. Theorem from last time: L is
semisimple iff its Killing form κ(x, y) := tr(adxady) is nondegenerate.

Proof (?).
Let S = Rad(κ) ⊴ L, which is easy to check using “invariance” (associativity) of the form.
Given s, s′ ∈ S, the restricted form κS(x, y) = tr(adS,sadS,s′) = tr(adL,sadL,s′), which was
proved in a previous lemma. But this is equal to κ(s, s′) = 0. In particular, we can take
s ∈ [SS], so by (the corollary of) Cartan’s criterion for solvable Lie algebras, S is solvable as

Friday, September 09 28
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a Lie algebra and thus solvable as an ideal in L.
=⇒ : Since Rad(L) is the sum of all solvable ideals, we have S ⊆ Rad(L), but since L is

semisimple Rad(L) = 0 and thus S = 0.
⇐= : Assume S = 0. If I ⊴ L is a solvable ideal so I(n) = 0 for some n ≥ 0. If I(n−1) ̸= 0, it

is a nonzero abelian ideal – since we want to show Rad(L) = 0, we don’t want this to happen!
Thus it STS every abelian ideal is contained in S.
So let I ⊴ L be an abelian ideal, x ∈ I, y ∈ L. Define an operator

A2
xy := (adxady)2 : L ady−−→ L

adx−−→ I
ady−−→ I

adx−−→ 0,

which is zero since [II] = 0. Thus Axy is a nilpotent endomorphism, which are always traceless,
so 0 = tr(adxady) = κ(x, y) for all y ∈ L, and so x ∈ S. Thus I ⊆ S.

■

△! Warning 10.1.2
Rad(κ) ⊆ Rad(L) always, but the reverse containment is not always true – see exercise 5.4.

E 10.2 5.2: Simple Ideals of L e

Definition 10.2.1 (Direct sums of Lie algebras)
Let Li ∈ LieAlg/k, then their direct sum is the product L1 × L2 with bracket

[x1 ⊕ x2, y1 ⊕ y2] := [x1y1]⊕ [x2y2].

Remark 10.2.2: In particular, [L1, L2] = 0, and thus any ideal I1 ⊴ L1 yields an ideal I1⊕0 ⊴ L1⊕
L2. Moreover, if L = ⊕

Ii is a vector space direct sum of ideals of L, this is automatically a Lie
algebra direct sum since [Ii, Ij ] = Ii ∩ Ij = 0 for all i ̸= j.

△! Warning 10.2.3
This is not true for subalgebras! Also, in this theory, one should be careful about whether direct
sums are as vector spaces or (in the stronger sense) as Lie algebras.

Theorem 10.2.4(?).
Let L be a finite-dimensional semisimple Lie algebra. Then there exist ideals In of L such that
L = ⊕

Ii with each Ij simple as a Lie algebra. Moreover every simple ideal if one of the Ij .

Proof (?).
Let I ⊴ L and define

I⊥ :=
{
x ∈ L

∣∣∣ κ(x, I) = 0
}
,

the orthogonal complement of I with respect to κ. This is an ideal by the associativity of κ.
Set J := I ∩ I⊥ ⊴ L, then κ([JJ ], J) = 0 and by Cartan’s criterion J is a solvable ideal and
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thus J = 0, making L semisimple.
From the Endman-Wildon lemma in the appendix (posted on ELC, lemma 16.11), dimL =
dim I + dim I⊥ and L = I ⊕ I⊥, so now induct on dimL to get the decomposition when L is
not simple. These are semisimple ideals since solvable ideals in the I, I⊥ remain solvable in
L. Finally let I ⊴ L be simple, then [I, L] ⊆ L is a ideal (in both L and I), which is nonzero
since Z(L) = 0. Since I is simple, this forces [I, L] = I. Writing L = ⊕

Ii as a sum of simple
ideals, we have

I = [I, L] = [I,
⊕

Ii] =
⊕

[I, Ii],

and by simplicity only one term can be nonzero, so I = [I, Ij ] for some j. Since Ij is an ideal,
[I, Ij ] ⊆ Ij , and by simplicity of Ij we have I = Ij .

■

Corollary 10.2.5(?).
Let L be semisimple, then L = [LL] and all ideals and homomorphic images (but not sub-
algebras) are again semisimple. Moreover, every ideal of L is a sum of simple ideals Ij of
L.

Proof (?).
Take the canonical decomposition L = ⊕

Ii and check

[L,L] = [
⊕

Ii,
⊕

Ij ] =
⊕

[Ii, Ii] =
⊕

Ii,

where in the last step we’ve used that the Ii are (not?) abelian. Let J ⊴ L to write L = J
⊕
J⊥,

both of which are semisimple as Lie algebras. In particular, if φ : L→ L′, set J := kerφ ⊴ L.
Then imφ = L/J ∼= J⊥ as Lie algebras, using the orthogonal decomposition, so imφ is
semisimple. Finally if J ⊴ L then L = J ⊕ J⊥ with J semisimple, so by the previous theorem
J decomposes as J = ⊕Ki with Ki (simple) ideals in J – but these are (simple) ideals in L as
well since it’s a direct sum. Thus the Ki are a subset of the Ij , since these are the only simple
ideals of L.

■

11 Monday, September 12

Remark 11.0.1: Question from last time: does L always factor as Rad(L)⊕Lss with Lss semisimple?
Not always, instead there is a semidirect product decomposition L = Rad(L)⋊ s where s is the Levi
subalgebra. Consider L = gln, then Rad(L) ̸= h since [h, eij ] = (hi − hj)eij , so in fact this forces
Rad(L) = CIn = Z(L) with complementary subalgebra s = sln. Note that gln = CIn ⊕ sln where
sln = [LL] is a direct sum, and gln is reductive.

E 11.1 5.3: Inner Derivations e
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Theorem 11.1.1(In semisimples, every derivation is inner).
If L is semisimple then ad(L) = DerL.

Proof (?).
We know ad(L) ≤ DerL is a subalgebra, and L semisimple implies 0 = Z(L) = ker ad, so
ad : L ∼−→ ad(L) is an isomorphism and ad(L) is semisimple. The Killing form of a semisimple
Lie algebra is always nondegenerate, so κad(L) is nondegenerate, while κDerL may be degenerate.
Recall that ad(L) ⊴ DerL, so [DerL, ad(L)] ⊆ ad(L). Define ad(L)⊥ ⊴ DerL to be the
orthogonal complement in Der(L) with respect to κDerL, which is an ideal by the associative
property.
Claim: ad(L) ∩ ad(L)⊥ = 0, This follows readily from the fact that κad(L) is nondegenerate
and so Rad(κad(L)) = 0.
Note that ad(L), ad(L)⊥ are both ideals, so [ad(L), ad(L)⊥] ⊆ ad(L) ∩ ad(L)⊥ = 0. Let
δ ∈ ad(L)⊥ and x ∈ L, then 0 = [δ, adx] = adδ(x) where the last equality follows from an
earlier exercise. Since ad is injective, δ(x) = 0 and so δ = 0, thus ad(L)⊥ = 0. So we have
RadκDerL ⊆ ad(L)⊥ = 0 since any derivation orthogonal to all derivations is in particular
orthogonal to inner derivations, and thus κDerL is nondegenerate. Finally, we can write
DerL = ad(L)⊕ ad(L)⊥ = ad(L)⊕ 0 = ad(L).

■

E 11.2 5.4: Abstract Jordan Decompositions e

Remark 11.2.1: Earlier: if A ∈ Algfd
/F, not necessarily associative, DerA contains the semisimple

and nilpotent parts of all of its elements. Applying this to A = L ∈ LieAlg yields L ∼= ad(L) = DerL
ad adx = s+n ∈ ad(L)+ad(L), so write s = adxs and n = adxn , then adx = adxs +adxn = adxs+xn

so x = xs + xn by injectivity of ad, yielding a definition for the semisimple and nilpotent parts of
x. If L ≤ gl(V ), it turns out that these coincide with the usual decomposition – this is proved in
section 6.4.

E
11.3 6.1: Modules (Chapter 6: Complete

Reducibility of Representations) e

Definition 11.3.1 (L-modules and representations)
Let L ∈ LieAlgfd

/C, then a representation of L on V is a homomorphism of Lie algebras
φ : L→ gl(V ). For V ∈ Vect/C with an action of L, i.e. an operation

L× V → V

(x, v) 7→ x.v,

11.1 5.3: Inner Derivations 31
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is an L-module iff for all a, b ∈ C, x, y ∈ L, v, w ∈ V ,

• (M1) (ax+ by).v = a(x.v) + b(y.v).
• (M2) x.(av + bw) = a(x.v) + b(x.w).
• (M3) [xy].v = x.(y.v)− y.(x.v).

Remark 11.3.2: An L-module V is equivalent to a representation of L on V . If φ : L→ gl(V ) is
a representation, define x.v := φ(x)v := φ(x)(v). Conversely, for V ∈ LMod define φ : L → gl(V )
by φ(x)(v) := x.v.

Example 11.3.3(?): L ∈ LMod using ad, this yields the adjoint representation.

Definition 11.3.4 (Morphism of L-modules)
A morphism of L-modules is a linear map ψ : V → W such that ψ(x.v) = x.ψ(v) for all
x ∈ L, v ∈ V . It is an isomorphism as an L-module iff it is an isomorphism of the underlying
vector spaces.a In this case we say V,W are equivalent representations.

aIt turns out that the inverse map of vector spaces ψ−1 : W → V is again a morphism of L-modules.

Example 11.3.5(?): Let L = Cx for x ̸= 0, then

• What is a representation of L on V ? This amounts to picking an element of End(V ).

• When are 2 L-modules on V equivalent? This happens iff the two linear transformations are
conjugate in End(V ).

Thus representations of L on V are classified by Jordan canonical forms when V is finite dimensional.

Definition 11.3.6 (Submodules, irreducible/simple modules)
For V ∈ LMod, a subspace W ⊆ V is a submodule iff it is in invariant subspace, so x.w ∈W
for all x ∈ L,w ∈W . V is irreducible or simple if V has exactly two invariant subspaces V
and 0.

△! Warning 11.3.7
Note that this rules out 0 as being a simple Lie algebra.

Definition 11.3.8 (Quotient modules)
For W ≤ V ∈ LMod a submodule, the quotient module is V/W has underlying vector
space V/W with action x.(v + W ) := (x.v) + W . This is well-defined precisely when W is a
submodule.

△! Warning 11.3.9
I ⊴ L ⇐⇒ ad(I) ≤ ad(L), i.e. ideals corresponds to submodules under the adjoint representation.
However, irreducible ideals need not correspond to simple submodules.

11.3 6.1: Modules (Chapter 6: Complete Reducibility of Representations) 32
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E 12.1 6.1: Structure theory e

Definition 12.1.1 (Natural representation)
Note that all of the algebras g we’ve considered naturally act on column vectors in some Fn –
this is the natural representation of g.

Example 12.1.2(?): Letting bn be the upper triangular matrices in gln, this acts on Fn. Taking a
standard basis Fn = V := ⟨e1, · · · , en⟩F, one gets submodules Vi = ⟨e1, · · · , ei⟩F which correspond
to upper triangular blocks got by truncating the first i columns of the matrix. This yields a
submodule precisely because the lower-left block is zero.

Remark 12.1.3: Let φ : L → gl(V ) be a representation, noting that End(V ) is an associative
algebra. We can consider the associative unital algebra A generated by the image φ(L). Note
that the structure of V as an L-module is the same as its A-module structure, so we can apply
theorems/results from the representation of rings and algebras to study Lie algebra representations,
e.g. the Jordan-Holder theorem and Schur’s lemma.

Definition 12.1.4 (Direct sums of L-modules)
Given V,W ∈ LMod, their vector space direct sum admits an L-module structure using
x.(v, w) := (x.v, x.w), which we’ll write as x.(v + w) := xv + xw.

Definition 12.1.5 (Completely reducible modules)
V ∈ LMod is completely reducible iff V is a direct sum of irreducible L-modules. Equiva-
lently, for each W ≤ V there is a complementary submodule W ′ such that V = W ⊕W ′.

△! Warning 12.1.6
“Not irreducible” is strictly weaker than “completely reducible”, since a submodule may not admit
an invariant complement – for example, the flag in the first example above.

Example 12.1.7(?): The natural representation of hn is completely reducible, decomposing as
V1 ⊕ V2 ⊕ · · ·Vn where Vi = Fei.

Definition 12.1.8 (Indecomposable modules)
A module V is indecomposable iff V ̸= W ⊕W ′ for proper submodules W,W ′ ≤ V . This is
weaker than irreducibility.

Example 12.1.9(?): Consider the natural representation V for L := bn. Every nonzero submodule
of V must contain e1, so V is indecomposable if n ≥ 1.
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Remark 12.1.10: Recall that the socle of V is the (direct) sum of all of its irreducible submodules.
If Soc(V ) is simple (so one irreducible) then V is indecomposable, since every summand must
contain this simple submodule “at the bottom”. For L = bn, note that Soc(V ) = Fe1.

Remark 12.1.11: For the reminder of chapters 6 and 7, we assume all modules are finite-
dimensional over F = F.

Theorem 12.1.12(Jordan-Holder).
Let L ∈ LieAlgfd

/F, then there exists a composition series, a sequence of submodules 0 = V0 ⊆
V1 ⊆ · · · ⊆ Vn = V such that each composition factor (sometimes called sections) Vi/Vi−1 is
irreducible/simple. Moreover, any two composition series admit the same composition factors
with the same multiplicities, up to rearrangement and isomorphism.

Example 12.1.13(?): If V = W ⊕W ′ with W,W ′ simple, there are two composition series:

• 0 ⊆W ⊆ V with factors W,V/W ∼= W ′,
• 0 ⊆W ′ ⊆ V with factors W ′, V/W ′ ∼= W .

These aren’t equal, since they’re representations on different coset spaces, but are isomorphic.

Theorem 12.1.14(Schur’s lemma).
If φ : L→ gl(V ) is an irreducible representation, then EndL(V ) ∼= F.

Proof (?).
If V is irreducible then every f ∈ LMod(V, V ) is either zero or an isomorphism since f(V ) ≤ V
is a submodule. Thus EndL(V ) is a division algebra over F, but the only such algebra is F
since F = F.
Letting φ be as above, it has an eigenvalue λ ∈ F, again since F = F. Then φ−λI ∈ EndL(V )
has a nontrivial kernel, the λ-eigenspace. So φ− λI = 0 =⇒ φ = λI.

■

△! Warning 12.1.15
Schur’s lemma is not always true for Lie superalgebras.

Definition 12.1.16 (Trivial modules)
The trivial L-module is F ∈ LMod equipped with the zero map φ : L→ gl(F) where x.1 := 0
for all x ∈ L. Note that this is irreducible, and any two such 1-dimensional trivial modules are
isomorphic by sending a basis {e1} to 1 ∈ F.
More generally, an V ∈ LMod is trivial iff x.v = 0 for all x ∈ L, v ∈ V , and V is completely
reducible as a direct sum of copies of the above trivial module.

Definition 12.1.17 (Homs, Tensors, and duals)
Let V,W ∈ LMod, then the following are all L-modules:
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• V ⊗F W : the action is x.(v ⊗ w) = (x.v)⊗ w + v ⊗ (x.w).a
• HomF(V,W ): the action is (x.f)(v) = x.(f(v))− f(x.v) ∈W .
• V ∨ := HomF(V,F): the action is a special case of the above since x.w = 0, sob

(x.f)(v) = −f(x.v).
aNote that groups would act on each factor separately, and this is more like a derivative.
bOne might expect an inverse from group theory, which differentiates to a minus sign.

Remark 12.1.18: These structures come from the Hopf algebra structure on the universal asso-
ciative algebra U(g), called the universal enveloping algebra. Note that we also have

Hom
C

(V,W ) ∼=
LMod

V ∨ ⊗F W.

13 Friday, September 16

E
13.1 6.2: Casimir element of a

representation e

Remark 13.1.1: Last time: L semisimple over C implies κ(x, y) := tr(adxady) is nondegenerate.
Using Cartan’s criterion, we can show that for any faithful representation φ : L → gl(V ) we can
define a symmetric bilinear form βφ on L defined by βφ(x, y) = tr(φ(x)φ(y)). Note that βad = κ.
Since Rad(βφ) = 0, it is nondegenerate. This defines an isomorphism L

∼−→L∨ by x 7→ β(x,−),
so given a basis B := {xi}i≤n for L there is a unique dual basis B′ = {yi}i≤n for L such that
β(xi, yj) = δij . Note that the yi ∈ L are dual to the basis β(xi,−) ∈ L∨.

Example 13.1.2(?): For L := sl2(C), the matrix of κ is given by

0 0 4
0 8 0
4 0 0

 with respect to the

ordered basis B = {x, h, y}.3 Thus B′ =
{

1
4y,

1
8h,

1
4x
}

.

Definition 13.1.3 (Casimir element)
Now let φ : L→ gl(V ) be a faithful irreducible representation. Fix a basis B of L and define
the Casimir element

cφ = cφ(β) :=
∑
i≤n

φ(xi) ◦ φ(yi) ∈ EndC(V ).

Remark 13.1.4: One can show that cφ commutes with φ(L). Supposing φ is irreducible, EndL(V ) =

3See Humphreys p.22.
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C by Schur’s lemma, so cφ is acts on V as a scalar. This follows from

tr(cφ) =
∑
i≤n

tr(φ(xi)φ(yi)) =
∑
i≤n

β(xi, yi) = n = dimL =⇒ cφ = dimL

dimV
idV ,

since there are dimV entries. In particular, cφ is independent of the choice of B. This will be
used to prove Weyl’s theorem, one of the main theorems of semisimple Lie theory over C. If L
is semisimple and φ : is not faithful, replace L by L/ kerφ. Since kerφ ⊴ L and L is semisimple,
kerφ is a direct sum of certain simple ideals of L and the quotient is isomorphic to the sum of the
remaining ideals. This yields a representation φ : L/ kerφ → gl(V ) which is faithful and can be
used to define a Casimir operator.

Example 13.1.5(?): Let L = sl2(C) and let V = C2 be the natural representation, so φ : L →
gl(V ) is the identity. Fix H = {x, h, y}, then β(u, v) = tr(uv) since φ(u) = u and φ(v) = v. We get
the following products: [

0 1
0 0

] [
1 0
0 −1

] [
0 0
1 0

]
[
0 1
0 0

]
0

[
0 −1
0 0

] [
1 0
0 0

]
[
1 0
0 −1

]
I

[
0 0
−1 0

]
[
0 0
1 0

]
0

Thus β =

0 0 1
0 2 0
1 0 0

, and B′ =
{
y, 1

2h, x
}

, so

cφ = xy + 1
2h

2 + yx =
[
1 0
0 0

]
+ 1

2I +
[
0 0
0 1

]
= 3

2I = dim C2

dim sl2(C)I.

E 13.2 6.3: Complete reducibility e

Lemma 13.2.1(?).
Let φ : L → gl(V ) be a representation of a semisimple Lie algebra, then φ(L) ⊆ sl(V ). In
particular, L acts trivially on any 1-dimensional L-module since a 1 × 1 traceless matrix is
zero. The proof follows from L = [LL].

△! Warning 13.2.2
Arbitrary reductive Lie algebras can have nontrivial 1-dimensional representations.
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Theorem 13.2.3(Weyl’s theorem).
Let φ : L→ gl(V ) be a finite-dimensional representation of a finite-dimensional semisimple Lie
algebra over C. This φ is completely reducible.

△! Warning 13.2.4
This is not true for characteristic p, or infinite dimensional representations in characteristic 0.

13.2.1 Proof of Weyl’s theorem

Remark 13.2.5: Replace L by L/ kerφ if necessary to assume φ is faithful, since these yield the
same module structures. Define a Casimir operator cφ as before, and recall that complete reducibility
of V is equivalent to every L-submodule W ≤ V admitting a complementary submodule W ′′ such
that V = W ⊕W ′′. We proceed by induction on dimV , where the dimension 1 case is clear.

Case I: codimV W = 1, i.e. dim(V/W ) = 1. Take the SES W ↪→ V ↠ V/W .

Case 1: Suppose W ′ ≤W is a proper nonzero L-submodule. Schematic:
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Using the 2nd isomorphism theorem, there is a SES W/W ′ ↪→ V/W ′ ↠ V/W . Since dimW ′ > 0,
dimV/W ′ ≤ dimV , so by the IH there is a 1-dimensional complement to W/W ′ in V/W ′. This lifts
to W̃ ′ ≤ V with W ′ ≤ W̃ with dim W̃/W ′ = 1, and moreover V/W ′ = W/W ′ ⊕ W̃/W ′. Take the
SES W ′ ↪→ W̃ ↠ W̃/W ′ with dim W̃ < dimV . Apply the IH again to get a subspaces X ≤ W̃ ≤ V
with W̃ = W ′ ⊕X. We’ll continue by showing V = W

⊕
X.

14 Monday, September 19

E 14.1 Proof of Weyl’s theorem (continued) e

Remark 14.1.1: Recall: we’re proving Weyl’s theorem, i.e. every finite-dimensional representation
of semisimple Lie algebra over C is completely reducible. Strategy: show every W ≤L V has a
complement W ′′ ≤L V such that V = W ⊕W ′′; induct on dimV .

Proof (of Weyl’s theorem, continued).
Case I: dimV/W = 1.
Case 1: W is reducible. We got 0 < W ′ < W < V (proper submodules), represented
schematically by a triangle. We showed V/W ′ ∼= W/W ′ ⊕ W̃/W ′, since

• W̃ ∩W ⊆W ′,
• V = W + W̃ +W ′ = W + W̃ since W ′ ⊆W .
• W̃ = W ′ ⊕X for some submodule X ≤L W̃ ≤L V .

Thus replacing W̃ in the second point yields V = W + W̃ = W +W ′ +X = W +X; we want
to prove this sum is direct. Since X is contained in W̃ , we can write

X ∩W = (X ∩ W̃ ) ∩W
= X ∩ (W̃ ∩W ) by 1
⊆ X ∩W ′ = 0 by 2,

so V = W ⊕X.
Case 2: Let cφ be the Casimir element of φ, and note that cφ(W ) ⊆W since cφ is built out
of endomorphisms in φ(L) sending W to W (since W is a submodule). In fact, φ(L)(V ) = W
since V/W is a 1-dimensional representation of the semisimple Lie algebra L, hence trivial.
Thus cφ(V ) ⊆W and thus ker cφ ̸= 0 since W < V is proper. Note also that cφ commutes with
anything in cφ(L) on V , and so defines a morphism cφ ∈ LMod(V, V ) and ker cφ ≤L V . On
the other hand, cφ induces an element of EndL(W ), and since W is irreducible, cφ|W = λ idW
for some scalar λ. This can’t be zero, since tr(cφ|W ) = dimL

dimW > 0, so ker cφ ∩W = 0. Since
codimV W = 1, i.e. dimW = dimV − 1, we must have dim ker cφ = 1 and we have a direct
sum decomposition V = W ⊕ ker cφ.

Use of the Casimir element in basic Lie theory:
producing a complement to an irreducible submod-
ule.
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Case 2: Suppose 0 < W < V with W any nontrivial L-submodule; there is a SES W ↪→
V ↠ V/W Consider H := homC(V,W ), then H ∈ L-Mod by (x.f)(v) := x.(f(v))− f(x.v) for
f ∈ H,x ∈ L, v ∈ V . Let V :=

{
f
∣∣∣ H ∣∣∣ f |W = α idW for some α ∈ C

}
⊆ H. For f ∈ V and

w ∈W , we have

(x.f)(w) = x.f(w)− f(x.w) = αx.w − αx.w = 0.

So let W :=
{
f ∈ V

∣∣∣ f(W ) = 0
}
⊆ V, then we’ve shown that L.V ⊆ W. Now roughly, the

complement is completely determined by the scalar. Rigorously, since dimV/W = 1, any
f ∈ V is determined by the scalar f |W = α idW : we have f − αχW ∈ W where χW is any
extension of idW to V which is zero on V/W , e.g. by extending a basis and having it act by
zero on the new basis elements.
Now W ↪→ V ↠ V/W ∈ L-Mod with codimVW = 1. By Case I, V = W ⊕W ′′ for some
complement L-submodule W ′′. Let f : V → W span W ′′, then f |W is a nonzero scalar – a
scalar since it’s in V, and nonzero since it’s in the complement of W. By rescaling, we can
assume the scalar is 1, so im f = W and by rank-nullity dim ker f = dimV − dimW . Thus
ker f has the right dimension to be the desired complement. It is an L-submodule, since
L.f ⊆ W ′′ ∩W = 0 since W ′′ is an L-submodule and f ∈ W since L.V ⊆ W. Noting that if
(x.f) = 0 then x.(f(v)) = f(x.v), making f an L-Mod morphism. Thus W ′′ := ker f ≤L V ,
and W ∩W ′′ = 0 so f |W = idW . Since the dimensions add up correctly, we get V = W ⊕W ′′.

■

E
14.2 6.4: Preservation of Jordan

decomposition e

Theorem 14.2.1(?).
Let L ≤ gl(V ) be a subalgebra with L semisimple and finite-dimensional. Given x ∈ L,
there are two decompositions: the usual JCF x = s + n, and the abstract decomposition
adx = adxs + adxn . L contains the semisimple and nilpotent parts of all of its elements, and in
particular the two above decompositions coincide.

Proof (Idea).
The proof is technical, but here’s a sketch:

• Construct a subspace L ≤ L′ ≤L gl(V ) such that l′ contains the semisimple and nilpotent
parts of all elements where L↷ gl(V ) by ad : L→ gl(gl(V )).

• Check L′qNgl(V )(L) (the normalizer), so [LL′] ⊆ L.
• Show L′ = L:

– If L′ ̸= L, use Weyl’s theorem to get a complement with L′ = L⊕M .
– Check [LM ] ⊆ [LL′] ⊆ L and [LM ] ⊆M since M ≤L M , forcing [LM ] ⊆ L∩M = 0.
– Use Weyl’s theorem on all of V splits it into sums of irreducibles, bracket against

the irreducibles, and use specific properties of this L′ to show M = 0.
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• Since s, n ∈ L when x = s + n and adx = ads + adn = adxs + adxn , the result follows
from uniqueness of the abstract JCF that s = xs, n = xn (using that ad is injective when
L is semisimple since Z(L) = 0).

■

Corollary 14.2.2(?).
If L ∈ LieAlgss

/C (not necessarily linear) and φ ∈ L-Mod, writing x = s+ n the abstract Jordan
decomposition, φ(x) = φ(s) + φ(n) is the usual JCF of φ(x) ∈ gl(V ).

Proof (Sketch).
Consider adφ(L)φ(s) and adφ(L)φ(n), which are semisimple (acts on a vector space and decom-
poses into a direct sum of eigenspaces) and nilpotent respectively and commute, yielding the
abstract Jordan decomposition of adφ(x). Now apply the theorem.

■

15 Ch. 7: Representations of sl2(C)
(Wednesday, September 21)

Remark 15.0.1: If L ∈ LieAlg and s is a semisimple element, then φ(s) is semisimple in any
finite-dimensional representation φ of L. In particular, taking the natural representation, this yields
a semisimple operator. For the same reason, ads is semisimple. Similar statements hold for nilpotent
elements.

E 15.1 7.1: Weights and Maximal Vectors e

Remark 15.1.1: Let L := sl2(C), then recall

• x =
[
0 1
0 0

]

• h =
[
1 0
0 −1

]

• y =
[
0 0
1 0

]
• [xy] = h
• [hx] = 2x
• [hy] = −2y

Ch. 7: Representations of sl2(C) (Wednesday, September 21) 40



15 Ch. 7: Representations of sl2(C) (Wednesday, September 21)

Goal: classify L-Modfd. By Weyl’s theorem, they’re all completely reducible, so it’s enough to
describe the simple objects.

Definition 15.1.2 (Weight decomposition and weight spaces)
Note that L ≤ gl2(C) = gl(C2), and since h is semisimple, φ(h) acts semisimply on any
finite-dimensional representation V with φ : L→ gl(V ). I.e. φ(h) acts diagonally on V . Thus
V = ⊕

λ Vλ which are eigenspaces for the φ(h) action, where

Vλ :=
{
v ∈ V

∣∣∣ h.v = λv, λ ∈ C
}
.

If Vλ ̸= 0 we say λ is a weight of h in V and Vλ is the corresponding weight space.

Lemma 15.1.3(?).
If v ∈ Vλ, then x.v ∈ Vλ+2 and y.v ∈ Vλ−2.

Exercise 15.1.4 (?)
Prove this using the commutation relations.

Definition 15.1.5 (Highest weights)
Note that if V is finite-dimensional then there can not be infinitely many nonzero Vλ, so there
exists a λ ∈ C such that Vλ ̸= 0 but Vλ+2 = 0. We call λ a highest weight (h.w.) of V
(which will turn out to be unique) and any nonzero v ∈ V a highest weight vector.

E
15.2 7.2: Classification of Irreducible

sl2(C)-Modules e

Lemma 15.2.1(?).
Let V ∈ L-Modfd,irr and let v0 ∈ Vλ be a h.w. vector. Set v−1 = 0 for i ≥ 0 and vi := 1

i!y
iv0,

then for i ≥ 0,

1. h.vi = (λ− 2i)vi
2. y.vi = (i+ 1)vi+1
3. x.vi = (λ− i+ 1)vi−1.

Proof (?).
In parts:

1. By the lemma and induction on i.

2. Clear!

3. Follows from ix.vi = x.(y.vi−1) = y.(x.vi−1) + [xy].vi−1 and induction on i.
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■

Remark 15.2.2: Some useful facts:

• The nonzero vi are linearly independent since they are eigenvectors of h with different eigen-
values – this is a linear algebra fact.

• The subspace of V spanned by the nonzero vi is an L-submodule, but since V is irreducible
the vi must form a basis for V .

• Since V is finite-dimensional, there must be a smallest m ≥ 0 such that vm ≠ 0 but vm+1 = 0,
and thus vm+k = 0 for all k. Thus dimC V = m+ 1 with basis {v0, v1, · · · , vm}.

• Since vm+1 = 0, we have 0 = x.vm+1 = (λ−m)vm where vm ̸= 0, so λ = m ∈ Z≥0. Thus its
highest weight is a non-negative integer, equal to 1 less than the dimension. We’ll reserve λ
to denote a highest weight and µ an arbitrary weight.

• Thus the weights of V are {m,m− 2, · · · , ⋆, · · · ,−m+ 2,−m} where ⋆ = 0 or 1 depending on
if m is even or odd respectively, each occurring with multiplicity one (using that dimVµ = 1
if µ is a weight of V ).

Theorem 15.2.3(?).
Let V ∈ L-Modfd,irr for L := sl2(C), then

1. Relative to h, V is a direct sum of weight spaces Vµ for µ ∈ {m,m− 2, · · · ,−m+ 2,−m}
where m+ 1 = dimV and each weight space is 1-dimensional.

2. V has a unique (up to nonzero scalar multiples) highest weight vector whose weight (the
highest weight of V ) is m ∈ Z≥0

3. The action L↷ V is given explicitly as in the lemma if the basis is chosen in a prescribed
fashion. In particular, there exists a unique finite-dimensional irreducible sl2-module of
dimension m+ 1 up to isomorphism.

Corollary 15.2.4(?).
Let V ∈ L-Modfd,irr, then the eigenvalues of h ↷ V are all integers, and each occurs along
with its negative with the same multiplicity. Moreover, in a decomposition of V in a direct
sum of irreducibles, the number of simple summands is dimV0 + dimV1.

Remark 15.2.5: Existence of irreducible highest weight modules of highest weight m ≥ 0:

• m = 0: take the trivial representation V = C.
• m = 1: take V = C2 with the natural representation.
• m = 2: take V = L with the adjoint representation.
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Remark 15.2.6: The formula in the lemma can be used to construct an irreducible representation
of L having highest weight λ = m for any m ∈ Z≥0, which is unique up to isomorphism and denoted
L(m) (or V (m) in Humphreys) which has dimension m + 1. In fact, the formulas can be used
to define an infinite-dimensional representation of L with highest weight λ for any λ ∈ C, which
is denoted M(λ) – we just don’t decree that vm+1 = 0, yielding a basis {v0, v1, · · ·}. This yields
a decomposition into 1-dimensional weight spaces M(λ) = ⊕∞

i=1Mλ−2i (Verma modules) where
Mλ−2i = ⟨vi⟩C.

16 Ch. 8: Root space decompositions (Friday,
September 23)

Remark 16.0.1: Recall that the relations from last time can produce an infinite-dimensional
module with basis {v0, v1, · · ·}. Note that if m ∈ Z≥0, then x.vm+1 = (λ−m)vm = 0. This says that
one can’t raise vm+1 back to vm, so {vm+1, vm+2 · · ·} spans a submodule isomorphic to M(−m− 2).
Quotienting yields L(m) := M(m)/M(−m− 2), also called V (m), spanned by {v0, · · · , vm}. Note
that M(−m− 2) and L(m) are irreducible.

Remark 16.0.2: Let L ∈ LieAlgfd,ss
/C for this chapter.

E
16.1 8.1: Maximal toral subalgebras and

roots
e

Remark 16.1.1: Let L ∋ x = xs + xn ∈ L + L be the abstract Jordan decomposition. then if
x = xn for every x ∈ L then L is nilpotent which contradicts Engel’s theorem. Thus there exists
some x = xs ̸= 0.

Definition 16.1.2 (Toral subalgebras)
A toral subalgebra is any nonzero subalgebra spanned by semisimple elements.

Example 16.1.3(?): The algebraic torus (C×)n which has Lie algebra Cn, thought of as diagonal
matrices.

Lemma 16.1.4(?).
Let H be a maximal toral subalgebra of L. Any toral subalgebra H ⊆ L is abelian.

Proof (?).
Let T ≤ L be toral and let x ∈ T be a basis element. Since x is semisimple, it STS adT,x = 0.
Semisimplicity of x implies adL,x diagonalizable, so we want to show adT,x has no non-zero
eigenvalues. Suppose that there exists a nonzero y ∈ T such that adT,x(y) = λy for λ ≠ 0.
Then adT,y(x) = [yx] = −[xy] = −adT,x = −λy ̸= 0, and since adT,y(y) = −[yy] = 0, y is an
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eigenvector with eigenvalue zero. Since adT,y is also diagonalizable and x ∈ T , write x as a
linear combination of eigenvectors for it, say x = ∑

aivi. Then adT,y(x) = ∑
λiaivi and the

terms with λi = 0 vanish, and the remaining element is a sum of eigenvectors for adT,y with
nonzero eigenvalues. E

■

Example 16.1.5(?): If L = sln(C) then define H to be the set of diagonal matrices. Then H is
toral and in fact maximal: if L = H ⊕Cz for some z ∈ L \H then one can find an h ∈ H such that
[hz] ̸= 0, making it nonabelian, but toral subalgebras must be abelian.

Definition 16.1.6 (Roots)
Recall that a commuting family of diagonalizable operators on a finite-dimensional vector
space can be simultaneously diagonalized. Letting H ≤ L be maximal toral, this applies
to adL(H), and thus there is a basis in which all operators in adL(H) are diagonal. Set
Lα :=

{
x ∈ L

∣∣∣ [hx] = α(h)x ∀h ∈ H
}

where α : H → C is linear and thus an element of H∨.

Note that L0 = CL(H), and the set Φ :=
{
α ∈ H∨

∣∣∣ α ̸= 0, Lα ̸= 0
}

is called the roots of H
in L, and Lα is called a root space. Note that L0 is not considered a root space. This induces
a root space decomposition

L = CL(H)⊕α∈Φ Lα.

Remark 16.1.7: Note that for classical algebras, we’ll show CL(H) = H and corresponds to the
standard bases given early in the book.

Example 16.1.8(?): Type An yields sln+1(C) and dimH = n for H defined to be the diagonal
traceless matrices. Define εi ∈ H∨ as εi diag(a1, · · · , an+1) := ai, the Φ :=

{
εi − εj

∣∣∣ 1 ≤ i ̸= j ≤, n+ 1
}

and Lεi−εj = Ceij . Why:

[h, eij ] =
[∑

akekk, eij
]

= aieiieij − ajeijejj = (ai − aj)eij := (εi − εj)(h)eij .

17 Monday, September 26

E 17.1 8.1 Continued e

Remark 17.1.1: A Lie algebra is toral iff every element is semisimple – this exists because any
semisimple Lie algebra contains at least one semisimple element and you can take its span. Let H
be a fixed maximal toral subalgebra, then we have a root space decomposition

L = CL(H)⊕
⊕

α∈Φ⊆H∨

Lα, Lα :=
{
x ∈ L

∣∣∣ [hx] = α(h)x ∀h ∈ H
}
.
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Let L be semisimple and finite dimensional over C from now on.

Proposition 17.1.2(?). 1.

[Lα, Lβ] ⊆ Lα+β ∀α, β ∈ H∨.

2.

x ∈ Lα, α ̸= 0 =⇒ adx is nilpotent.

3. If α, β ∈ H∨ and α+ β ̸= 0 then Lα ⊥ Lβ relative to κL, the Killing form for L.

Proof (?).

1. Follows from the Jacobi identity.

2. Follows from (1), that dimL < ∞, and the root space decomposition. This is because
Lα ̸= Lα+β ̸= Lα+2β ̸= · · · and there are only finitely many β to consider.

3. If α+ β ̸= 0 then ∃h ∈ H such that (α+ β)(h) ̸= 0. For x ∈ Lα, y ∈ Lβ,

α(h)κ(x, y) = κ([hx], y)
= −κ([xh], y)
= −κ(x, [hy])
= −β(h)κ(x, y)
=⇒ (α+ β)(h)κ(x, y) = 0
=⇒ κ(x, y) = 0 since (α+ β)(h) ̸= 0.

■

Corollary 17.1.3(?).
κ|L0

is nondegenerate, since L0 ⊥ Lα for all α ∈ Φ, but κ is nondegenerate. Moreover, if
Lα ̸= 0 then L−α ̸= 0 by (3) and nondegeneracy.

E 17.2 8.2: CL(H) e

Proposition 17.2.1(?).
Let H ≤ L be maximal toral, then H = CL(H).

Proof (?).
Skipped, about 1 page of dense text broken into 7 steps. Uses the last corollary along with
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Engel’s theorem.
■

Observation 17.2.2
If L is a classical Lie algebra over C, we choose H to be diagonal matrices in L, and x ∈ L \H is
non-diagonal, then there exists an h ∈ H such that [hx] ̸= 0. Note that toral implies abelian and
nonabelian implies nontoral, thus there is no abelian subalgebra of L properly containing H – adding
any nontoral element at all to H makes it nonabelian. This same argument shows CL(H) = H
since nothing else commutes with H. This implies that L = H ⊕α∈Φ Lα.

Corollary 17.2.3(?).
κ|H is nondegenerate.

Remark 17.2.4: As a result, κ induces an isomorphism H
∼−→H∨ by h 7→ κ(h,−) and H∨ ∼−→H

by φ 7→ tφ, the unique element such that κ(tφ,−) = φ(−). In particular, given α ∈ Φ ⊂ H∨ there
is some tα ∈ H. The next 3 sections are about properties of Φ:

• Orthogonality,
• Integrality,
• Rationality.

E 17.3 8.3: Orthogonality properties of Φ. e

Proposition 17.3.1(Big!).

a. Φ spans H∨.
b. If α ∈ Φ is a root then −α ∈ Φ is also a root.
c. Let α ∈ Φ, x ∈ Lα, y ∈ L−α, then [xy] = κ(x, y)tα.
d. If α ∈ Φ then [Lα, L−α] = Ctα is 1-dimensional with basis tα.
e. For any α ∈ Φ, we have α(tα) = κ(tα, tα) ̸= 0.
f. (Important) If α ∈ Φ, xα ∈ Lα \ {0} then there exists some yαL−α in the opposite

root space such that xα, yα, hα := [xα, yα] span a 3-dimensional subalgebra sl(α) ≤ L
isomorphic to sl2(C).

g. hα = 2tα
κ(tα,tα) , α(hα) = 2, hα = h−α.

Proof (?).

a. If it does not span, choose h ∈ H \ {0} with α(h) = 0 for all α ∈ Φ. Then [h, Lα] = 0
for all α, but [hH] = 0 since H is abelian. Using the root space decomposition, [hL] = 0
and so h ∈ Z(L) = 0 since L is semisimple. E
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b. Follows from proposition 8.2 and κ(Lα, Lβ) = 0 when β ̸= α.

c. Let h ∈ H, then

κ(h, [xy]) = κ([hx], y)
= α(h)κ(x, y)
= κ(tα, h)κ(x, y)
= κ(κ(x, y)tα, h)
= κ(h, κ(x, y)tα)
=⇒ κ(h, [xy]− κ(x, y)tα) = 0
=⇒ [xy] = κ(x, y)tα,

where we’ve used that [xy] ∈ H and κ is nondegenerate on H and [Lα, L−α] ⊆ L0 = H.

d. (c) shows [Lα, L−α] is spanned by tα if it is nonzero. Let x ∈ Lα \ {0}, then if
κ(x, L−α) = 0 then κ would have to be degenerate, a contradiction. So there is
some y ∈ L−α with κ(x, y) ̸= 0. Moreover tα ̸= 0 since α ̸= 0 and α 7→ tα is an
isomorphism. Thus [xy] = κ(x, y)tα.

e. Suppose α(tα) = κ(tα, tα) = 0, then for x ∈ Lα, y ∈ L−α, we have [tα, x] = α(tα)x = 0
and similarly [tα, y] = 0. As before, find x ∈ Lα, y ∈ L−α with κ(x, y) ̸= 0 and scale one
so that κ(x, y) = 1. Then by (c), [x, y] = tα, so combining this with the previous formula
yields that S := ⟨x, y, tα⟩ is a 3-dimensional solvable subalgebra.a Taking ad : L ↪→ gl(L),
which is injective by semisimplicity, and similarly ad|S : S ↪→ ad(S) ≤ gl(L). We’ll use
Lie’s theorem to show everything here is a commutator of upper triangular, thus strictly
upper triangular, thus nilpotent and reach a contradiction.

■
aNote that this don’t actually exist! We’re in the middle of a contradiction.

18 Wednesday, September 28

E 18.1 Continued proof e

Recall the proposition from last time:

Proposition 18.1.1(Big!).

a. Φ spans H∨.
b. If α ∈ Φ is a root then −α ∈ Φ is also a root.
c. Let α ∈ Φ, x ∈ Lα, y ∈ L−α, then [xy] = κ(x, y)tα.
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d. If α ∈ Φ then [Lα, L−α] = Ctα is 1-dimensional with basis tα.
e. For any α ∈ Φ, we have α(tα) = κ(tα, tα) ̸= 0.
f. (Important) If α ∈ Φ, xα ∈ Lα \ {0} then there exists some yαL−α in the opposite

root space such that xα, yα, hα := [xα, yα] span a 3-dimensional subalgebra sl(α) ≤ L
isomorphic to sl2(C).

g. hα = 2tα
κ(tα,tα) , α(hα) = 2, hα = h−α.

Proof (continued).
Part e: We have α(tα) = κ(tα, tα), so suppose this is zero. Pick x ∈ Lα, y ∈ L−α such that
κ(x, y) = 1, then

• [tα, x] = 0,
• [tα, y] = 0,
• [x, y] = tα.

Set S := sl(α) := C ⟨x, y, tα⟩ and restrict ad : L ↪→ gl(L) to S. Then ad(S) ∼= S by injectivity,
and this is a solvable linear subalgebra of gl(L). Apply Lie’s theorem to choose a basis for L such
that the matrices for ad(S) are upper triangular. Then use that adL([SS]) = [adL(S)adL(S)],
which is strictly upper triangular and thus nilpotent. In particular, adL(tα) is nilpotent, but
since tα ∈ H which is semisimple, so adL(tα) is semisimple. The only things that are semisimple
and nilpotent are zero, so adL(tα) = 0 =⇒ tα = 0. This contradicts that α ∈ H∨ \ {0}. E
Part f : Given xα ∈ Lα \ {0}, choose yα ∈ L−α and rescale it so that

κ(xα, yα) = 2
κ(tα, tα) .

Set hα := 2tα
κ(tα,tα) , then by (c), [xα, yα] = κ(xα, yα)tα = hα. So

[hα, xα] = 2
α(tα) [tα, xα] = 2

α(tα)α(tα)xα = 2xα,

and similarly [hα, yα] = −2yα. Now the span ⟨xα, hα, yα⟩ ≤ L is a subalgebra with the same
multiplication table as sl2(C), so S ∼= sl2(C).
Part g: Note that we would have h−α = 2t−α

κ(t−α,t−α) = −hα if tα = t−α. This follows from the
fact that H∨ ∼−→H sends α 7→ tα,−α 7→ t−α, but by linearity −α 7→ −tα.

■

Corollary 18.1.2(?).
L is generated as a Lie algebra by the root spaces

{
Lα

∣∣∣ α ∈ Φ
}

.

Proof (?).
It STS H ⊆

〈
{Lα}α∈Φ

〉
. Given α ∈ Φ,

∃xα ∈ Lα, yα ∈ L−α such that ⟨xα, yα, hα := [xα, yα]⟩ ∼= sl2(C).
Note any hα ∈ C×tα corresponds via κ to some α ∈ H∨. By (a), Φ spans H∨, so {tα}α∈Φ
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spans H.
■

E 18.2 8.4: Integrality properties of Φ e

Remark 18.2.1: Any α ∈ Φ yields sl(α) ∼= sl(α), and in fact that the generators entirely determined
by the choice of xα. View L ∈ sl(α)Mod via ad.

Lemma 18.2.2(?).
If M ≤ L ∈ sl(α)Mod then all eigenvalues of hα ↷M are integers.

Proof (?).
Apply Weyl’s theorem to decompose M into a finite direct sum of irreducibles in sl2(C)Mod.
The weights of hα are of the form m,m− 2, · · · ,−m+ 2,−m ∈ Z.a

■
aThis fails for infinite dimensional modules, e.g. Verma modules. The highest weight can be any complex

number.

Example 18.2.3(?): Let M = H + sl(α) ≤ L ∈ sl(α)Mod, which one can check is actually a
submodule since bracketing either lands in sl(α) or kills elements. What does Weyl’s theorem say
about this submodule? There is some intersection. Set K := kerα ⊆ H, so codimH K = 1 by
rank-nullity. Note that hα ̸∈ K, so M = K ⊕ sl(α). Moreover sl(α) ↷ K by zero, since bracketing
acts by α which vanishes on K. So K ∼= C⊕n+1 decomposes into trivial modules.

Example 18.2.4(?): Let β ∈ Φ ∪ {0} and define M := ⊕
c∈C Lβ+cα, then L ≤ L ∈ sl(α)Mod. It

will turn out that Lβ+cα ̸= 0 ⇐⇒ c ∈ [−r, q] ⊆ Z with r, q ∈ Z≥0.

Proposition 18.2.5(A).
Let α ∈ Φ, then the root spaces dimL±α = 1, and the only multiples of α which are in Φ are
±α.

Proof (?).
Note Lα can only pair with L−α to give a nondegenerate Killing form. Set

M :=
⊕
c∈C

Lcα = H ⊕
⊕
cα∈Φ

Lcα.

By Weyl’s theorem, this decomposes into irreducibles. This allows us to take a complement of
the decomposition from before to write M = H

⊕
sl(α)⊕W , and we WTS W = 0 since this

contains all Lcα where c ≠ ±1. Since H ⊆ K ⊕ sl(α), we have W ∩H = 0. If cα is a root of L,
then hα has (cα)(hα) = 2c as an eigenvalue, which must be an integer by a previous lemma.
So c ∈ Z or c ∈ Z + 1

2 .
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Suppose W ̸= 0, and let V (s) (or L(s) in modern notation) be an irreducible sl(α)-submodule
of W for s ∈ Z≥0. If s is even, V (s) contains an eigenvector w for hα of eigenvalue zero by
applying yα s/2 times. We can then write w = ∑

c∈C vcα with vca ∈ Lcα, and by finiteness of
direct sums we have vcα = 0 for almost every c ∈ C. Then

0 = [hα, w]
=
∑
c∈C

[hα, vcα]

=
∑
c∈C

(cα)(hα)vcα

=
∑

2cvcα
=⇒ vcα = 0 when c ̸= 0,

forcing w ∈ H, the zero eigenspace. But w ∈W , so w ∈W ∩H = 0. E
■

19 Friday, September 30

E 19.1 8.4 e

Proposition 19.1.1(A).
α ∈ Φ =⇒ dimL±α = 1, and α, λα ∈ Φ =⇒ λ = ±1.

Proof (of proposition A).
Consider M := ⊕⊕

c∈C Lcα ≤ L ∈ sl(α)Mod. Write sl(α) = ⟨xα, hα, yα⟩, we decomposed
M = K ⊕ sl(α) ⊕W where kerα ≤ H and W ∩H = 0. WTS: W = 0. So far, we’ve shown
that if L(s) ⊆W for s ∈ Z≥0 (which guarantees finite dimensionality), then s can’t be even –
otherwise it has a weight zero eigenvector, forcing it to be in H, but W ∩H = 0.
Aside: α ∈ Φ =⇒ 2α ̸∈ Φ, since it would have weight (2α)(hα) = 2αhα = 4, but weights
in irreducible modules have the same parity as the highest weight and no such weights exist
in M (only 0,±2 in K ⊕ sl2(α) and only odd in W ). Suppose L(s) ⊆ W and s ≥ 1 is odd.
Then L(s) has a weight vector for hα of weight 1. This must come from c = 1/2, since
(1/2)α(hα) = (1/2)2 = 1, so this is in Lα/2. However, by the aside, if α ∈ Φ then α/2 ̸∈ Φ.
Thus it W can’t contain any odd roots or even roots, so W = 0. Note also that L±α ̸⊂ K⊕W ,
forcing it to be in sl(α), so Lα = ⟨xα⟩ and L−α = ⟨yα⟩.

■

Proposition 19.1.2(B).
Let α, β ∈ Φ with β ̸= ±α and consider β + kα for n ∈ Z.
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a. β(hα) ∈ Z.
b. ∃r, q ∈ Z≥0 such that for k ∈ Z, the combination β + kα ∈ Φ ⇐⇒ k ∈ [−r, q] ∋ 0. The

set
{
β + kα

∣∣∣ k ∈ [−r, q]
}
⊆ Φ is the α-root string through β.

c. If α+ β ∈ Φ then [LαLβ] = Lα+β.
d. β − β(hα)α ∈ Φ.

Proof (?).
Consider

M :=
⊕
k∈Z

Lβ+kα ≤ L ∈ sl(α)Mod.

a. β(hα) is the eigenvalues of hα acting on Lβ. But by the lemma, β(hα) ∈ Z.

b. By the previous proposition, dimLβ+kα = 1 if nonzero, and the weight of hα acting
on it is β(hα) + 2k all different for distinct k. By sl2-representation theory, we know
the multiplicities of various weight spaces as the sum of dimensions of the zero and one
weight spaces, and thus M is a single irreducible sl(α)-module. So write M − L(d) for
some d ∈ Z≥0, then hα ↷M with eigenvalues {d, d− 2, · · · ,−d+ 2,−d}. But hα ↷M
with eigenvalues β(hα) + 2k for those k ∈ Z with Lβ+kα ̸= 0. Since the first list is an
unbroken string of integers of the same parity, thus the k that appear must also be an
unbroken string. Define r and q by setting d = β(hα) + 2q and −d = β(hα) − 2r to
obtain [−r, q]. Adding these yields 0 = 2β(hα) + 2q − 2r and r − q = β(hα).

c. Let M ∼= L(d) ∈ sl(α)Mod and xβ ∈ Lβ \ {0} ⊆M with xα ∈ Lα. If [xαxβ] = 0 then xβ
is a maximal sl(α)-vector in L(d) and thus d = β(hα). But α+ β ∈ Φ =⇒ β)(hα) + 2
is a weight in M bigger than d, a contradiction. Thus α+ β ∈ Φ =⇒ [xαxβ ] ̸= 0. Since
this bracket spans and dimLα+β = 1, so [LαLβ] = Lα+β.

d. Use that q ≥ 0, r ≥ 0 to write −r ≤ −r + q ≤ q. Then

β − β(hα)α = β − (r − q)α = β + (−r + qα) := β + ℓα

where ℓ ∈ [−r, q]. Thus β + ℓα ∈ Φ is an unbroken string by (b).

■

Question 19.1.3
Is it true that ⊕k∈Z Lβ+kα = ⊕

c∈C Lβ+cα? The issue is that c ∈ Z + 1
2 is still possible.

E 19.2 8.5: Rationality properties of Φ e

Remark 19.2.1: Recall that κ restrict to a nondegenerate bilinear form on H inducing H∨ ∼−→H
via φ 7→ tφ where κ(tφ,−) = φ(−). Transfer to a nondegenerate symmetric bilinear form on H∨ by
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(λ, µ) := κ(tλ, tµ). By prop 8.3 we know H∨ is spanned by Φ, so choose a C-basis {α1, · · · , αn} ⊆ Φ.
Given β ∈ Φ, write β = ∑

ciαi with ci ∈ C.

Claim: ci ∈ Q for all i!

20 Monday, October 03

E 20.1 Integrality and Rationality Properties e

Claim: Setup:

• Decompose L = H ⊕
⊕

α∈Φ Lα

• Use the isomorphism

H
∼−→H∨

φ←[ tφ

to define (λ, µ) := κ(tλ, tµ) on H.

• Choose a basis {αi} ⊆ Φ ⊆ H∨

• For any β ∈ Φ, write β = ∑
ciαi with ci ∈ C. Then

ci ∈ Q.

Proof (?).
Write (β, αj) = ∑

ci(αi, αj) and m

2(β, αj)
(αj , αj)

=
∑

ci
2(αi, αj)
(αj , αj)

,

where the LHS is in Z, as is 2(αi,αj)
(αj ,αj) . On the other hand

2(β, αj)
(αj , αj)

=
2(tβ, tαj )
κ(tαj , καj ) = κ(tβ, hαj ) = β(hαj )

using that (αj , αj) = κ(tαj , tαj ) ̸= 0 from before.a Since {αi} is a basis for H∨ and (−,−) is
nondegenerate, the matrix [(αi, αj)]1≤i,j≤n is invertible. Thus so is

[
2(αi,αj)
(αj ,αj)

]
1≤i,j≤n

, since it’s
given by multiplying each column as a nonzero scalar, and one can solve for the ci by inverting
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it. This involves denominators coming from the determinant, which is an integer, yielding
entries in Q.

■
aMore generally,

2(λ, α)
(α, α) = λ(hα) ∀α ∈ Φ.

Remark 20.1.1: Given λ, µ ∈ H∨ then

(λ, µ) = κ(tλ, tµ) = Trace(adtλ ◦ adtµ) =
∑
α∈Φ

α(tλ) · α(tµ),

using that both ads are diagonal in this basis, so their product is given by the products of their
diagonal entries. One can write this as ∑α∈Φ κ(tα, tλ)κ(tα, tµ), so we get a formula

(λ, µ) =
∑
α∈Φ

(α, λ)(α, µ), (λ, λ) =
∑
α∈Φ

(α, λ)2.

Setting λ = β and dividing by (β, β)2 yields

1
(β, β) =

∑
α∈Φ

(α, β)2

(β, β)2 ∈
1
4Z,

since (α,β)
(β,β)∈ 1

2 Z . So (β, β) ∈ Q and thus (α, β) ∈ Q for all α, β ∈ Φ. It follows that the pairings
(λ, µ) on the Q-subspace EQ of H∨ spanned by {αi} are all rational.

Claim: (−,−) on EQ is still nodegenerate

Proof (?).
If λ ∈ EQ, (λ, µ) = 0∀µ ∈ EQ, then (λ, αi) = 0∀i =⇒ (λ, ν) = 0∀ν ∈ H∨ =⇒ λ = 0.

■

Remark 20.1.2: Similarly, (λ, λ) = ∑
α∈Φ⊆EQ

(α, λ)2 is a sum of squares of rational numbers, and
is thus non-negative. Since (λ, λ) = 0 ⇐⇒ λ = 0, the form on EQ is positive definite. Write
E := EQ ⊗Q R = R {αi}, then (−,−) extends in the obvious way to an R-values positive definite
bilinear form on E, making it a real inner product space.

Theorem 20.1.3(?).
Let L,H,Φ,E/R be as above, then

a. Φ is a finite set which spans E and does not contain zero.
b. If α ∈ Φ then −α ∈ Φ and thus is the only other scalar multiple in Φ.
c. If α, β ∈ Φ then

β − β(hα)α = β − 2(β, α)
(α, α) α ∈ Φ,
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which only depends on E. Note that this swaps ±α.
d. If α, β ∈ Φ then β(hα) = 2(β,α)

(α,α) ∈ Z.

Thus Φ satisfies the axioms of a root system in E.

Example 20.1.4(?): Recall that for sl3(C), κ(x, y) = 6 Trace(xy). Taking the standard basis
{vi} :=

{
xi, hi, yi := xti

}
, the matrix Trace(vivj) is of the form0 0 I

0 A 0
I 0 0

 A :=
[

2 −1
−1 2

]
.

This is far from the matrix of an inner product, but the middle block corresponds to the form
restricted to H, which is positive definite. One can quickly check this is positive definite by checking
positivity of the upper-left k × k minors, which here yields det(2) = 2, detA = 4− 1 = 3.

E 20.2 Part III: Root Systems e

E
20.3 Ch. 9, Axiomatics. 9.1: Reflections in

a Euclidean Space e

Remark 20.3.1: Let E be a fixed real finite-dimensional Euclidean space with inner product (α, β),
we consider property (c) from the previous theorem:

β − 2(β, α)
(α, α) ∈ Φ ∀α, β ∈ Φ.

Definition 20.3.2 (Reflections)
A reflection in E is an invertible linear map on an n-dimensional Euclidean space that fixes
pointwise a hyperplane P (of dimension n− 1) and sending any vector v ⊥ P to −v:
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P

α−alpha

Remark 20.3.3: If σ is a reflection sending α 7→ −α, then

σα(β) = β − 2(β, α)
(α, α) α ∀β ∈ E.

One can check that σ2
α = id. Some notes on notation:

• Humphreys writes ⟨β, α⟩ := 2(β,α)
(α,α) This is linear in β but not in α!

• More modern: (β, α∨) := ⟨β, α⟩ where α∨ := 2α
(α,α) corresponds to hα.

• Modern notation for the map: sα instead of σα.
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E 21.1 Reflections in En e

Remark 21.1.1: Recall the formula

sα(λ) = λ− (λ, α∨)α, α∨ := 2α
(α, α) , α ̸= 0,

which is a reflection through the hyperplane Pα := α ⊥:

α

α ⊥
−α

λsα(λ)

0

Lemma 21.1.2(?).
Let Φ ⊆ E be a set that spans E, and suppose all of the reflections sα for α ∈ Φ leave Φ
invariant. If σ ∈ GL(E) leaves Φ invariant, fixes a hyperplane P pointwise, and sends some
α ∈ Φ \ {0} to −α, then σ = sα and P = Pα.

Proof (?).
Let τ = σsα = σs−1

α ∈ GL(E), noting that every sα is order 2. Then τ(Φ) = Φ and τ(α) = α,
so τ acts as the identity on the subspace Rα and the quotient space E/Rα since there are
two decompositions E = Pα ⊕Rα = P ⊕Rα using sα and σ respectively. So τ − id acts as
zero on E/Rα, and so maps E into Rα and Rα to zero, s (τ − id)2 = 0 on E and its minimal
polynomial mτ (t) divides f(t) := (t− 1)2.
Note that Φ is finite, so the vectors β, τβ, τ2β, τ3β, · · · can not all be distinct. Since τ is
invertible we can assume τkβ = β for some particular k. Taking the least common multiple
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of all such k yields a uniform k that works for all β simultaneously, so τkβ = β for all β ∈ Φ.
Since RΦ = E, τk acts as id on all of E, so τk − 1 = 0 and so mτ (t)

∣∣ tk − 1 for some k.
Therefore mτ (t)

∣∣ gcd((t− 1)2, tk − 1) = t− 1, forcing τ = id and σ = sα and P = Pα.
■

E 21.2 Abstract root systems e

Definition 21.2.1 (Root systems)
A subset Φ ⊆ E of a real Euclidean space is a root system iff

• R1: ♯Φ <∞, RΦ = E, and 0 ̸∈ Φ,
• R2: α ∈ Φ =⇒ −α ∈ Φ and no other scalar multiples of α are in Φ,
• R3: If α ∈ Φ then sα(Φ) = Φ,
• R4: If α, β ∈ Φ then (β, α∨) = 2(β,α)

(α,α) ∈ Z.

Notably, ℓ := ∥β − sαβ∥ is an integer multiple of α:

Pα

α−α

βsαβ

ℓ ∈ Zα

ℓ

Definition 21.2.2 (Weyl groups)
The Weyl group W associated to a root system Φ is the subgroup ⟨sα, α ∈ Φ⟩ ≤ GL(E).

Remark 21.2.3: Note that ♯W < ∞: W permutes Φ by (R3), so there is an injective group
morphism W ↪→ Perm(Φ), which is a finite group – this is injective because if w ↷ Φ as id, since
RΦ = E, by linearity w ↷ E by id and w = id. Recalling that sα(λ) = λ − (λ, α∨)α, we have
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(sα(λ), sα(µ)) = (λ, µ) for all λ, µ ∈ E. So in fact W ≤ O(E) ≤ GL(E), which have determinant
±1 – in particular, det sα = −1 since it can be written as a block matrix diag(1, 1, · · · , 1,−1) by
choosing a basis for Pα and extending it by α.

Note that one can classify finite subgroups of SOn.

Example 21.2.4(?): Let Φ =
{
εi − εj

∣∣∣ 1 ≤ i, j ≤ n+ 1, i ̸= j
}

be a root system of type An where
{εi} form the standard basis of Rn+1 with the standard inner product, so (εi, εj) = δij . One can
compute

sεi−εj (εk) = εk
2(εk, εi − εj)

(εi − εj , εi − εj)
(εi − εj) = εk − (εk, εi − εj)(εi − εj) =


εj k = i

εi k = j

εk otherwise.
= ε(ij).k

where (ij) ∈ Sn+1 is a transposition, acting as a function on the index k. Thus there is a well-defined
group morphism

W → Sn+1

sεi−εj 7→ (ij).

This is injective since w acting by the identity on every εk implies acting by the identity on all of E
by linearity, and surjective since transpositions generate Sn+1. So W ∼= Sn+1, and An corresponds
to sln+1(C) using that

[h, eij ] = (hi − hj)eij = (εi − εj)(h)eij .

In G = SLn(C) one can define NG(T )/CG(T ) for T a maximal torus.

Exercise 21.2.5 (?)
What are the Weyl groups of other classical types?

Lemma 21.2.6(?).
Let Φ ⊆ E be a root system. If σ ∈ GL(E) leaves Φ invariant, then for all α ∈ Φ,

σsασ = sσ(α), (β, α∨) = (σ(β), σ(α)∨) ∀α, β ∈ Φ.

Thus conjugating a reflection yields another reflection.

Proof (?).
Note that σsασ−1 sends σ(α) to its negative and fixes pointwise the hyperplane σ(Pα). If
β ∈ Φ then sα(β) ∈ Φ, so σsα(β) ∈ Φ and

(σsασ−1)(σ(β)) = σsα(β) ∈ σΦ,

so σsασ−1 leaves invariant the set
{
σ(β)

∣∣∣ β ∈ Φ
}

= Φ. By the previous lemma, it must equal
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sσ(α), and so

(σ(β), σ(α)∨) = (β, α∨)

by applying both sides to σ(β).
■

△! Warning 21.2.7
This does not imply that (σ(β), σ(α)) = (β, α)! With the duals/checks, this bracket involves a ratio,
which is preserved, but the individual round brackets are not.

22 Friday, October 07

Lemma 22.0.1(?).
Let Φ ⊆ E be a root system with Weyl group W . If σ ∈ GL(E) leaves Φ invariant then

σsασ
−1 = sσ(α) ∀α ∈ Φ

and

(β, α∨) = (σ(β), σ(α)∨) ∀α, β ∈ Φ.

△! Warning 22.0.2

(σ(β), σ(α)) ̸= (β, α),

i.e. the (−)∨ is important here since it involves a ratio. Without the ratio, one can easily scale to
make these not equal.

Definition 22.0.3 (?)
Two root systems Φ ⊆ E,Φ′ ⊆ E′ are isomorphic iff there exists φ : E→ E′ of vector spaces
such that φ(Φ) = Φ′ such that

(φ(β), φ(α)∨) = (β, α) := 2(β, α)
(α, α) ∀α, β ∈ Φ.

Example 22.0.4(?): One can scale a root system to get an isomorphism:
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α

β

α′

β′E E′

Remark 22.0.5: Note that if φ : Φ ∼−→Φ′ is an isomorphism, then

φ(sα(β)) = sφ(α)(φ(β)) ∀α, β ∈ Φ =⇒ φ ◦ sαφ−1 = sφ(α).

So φ induces an isomorphism of Weyl groups

W
∼−→W ′

sα 7→ sφ(α).

By the lemma, an automorphism of Φ is the same as an automorphism of E leaving Φ invariant. In
particular, W ↪→ Aut(Φ).

Definition 22.0.6 (Dual root systems)
If Φ ⊆ E is a root system then the dual root system is

Φ∨ :=
{
α∨

∣∣∣ α ∈ Φ
}
, α∨ := 2α

(α, α) .

Exercise 22.0.7 (?)
Show that Φ∨ is again a root system in E.

Remark 22.0.8: One can show W (Φ) = W (Φ∨) and ⟨λ, α∨⟩α∨ = ⟨λ, α⟩α = (λ, α∨) for all
α ∈ Φ, λ ∈ E, so sα∨ = sα as linear maps on E.
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E 22.1 9.3: Example(s) e

Definition 22.1.1 (Ranks of root systems)
Let Φ ⊆ E be a root system, then ℓ := dimR E is the rank of Φ.

Remark 22.1.2: Rank 1 root systems are given by choice of α ∈ R:

0 R

sα

α−α

Remark 22.1.3: Recall 2(β,α)
(α,α) ∈ Z, and from linear algebra, ⟨v, w⟩ = ∥v∥ · ∥w∥ cos(θ) and ∥α∥2 =

(α, α). We can thus write

⟨β, α⟩ = 2(β, α)
(α, α) = 2∥β∥

∥α∥
cos(θ), ⟨α, β⟩ = 2∥α∥

∥β∥
cos(θ),

and so

⟨α, β⟩⟨β, α⟩ = 4 cos2(θ),

noting that Lα,β := ⟨α, β⟩, ⟨β, α⟩ are integers of the same sign. If positive, this is in QI, and if
negative QII. This massively restricts what the angles can be, since 0 ≤ cos2(θ) ≤ 1.

First, an easy case: suppose Lα,β = 4, so cos2(θ) = 1 =⇒ cos(θ) = ±1 =⇒ θ = 0, π.

• If 0, then α, β are in the same 1-dimensional subspace and thus β = α. In this case, ⟨β, α⟩ =
2 = ⟨α, β⟩.

• If π, then α = −β. Here ⟨β, α⟩ = −2.
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So assume β ̸= ±α, and without loss of generality ∥β∥ ≥ ∥α∥, or equivalently ⟨α, β⟩ ≤ ⟨β, α⟩.
Note that if ⟨α, β⟩ ≠ 0 then

⟨β, α⟩
⟨α, β⟩

= ∥β∥
2

∥α∥2
.

The other possibilities are as follows:

⟨α, β⟩ ⟨β, α⟩ θ ∥β∥2/∥α∥2

0 0 π/2 Undetermined
1 1 π/3 1
-1 -1 2π/3 1
1 2 π/4 2
-1 -2 3π/4 2
1 3 π/6 3
-1 -3 5π/6 3

Cases for the norm ratios:

• 1 : A2
• 2 : B2 = C2
• 3 : G2

These are the only three irreducible rank 2 root systems.

Lemma 22.1.4(?).
Let α, β ∈ Φ lie in distinct linear subspaces of E. Then

1. If (α, β) > 0, i.e. their angle is strictly acute, then α− β is a root
2. If (α, β) < 0 then α+ β is a root.

Proof (?).
Note that (2) follows from (1) by replacing β with −β. Assume (α, β) > 0, then by the chart
⟨α, β⟩ = 1 or ⟨β, α⟩ = 1. In the former case,

Φ ∋ sβ(α) = α− ⟨α, β⟩β = α− β.

In the latter,

sα(β) = β − α ∈ Φ =⇒ −(β − α) = α− β ∈ Φ.

■
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Remark 22.1.5: Suppose rank(Φ) = 2. Letting α ∈ Φ be a root of shortest length, since RΦ = E
there is some β ∈ E not equal to ±α. Without loss of generality assume ∠α,β is obtuse by replacing
β with −β if necessary:

α

β

−β
Also choose β such that ∠α,β is maximal.

Case 0: If θ = π/2, one gets A1 ×A1:
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α

β

−α

−β

sα

sβ

We’ll continue this next time.

23 Monday, October 10

E 23.1 Classification of Rank 2 Root Systems e

Remark 23.1.1: If β ̸= ±α,

• (α, β) > 0 =⇒ α− β ∈ Φ
• (α, β) < 0 =⇒ α+ β ∈ Φ

Remark 23.1.2: Rank 2 root systems: let α be a root of shortest length, and β a root with angle
θ between α, β with θ ≥ π/2 as large as possible.

• If θ = π/2: A1 ×A1.
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• If θ = 2π/3: A2
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One can check ⟨α, β⟩ = 2(−1/2) = −1 and ⟨α+ β, β⟩ = ⟨α, β⟩+ ⟨β, β⟩ = −1 + 2 = 1.

• If θ = 3π/4: B2

• If θ = 5π/6: G2

One can check that using linearity of ⟨−, −⟩ in the first variable that

• sαβ = β + 3α,
• sα(β + α) = β + 2α,
• sβ(β + 3α) = (β + 3α)− ⟨β + 3α, β⟩ = 2β + 3α ∈ Φ.

Remark 23.1.3: Note that in each case one can see the root strings, defined as

Rβ :=
{
β + kα

∣∣∣ k ∈ Z
}
∩ Φ.

Let r, q ∈ Z≥0 be maximal such that β − rα, β + qα ∈ Φ. The claim is that every such root string
is unbroken.

Suppose not, then there is some k with −r < k < q with β + kα ̸∈ Φ. One can then find a maximal
p and minimal s with p < s and β+ pα ∈ Φ but β+ (p+ 1)α ̸∈ Φ, and similarly β+ (s− 1)α ̸ Φ but
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β + sα ∈ Φ. By a previous lemma, (β + pα, α) ≥ 0 and similarly (β + sα, α) ≤ 0. Combining these,

p(α, α) ≥ s(α, α) =⇒ p ≥ s since (α, α) > 0 E.

The picture:

β + qαβ − rα

α−α

Pα

β

So sα reverses the root string, since it sends the line containing the root string to itself but reflects
through Pα. One can compute

β − rα = sα(β + qα)
= (β + qα)− ⟨β + qα, α⟩α
= (β + qα)− ⟨β, α⟩ga− 2qα
= β − (⟨β, α⟩+ q)α,

so r = ⟨β, α⟩ and r − q = ⟨β, α⟩ = β(hα) for a semisimple Lie algebra.

Supposing |⟨β, α⟩| ≤ 3. Choose β in Rα such that β − α is not a root and β is at the left end of
the string and r = 0:
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Then q = −⟨β, α⟩, so the root string contains at most 4 roots (for Φ of any rank).

E
23.2 Ch. 10 Simple Roots, 10.1 Bases and

Weyl Chambers e

Definition 23.2.1 (Base (simple roots))
A subset ∆ ⊆ Φ is a base (or more modernly a set of simple roots) if

• B1: ∆ is a basis for E,
• B2: Each β ∈ Φ can be written as β = ∑

α∈∆ kαα with kα ∈ Z with either all kα ∈ Z≥0
or all kα ∈ Z≤0.

Example 23.2.2(?): 1. The roots labeled α, β in the rank 2 cases were all simple systems.
2. For An, a base is {ε1 − ε2, ε2 − ε3, · · · , εn − εn+1}, where Φ =

{
εi − εj

∣∣∣ i ̸= j
}

.

24 Wednesday, October 12

Remark 24.0.1: Today: finding bases for root systems. It’s not obvious they always exist, but
e.g. in the previous rank 2 examples, α, β formed a base.

Definition 24.0.2 (Height, positive/negative roots)
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Given a base ∆ ⊆ Φ, the height of a root β = ∑
α∈∆ kαα is

ht(β) :=
∑

kα.

If all kα ≥ 0, we say β is positive and write β ∈ Φ+. Similarly, β is negative iff kα ≤ 0 for
all α, and we write β ∈ Φ−. This decomposes a root system into Φ = Φ+∐Φ−, and moreover
−Φ+ = Φ−.

Remark 24.0.3: A choice of ∆ determines a partial order on Φ which extends to E, where
λ ≥ µ ⇐⇒ λ− µ is a non-negative integer linear combination of elements of ∆.

Lemma 24.0.4(?).
If ∆ ⊆ Φ is a base and α, β ∈ ∆, then

α ̸= β =⇒ (α, β) ≤ 0 and α− β ̸∈ Φ.

Proof (?).
We have α ̸= ±β since ∆ is a linearly independent set. By a previous lemma, if (α, β) > 0
then β − α ∈ Φ by a previous lemma. E

■

Definition 24.0.5 (Regular)
An element γ ∈ E is regular iff γ ∈ E \

⋃
α∈Φ Pα where Pα = α⊥, otherwise γ is singular.

Lemma 24.0.6(?).
Regular vectors exist.

Remark 24.0.7: The basic fact used is that over an infinite field, no vector space is the union of
a finite number of proper subspaces. Note that this is a union, not a sum!

Given a regular vector γ ∈ E, define

Φ+(γ) =
{
α ∈ Φ

∣∣∣ (α, γ) > 0
}
,

the roots on the positive side of the hyperplane α⊥:
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α⊥

α

(α, λ) > 0
(α, λ) < 0

This decomposes Φ = Φ+(γ)∐Φ−(γ) where Φ−(γ) := −Φ+(γ). Note that γ lies on the positive side
of α⊥ for every α ∈ Φ+(γ).

Definition 24.0.8 (Decomposable roots)
A positive root β ∈ Φ+ is decomposable iff β = β1 + β2 for βi ∈ Φ+(γ). Otherwise β is
indecomposable.

Theorem 24.0.9(?).
There exists a base for Φ.

Theorem 24.0.10(?).
Let γ ∈ E be regular. Then the set ∆(γ) of all indecomposable roots in Φ+(γ) is a base for Φ.
Moreover, any base for Φ arises in this way.

Proof (in 5 easy steps).

1. Claim: each root in Φ+(γ) is in Z≥0∆(γ).

The proof: if not, pick β ∈ Φ+(γ) which cannot be written this way and choose it such that
(β, γ) is maximal (by finiteness). Since β ̸∈ ∆(γ), it is decomposable as β = β1 + β2 with
βi ∈ Φ+. Now (β, γ) = ∑(βi, γ) is a sum of nonnegative numbers, so (βi, γ) < (β, γ) for
i = 1, 2. By minimality, βi ∈ Z≥0∆(γ), but then by adding them we get β ∈ Z≥0∆(γ).

2. Claim: if α, β ∈ ∆(γ) with α ̸= β then (α, β) ≤ 0. Note α ̸= −β since (α, γ), (β, γ) > 0.
By lemma 9.4, if (α, β) > 0 then α− β ∈ Φ is a root. Then one of α− β, β − α ∈ Φ+(γ).
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In the first case, β + (α− β) = α, decomposing α. In the second, α+ (β −α) = β, again
a contradiction.

3. Claim: ∆ := ∆(γ) is linearly independent. Suppose ∑α∈∆ rαα = 0 for some rα ∈ R.
Separate the positive terms α ∈ ∆′ and the remaining α ∈ ∆′′ to write ε := ∑

α∈∆′ rαα =∑
β∈∆′′ tββ where now rα, tβ > 0. Use the two expressions for ε to write

(ε, ε) =
∑

α∈∆′,β∈∆′′

rαtβ(α, β) ≤ 0,

since rαtβ > 0 and (α, β) ≤ 0. So ε = 0, since (−,−) is an inner product. Write
0 = (γ, ε) = ∑

α∈∆′ rα(α, δ) where rα > 0 and (α, γ) > 0, so it must be the case that
∆′ = ∅. Similarly ∆′′ = ∅, so rα = 0 for all α ∈ ∆.

4. Claim: ∆(γ) is a base for Φ. Since Φ = Φ+(γ)∐Φ−(γ), we have B2 by step 1. This
also implies ∆(γ) is a basis for E, since we have linear independent by step 3. Thus
Z∆(γ) ⊇ Φ and RΦ = E.

5. Claim: every base of Φ is ∆(γ) for some regular γ. Given ∆, choose γ ∈ E such that
(γ, α) > 0 for all α ∈ ∆. Then γ is regular by B2. Moreover Φ+ ⊆ Φ+(γ) and similarly
Φ− ⊆ Φ−(γ), and taking disjoint unions yields Φ for both the inner and outer sets, forcing
them to be equal, i.e. Φ± = Φ±(γ). One can check that ∆ ⊆ ∆(γ) using Φ+ = Φ+(γ)
and linear independence of ∆ – but both sets are bases for E and thus have the same
cardinality ℓ = dimE, making them equal.

■

25 Bases ∆ for Φ (Friday, October 14)

Remark 25.0.1: From a previous discussion: given a rank n root system Φ with n ≥ 2, is
R ⟨α, β⟩∩Φ always a rank 2 root system? The answer is yes! This follows readily from just checking
the axioms directly.

Remark 25.0.2: For a regular γ ∈ E\
⋃
α∈Φ Pα, define Φ+(γ) :=

{
β ∈ Φ

∣∣∣ (β, γ) > 0
}

and let ∆(γ)
be the indecomposable elements of Φ+(γ):
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Pγ

γ

Theorem 25.0.3(?).
∆(γ) is a base for Φ, and every base is of this form.

Definition 25.0.4 (?)
The connected components of E \⋃α∈Φ Pα are called the (open) Weyl chambers of E. Each
regular γ belongs to some Weyl chamber, which we’ll denote C(γ).

Remark 25.0.5: Note that C(γ) = C(γ′) ⇐⇒ γ, γ′ are on the same side of every root hyperplane
Pα for α ∈ Φ, which happens iff Φ+(γ) = Φ+(γ; ) ⇐⇒ ∆(γ) = ∆(γ′), so there is a bijection

{Weyl chambers}⇌ {Bases for Φ} .

Note also that W sends one Weyl chamber to another: any sα preserves the connected components
E \

⋃
β∈Φ Pβ , so if γ is regular and σ ∈W and σ(γ) = γ′ for some regular γ′, then σ(C(γ)) = C(γ′).

W also acts on bases for Φ: if ∆ is a base for Φ, then σ(∆) is still a basis for E since σ is an
invertible linear transformation. Since σ(Φ) = Φ by the axioms, any root α ∈ Φ is of the form σ(β)
for some β ∈ Φ, but writing β = ∑

α∈∆ kαα with all kα the same sign, σ(β) = ∑
α∈∆ kασ(α) is a

linear combination of elements in σ(∆) with coefficients of the same sign.

The actions of W on chambers and bases are compatible: if ∆ = ∆(γ) then σ(∆) = ∆(σ(γ)), since
σ(Φ+(γ)) = Φ+(σ(γ)) since W ≤ O(E) and thus (σγ, σα) = (γ, α).
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Lemma 25.0.6(A).
Fix a base ∆ ⊂ Φ, which decomposes Φ = Φ+∐Φ−. If β ∈ Φ+ \∆, then β − α ∈ Φ+ for some
α ∈ ∆.

Proof (?).
If (β, α) ≤ 0 for all α ∈ ∆, then the proof of theorem 10.1 would show β = 0 by taking ε := β
in step 3. One can then find an α ∈ ∆ with (β, α) > 0, where clearly β ̸= ±α. By lemma
9.4, β − α ∈ Φ. Why is this positive? Note that β has at least one coefficient for a simple
root (not the coefficient for α) which is strictly positive, and thus all coefficients are ≥ 0. This
coefficient stays the same in β − α, so its coefficients are all non-negative by axiom B2 and
β − α ∈ Φ+.

■

Corollary 25.0.7(?).
Each β ∈ Φ+ can be written as α1 + · · ·+ αk where αi ∈ ∆ not necessarily distinct, such that
each truncated sum α1 + · · ·+αi for 1 ≤ i ≤ k is a positive root. One proves this by induction
on the height of β.

Lemma 25.0.8(B).
Let α ∈ ∆, then sα permutes Φ+ \ {α}.

Proof (?).
Let β ∈ Φ+ \ {α}; if β = ∑

γ∈∆ kγγ with kγ ∈ Z≥0, since β ̸= α, some kγ > 0 for some γ ̸= α.
Using the formula sα(β) = β − ⟨β, α⟩α still has coefficient kγ for γ. Thus sα(β) ∈ Φ+ and
sα(β) ̸= α since sα(−α) = α and sα is bijective, and so sα(β) ∈ Φ+ \ {α}. As a result, sα
permutes this set since it is invertible.

■

Corollary 25.0.9(?).
Let

ρ := 1
2
∑
β∈Φ+

β ∈ E.

Then sα(ρ) = ρ− α for all α ∈ ∆, and sα(ρ) = ρ.
Note that Humphreys uses δ, but nobody uses this
notation.

Lemma 25.0.10(C, The Deletion Condition).
Let α1, · · ·αt ∈ ∆ be not necessarily distinct simple roots, and write si := sαi . If
s1 · · · st−1(αt) < 0, then for some 1 ≤ u ≤ t one has

s1 · · · st = s1 · · · su−1su+1st−1,

Bases ∆ for Φ (Friday, October 14) 73



26 Monday, October 17

so one can delete su and st to get a shorter product of reflections.

Proof (?).
For 0 ≤ i ≤ t− 1, let βi := si+1 · · · st−1(αt) and βt−1 := αt. Since β0 := s1 · · · st−1(αt) < 0 and
βt−1 = αt > 0, there must be a smallest index u such that βu > 0. Note that u ≥ 1 since β0 is
negative. Then

su(βu) = susu+1 · · · st−1(αt)
= βu−1

< 0

by choice of u. Noting that βu = su+1 · · · st−1(αt), by lemma B, su = sαu permutes roots other
than αu since βu > 0 and sαu(βu) < 0. By lemma 9.2, write

sαu = sβu = ssu+1···st−1(αt) = (su+1 · · · st−1)sαu(su+1 · · · st−1)−1.

Multiply both sides on the left by (s1 · · · su) and on the right by (su+1 · · · st−1) to obtain

(s1 · · · su−1)(su+1 · · · st−1) = (s1 · · · su)(su+1 · · · st), st := sαt .

■

Corollary 25.0.11(?).
If σ = s1 · · · st is an expression for w ∈ W in terms of simple reflections (which we don’t yet
know exists, but it does) with t minimal, then σ(αt) < 0.

26 Monday, October 17

E 26.1 10.3: The Weyl group e

Theorem 26.1.1(?).
Fix a base for Φ.

a. (W acts transitively on the set of Weyl chambers) If γ ∈ E is regular (not on a root
hyperplane), there exists σ ∈W such that (σ(δ), α) > 0 for all α ∈ ∆, i.e. σ(γ) ∈ C(∆),
the dominant Weyl chamber relative to ∆.

b. (W acts transitively on bases) If ∆′ is another base for Φ, then there exists σ ∈W such
that σ(∆′) = ∆, so W acts transitively on bases.

c. (Every orbit of WΦ contains a simple root) If β ∈ Φ then there exists a σ ∈W such that
σ(β) ∈ ∆.

Monday, October 17 74



26 Monday, October 17

d. (W is generated by simple roots) W =
〈
sα
∣∣∣ α ∈ ∆

〉
is generated by simple roots.

e. (Stabilizers are trivial) If σ(∆) = ∆ for some σ ∈W , then σ = 1.

Proof (?).
Part c: Set W ′ :=

〈
sα
∣∣∣ α ∈ ∆

〉
, we’ll prove (c) with W replaced W ′, which is larger. First

suppose β ∈ Φ+ and consider W ′β ∩ Φ+. This is nonempty since it includes β and is a finite
set, so choose γ in it of minimal height. Claim: ht(γ) = 1, making γ simple. If not, supposing
ht(γ) > 1, write γ = ∑

α∈∆ kαα with kα > 0. Since γ ̸= 0, we have (γ, γ) > 0, so substitute to
yield

0 < (γ, γ) = (γ,
∑
α∈∆

kαα) =
∑
α∈∆

kα(γ, α),

so (γ, α) > 0 for some α ∈ ∆, and sαγ = γ − ⟨γ, α⟩α ∈ Φ+ is positive where ⟨γ, α⟩ > 0. This
is a contradiction, since it has a smaller height. Note that if β ∈ Φ− then −β ∈ Φ+ and there
exists a σ ∈W ′ such that σ(−β) = α ∈ ∆. So σ(β) = −α, and sασ(β) = sα(−α) = α ∈ ∆.
Part d: Given β, pick σ ∈W ′ such that σ−1(β) = α ∈ ∆. Then

sβ = sσ(α) = σsασ
−1 ∈W ′,

so W ≤W ′ ≤W , making W = W ′.
Parts a and b: Recall ρ = 1

2
∑
β∈Φ+ and choose σ ∈ W such that (σ(δ), ρ) is maximal

(picking from a finite set). Given α ∈ ∆, we have sασ ∈W , and so

(σ(δ), ρ) ≥ (σ(δ), ρ)
= (σ(δ), sαρ)
= (σ(δ), ρ− α)
= (σ(δ), ρ)− (σ(δ), α),

and so (σ(δ), α) ≥ 0 for all α ∈ ∆. Importantly, γ is regular, so this inequality is structure for
all α ∈ ∆. So W acts transitively on the Weyl chambers, and consequently on simple systems
(i.e. bases for Φ) by the discussion at the end of §10.1.2
Part e: Suppose σ(∆) = ∆ and σ ̸= 1, and write σ = ∏

1≤i≤t si with si := sαi for αi ∈ ∆
with t ≥ 1 minimal. Note σ(∆) = ∆ and αt ∈ ∆, we have σ(αt) > 0 and ∏

1≤i≤t(αt) =∏
1≤i≤t−1 si(−αt) so ∏1≤i≤t−1 si(αt) < 0. This fulfills the deletion condition, so ∏1≤i≤t =

s1 · · · ŝu · · · ŝt which is of smaller length.
■

Remark 26.1.2: In type An, ♯W (An) ≈ n!, and since bases biject with W there are many choices
of bases.

Definition 26.1.3 (?)
Let ∆ ⊆ Φ be a base and write σ ∈W as σ = ∏

1≤i≤t sαi with αi ∈ ∆ and t minimal. We say
this is a reduced expression for σ and say t is the length of σ, denoted ℓ(σ). By definition,
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ℓ(1) = 0.

Remark 26.1.4: Since W ≤ GL(E), there is a map det : W → GL1(R) = R×. The determinant
of a reflection is −1 by writing it in a basis about the fixed hyperplane, and so detσ = (−1)ℓ(σ) and
in fact det : W → {±1}. Thus ℓ(σσ′) ≡ ℓ(σ) + ℓ(σ) mod 2.

Note also that if σ′ = sα for α simple, then ℓ(σsα) = ℓ(σ) ± 1. The proof: ℓ(σsα) ≤ ℓ(σ) + 1,
similarly for σsα, and use det(σsα) = −detσ.

△! Warning 26.1.5
Reduced expressions are not unique: for A2, one has sαsβsα = sβsαsβ , and these two reflections do
not commute.

Remark 26.1.6: Some temporary notation for this section: for σ ∈W , set

n(σ) := ♯(Φ− ∩ σ(Φ+)),

the number of positive roots that σ sends to negative roots.

Lemma 26.1.7(A).
For all σ ∈W ,

n(σ) = ℓ(σ).

Proof (?).
Induct on ℓ(σ): if zero, then σ = 1 and n(1) = 0 since it fixes all positive roots. If ℓ(σ) = 1
then σ = sα for some simple α, and we know from the last section that σ permutes Φ+ \ {α}
and σ(α) = −α, so n(σ) = 1.

■

27 Wednesday, October 19

Proof (of lemma A, continued).
We’re proving ℓ(σ) = n(σ) := ♯(Φ− ∩ σ(Φ−)) by induction on ℓ(σ), where we already checked
the zero case. Assume the result for all τ with ℓ(τ) ≤ ℓ(σ) for τ ∈W . Write σ = s1 · · · st with
si := sαi , αi ∈ ∆ reduced. Set τ := σst = s1 · · · st−1 which is again reduced with ℓ(τ) = ℓ(σ)−1.
By the deletion condition, s1 · · · st−1(αt) > 0, so s1 · · · st−1st(αt) = s1 · · · st−1(−αt) < 0. Thus
n(τ) = n(σ)− 1, since st permutes Φ+ \ {αt}, so

ℓ(σ)− 1 = ℓ(τ) = n(τ) = n(σ)− 1 =⇒ ℓ(σ) = n(σ).

■
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Remark 27.0.1: This is useful for finding reduced expressions, or at least their length: just compute
how many positive roots change sign under σ. Using the deletion condition and lemma A, it’s
clear that any expression for σ as a product of simple reflections can be converted into a reduced
expression by deleting pairs of simple reflections, and this terminates after finitely many steps.

Lemma 27.0.2(B).
Recall that the open Weyl chambers are the complements of hyperplanes. The closure of any
Weyl chamber is a fundamental domain for the action W ↷ E.

E 27.1 10.4: Irreducible root systems e

Definition 27.1.1 (Irreducible root systems)
A root system Φ ⊆ E is irreducible if it cannot be partitioned into mutually orthogonal
nonempty subsets. Otherwise, Φ is reducible.

Proposition 27.1.2(?).
Let ∆ ⊆ Φ be a simple system. Then Φ is irreducible iff ∆ is irreducible, i.e. ∆ cannot be
partitioned into nonempty orthogonal subsets.

Proof (?).
Φ reducible implies ∆ reducible: write Φ = Φ1

∐Φ2 where (Φ1,Φ2) = 0; this induces a similar
partition of ∆. Then (∆,Φ2) = 0 =⇒ (E,Φ2) = 0 =⇒ E = ∅ using nondegeneracy of the
bilinear form. E
Now ∆ reducible implies Φ reducible: write ∆ = ∆1

∐∆2 with (∆1,∆2) = 0. Let Φi be the
roots which are W -conjugate to an element of ∆i. Then elements in Φiare obtained from ∆i

by adding and subtracting only elements of ∆i, so (Φ1,Φ2) = 0 and Φ = Φ1∪Φ2 by a previous
lemma that every β ∈ Φ is conjugate to some α ∈ ∆.

■

Lemma 27.1.3(A).
Let Φ ⊇ ∆ be irreducible. Relative to the partial order ≤ on roots, there is a unique maximal
root α̃. In particular, if β ∈ Φ and β ̸= α̃, then ht(β) < ht(α̃) and (α̃, α) ≥ 0 for all α ∈ ∆.
Moreover, one can write α̃ = ∑

α∈∆ with kα > 0, i.e. it is a sum where every simple root
appears.

Proof (?).
Existence: Let α̃ be any maximal root in the ordering. Given α ∈ ∆, (α̃, α) ≥ 0 – otherwise
sα(α̃) = α̃ − ⟨α̃, α⟩α > α, a contradiction. E Write α̃ = ∑

α∈∆ kαα with kα ∈ Z≥0, where
it’s easy to see these are all non-negative. Suppose some kγ = 0, then (α̃, γ) ≤ 0 – otherwise
sγ(α̃) = α̃− ⟨α̃, γ⟩γ has both positive and negative coefficients, which is not possible. Since
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(α̃, α) ≥ 0, we must have (α̃, γ) = 0. So write

0 = (α̃, γ) =
∑
α∈∆

kα(α, γ) ≤ 0,

so (α, γ) = 0 whenever kα ̸= 0, otherwise this expression would be strictly < 0. Thus ∆ =
∆1
∐∆2 where ∆1 =

{
α ∈ ∆

∣∣∣ Kα ̸= 0
}

and ∆2 =
{
α ∈ ∆

∣∣∣ kα = 0
}

. This is an orthogonal
decomposition of ∆, since any γ ∈ ∆2 is orthogonal to any α ∈ ∆1. Note that ∆1 ≠ since
α̃ ̸= 0, and if ∆2 ̸= then this is a contradiction, so ∆2 must be empty. So no such γ exists.
Uniqueness: let α̃ be any maximal root in the ordering and let α̃′ be another such root.
Then (α̃, α̃′) = ∑

α∈∆ kα(α, α̃′) with kα > 0 and (α, α̃′) ≥ 0. So (α̃, α̃′) > 0 since ∆ is a basis
for E and anything orthogonal to a basis is zero by nondegeneracy of the form. Since α̃ ≠ 0,
it is not orthogonal to everything. By Lemma 9.4, either α̃, α̃′ are proportional (which was
excluded in the lemma), in which case they are equal since they’re both positive, or otherwise
a := α̃ − α̃′ ∈ Φ is a root. In the latter case, a > 0 =⇒ α̃ > α̃′ or a < 0 =⇒ α̃ < α̃′, both
contradicting maximality.

■

Remark 27.1.4: If β = ∑
α∈∆mαα ∈ Φ+, then mα ≤ kα for all α since β ≤ α.

Lemma 27.1.5(B).
If Φ is irreducible then W acts irreducibly on E (so there are no W -invariant subspaces). In
particular, the W -orbit of a root spans E.

Proof (?).
Omitted.

■

Lemma 27.1.6(C).
If Φ is irreducible, then at most two root lengths occur, denoted long and short roots.

Proof (?).
Omitted.

■

Example 27.1.7(?): B2 has 4 long roots and 4 short roots, since they fit in a square:
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Long

Short

B2

Similarly G2 has long and short roots, fitting into a star of David.

Lemma 27.1.8(D).
If Φ is irreducible then the maximal root α̃ is a long root.

Remark 27.1.9: There is also a unique maximal short root.

Proof (?).
Omitted.

■
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E 28.1 11.1: The Cartan Matrix e

Definition 28.1.1 (Cartan matrix)
Fix ∆ ⊆ Φ a rank ℓ root system with Weyl group W . Let ∆ = {α1, · · · , αℓ} and then the
matrix A where Aij = ⟨αi, αj⟩ = 2 ⟨αi, αj⟩

⟨αj , αj⟩ is the Cartan matrix of A. Note that changing
the ordering of ∆ permutes the rows and columns of A, but beyond this, A does not depend
on the choice of ∆ since they are permuted by W and W preserves the inner products and
thus the ratios defining the Cartan numbers Aij . More A ∈ GLℓ(Z) since the inner product is
nondegenerate and ∆ is a basis for E.

Example 28.1.2(?): Note that the diagonals are always 2. Some classical types:

• A1 ×A1 :
[
2 0
0 2

]

• A2 :
[

2 −1
−1 2

]

• B2 :
[

2 −2
−1 2

]

• G2 :
[

2 −1
−3 2

]
.

Remark 28.1.3: The Cartan matrix A determines the root system Φ up to isomorphism: if
Φ′ ⊆ E′ is another root system with base ∆′ = {α′

1, · · · , α′
ℓ} with A′

ij = Aij for all i, j then
the bijection αi 7→ α′

i extends to a bijection φ : E ∼−→E′ sending Φ to Φ′ which is an isometry,
i.e. ⟨φ(α), φ(β)⟩ = ⟨α, β⟩ for all α, β ∈ Φ. Since ∆,∆′ are bases of E, this gives a vector space
isomorphism φ(αi) := α′

i. If α, β ∈ ∆ are simple, then

sφ(α)(φ(β)) = φ(β)−
〈
β′, α′〉φ(α)

= φ(β)− ⟨β, α⟩φ(α)
= φ(β − ⟨β, α⟩α)
= φ(sα(β)),

so this diagram commutes since these maps agree on the simple roots, which form a basis:

E E

E E

φ

sα

φ

sα
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Link to Diagram

Since W,W ′ are generated by reflections and sφ(α) = φ◦sα ◦φ−1 for α ∈ ∆, there is an isomorphism

W
∼−→W

sα 7→ sφ(α) = φsαφ ∀α ∈ ∆.

If β ∈ Φ, then β = w(α) for some α ∈ ∆ and w ∈ W by theorem 10.3C. Thus φ(β) = (φ ◦ w ◦
φ−1)(φ(α)) ∈ Φ′ since φ ◦ w ◦ φ−1 ∈W ′. Thus φ(Φ) = Φ′. Using lemma 9.2, sφ(β) = φsβφ

−1, so φ
preserves all of the Cartan integers ⟨β, γ⟩ for all γ, β ∈ Φ.

Remark 28.1.4: Read the last paragraph of §11.1 which gives an algorithm for constructing Φ+

from ∆ and A.

E
28.2 11.2: Coxeter graphs and Dynkin

diagrams e

Definition 28.2.1 (Coxeter graph)
If α ̸= β ∈ Φ+ then ⟨β, α⟩⟨α, β⟩ = 0, 1, 2, 3 from the table several sections ago. Fix ∆ =
{α1, · · · , αℓ}, then the Coxeter graph Γ of Φ is the graph with ℓ vertices 1, · · · , ℓ with vertices
i, j connected by ⟨αi, αj⟩⟨αj , αi⟩ edges.

Example 28.2.2(?): Recall that the table was

⟨α, β⟩ ⟨β, α⟩

0 0
-1 -1
-1 -2
-1 -3

Here α is the shorter root., although without loss of generality in the first two rows we can rescale
so that ∥α∥ = ∥β∥. The graphs for some classical types:

Remark 28.2.3: If Φ has roots all of the same length, the Coxeter graph determines the Cartan
integers since Aij = 0, 1 for i ̸= j. If i → j is a subgraph of Γ then ⟨αi, αj⟩ = ⟨αj , αi⟩ = −1, so
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αi, αj have the same length. However, if there are roots of multiple lengths, taking the product to
determine the number of edges loses information about which root is longer.

Definition 28.2.4 (Dynkin diagram)
The Dynkin diagram of Φ is the Coxeter graph Γ where for each multiple edge, there is an
arrow pointing from the longer root to the shorter root.

Example 28.2.5(?): In rank 2:

We also have the following diagram for F4:

Remark 28.2.6: Note that Φ is irreducible iff ∆ can not be partitioned into two proper nonempty
orthogonal subsets iff the Coxeter graph is connected. In general, if Γ has t connected components,
let ∆ = ∐

1≤i≤t ∆i be the corresponding orthogonal partition of simple roots. Let Ei = spanR ∆i,
then E = ⊕

1≤i≤t Ei is an orthogonal direct sum decomposition into W -invariant subspaces, which
follows from the reflection formula. Writing Φi = (Z∆I)∩Φ, one has Φ = ∐

1≤i≤t Φi since each root
is W -conjugate to a simple root and Z∆i is W -invariant and each Φi ⊆ Ei is itself a root system.
Thus it’s enough to classify irreducible root systems.

29 Monday, October 24

Remark 29.0.1: Classifying root systems: ∆ ⊆ Φ ⊆ E a base yields a decomposition

• E = ⊕t
i=1 Ei,

• Φ = ⊕t
i=1 Φi,

• ∆ = ⊕t
i=1 ∆i, where are orthogonal direct sums with respect to (−,−). Note that the

sub-bases ∆i biject with connected components of the Coxeter graph Γ of ∆. We saw
⟨αi, αj⟩⟨αj , αi⟩ ∈ {0, 1, 2, 3} is the number of edges between nodes i and j in Γ, using
that the first term is 4 cos2(θ) ∈ [0, 3] ∩ Z. It suffices to classify irreducible root systems,
corresponding to connected Coxeter graphs. Recall arrows point from long to short roots.
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Theorem 29.0.2(?).
If Φ is an irreducible root system of rank ℓ, then its Dynkin diagram is one of the following:

• The four infinite families, corresponding to classical types:

• Exceptional classes
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Types ADE are called simply laced since they have no multiple edges.

Remark 29.0.3: Idea: classify possible connected Coxeter graphs, ignoring relative root lengths.
If α, β are simple roots, note that for any c,

⟨α, β⟩⟨β, α⟩ = 2(cα, β)
(β, β)

2(β, cα)
(cα, cα) ∈ {0, 1, 2, 3} ,

so α 7→ cα leaves this number invariant and we can assume all simple roots are unit vectors.

Definition 29.0.4 (?)
Let E be a finite dimensional Euclidean space, then a subset A = {ε1, · · · , εn} ⊆ E of linearly
independent unit vectors satisfying

• (εi, εj) ≤ 0 for all i, j,
• 4(εi, εj)2 = 4 cos2(θ) ∈ {0, 1, 2, 3} for all i ̸= j where θ is the angle between εi and εj

is called admissible.

Example 29.0.5(?): Any base for a root system where each vector is normalized is admissible.

Remark 29.0.6: To such an A we associate a graph Γ as before with vertices 1, · · · , n where i, j
are joined by 4(εi, εj)2 edges. We’ll determine all connected graphs Γ that can occur, since these
include all connected Coxeter graphs.

E 29.1 Proof of classification e

Proof (Sketch).
An easy 10 steps:

1. If some εi are discarded, the remaining ones still form an admissible set in E whose graph
is obtained from Γ by omitting the corresponding discarded vertices.

2. The number of pairs of vertices in Γ connected by at least one edge is strictly less than
n.

Proof: Set ε := ∑n
i=1 εi, which is nonzero by linear independence. Then 0 < (ε, ε) = n +∑

i<j 2(εi, εj), and if i < j are joined, so (εi, εj) ̸= 0, then 4(εi, εj)2 = 1, 2, 3 and so 2(εi, εj) ≤
−1. However, since the sum is positive, there are ≤ n− 1 such pairs.

3. Γ contains no cycles.

Proof: A cycle is subgraph that corresponds to an admissible subset A′ ⊆ A with m vertices
and m edges corresponding to m connected pairs. This contradicts (2).

4. No more than 3 edges can be incident to any vertex of Γ.
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Let ε ∈ A be a vertex, and suppose η1, · · · , ηk are the vertices connected to ε:

η3
η2

η1

ηk
· · ·

By (3), no two ηi, ηj are connected, so (ηi, ηj) = 0 for all i, j. Apply Gram-Schmidt to
{η1, · · · , ηk, ε} only involves modifying ε since {η1, · · · , ηk} are already orthonormal. Call the
new vector η0 and let {η0, · · · , ηk} be the resulting orthonormal set. One can then write ε =∑k
i=0(ε, ηi)ηi, which implies (ε, η0) ̸= 0 by linear independence. Then 1 = (ε, ε) = ∑k

i=0(ε, ηi)2,
but (ε, η0)2 > 0 so ∑k

i=1(ε, ηi)2 < 1 and thus ∑k
i=1 4(ε, ηi)2 < 4. But this sum is the number

of edges incident to ε in Γ.

5. The only connected graph which contains a triple edge is the Coxeter graph of G2 by
(4), since the triple edge forces each vertex to already have 3 incident edges.

6. Let {ε1, · · · , εk} ⊆ A have a simple chain · → · → · · · → · as a subgraph. If A′ :=
{A \ {ε1, · · · , εk}} ∪ {ε} where ε := ∑k

i=1 εi, then A′ is admissible. The corresponding
graph Γ′ is obtained by shrinking the chain to a point, where any edge that was incident
to any vertex in the chain is now incident to ε, with the same multiplicity.

Proof: number the vertices in the chain 1, · · · , k. Linear independence of A′ is clear. Note
4(εi, εi+1)2 = 1 =⇒ 2(εi, εi+1) =⇒ (ε, ε) = k + 2∑i<j(εi, εj) = k + (−1)(k − 1) = 1.
Any η ∈ A \ {ε1, · · · , εk} is connected to at most one of ε1, · · · , εk since this would otherwise
form a cycle, so (η, ε) = (η, εi) for a single i. So 4(η, ε)2 = 4(η, εi)2 ∈ {0, 1, 2, 3} and
(η, ε) = (η, εi) ≤ 0, which verifies all of the admissibility criteria.

7. Γ contains no graphs of the following forms:
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Proof: collapsing the chain in the middle produces a vertex with 4 incident edges.
■

30 Wednesday, October 26

Missed first 15m!

Proposition 30.0.1(Step 8).
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Proposition 30.0.2(Step 9).
The only connected Γ graphs of the second type in Step 8 are either F4 or Bℓ = Cℓ.
Compute

(ε, ε) =
k∑
i=1

i2 −
p−1∑
i=1

i(i+ 1)

= p2 −
p−1∑
i=1

i

= p2 − p(p− 1)
2

= p(p+ 1)
2 ,

and similarly (η, η) = q(q+1)
2 . Note 4(εp, ηq)2 = 2, so (ε, η)2 = p2q2(εp, ηq)2 = p2q2

2 . By Cauchy-
Schwarz, (ε, η)2 < (ε, ε)(η, η), where the inequality is strict since η, ε are linearly independent.
Then check

p2q2

2 <
p(p+ 1)

2 · q(q + 1)
2

p1
2 <

p+ 1
2 · q + 1

2
2pq < pq + p+ q + 1,

and so combining these yields pq − p− q + 1 < 2 and thus
(p− 1)(q − 1) < 2.
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Since p ≥ q ≥ 1, this yields two possible cases:

• p = q = 2⇝ F4
• q = 1, p ∈ Z≥0 ⇝ Bℓ = Cℓ.

Proposition 30.0.3(Step 10).
The only connected Γ of type (d) are Dℓ, E6, E7, E8.
Set ε := ∑

iεi, η := ∑
iηi, and ζ = ∑

iζi. Note that ε, η, ζ mutually orthogonal by inspecting
the graph, and ψ is not in their span. Let θ1 (resp. θ2, θ3) be the angles between ε (resp. η, ζ)
and ψ. Since ε, η, ζ are linearly independent, the idea is to apply Gram-Schmidt to {ε, η, ζ, ψ}
without normalizing. The first 3 are already orthogonal, so we get a new orthogonal basis
{ψ1 := ε, ψ2 := η, ψ3 := ζ, ψ0} where (ψ0, ψ) ̸= 0. We can expand ψ in this basis to write
ψ = ∑3

i=0

(
ψ, ψi

∥ψi∥

)
ψi

∥ψi∥ . Note that (ψ,ψ) = 1, and consequently ∑3
i=1

(
ψ, ψi

∥ψi∥

)2
< 1 =⇒∑3

i=1 cos2(θi) < 1. So

cos2(θ1) + cos2(θ2) + cos2(θ3) < 1.

As in Step (9), (ε, ε) = p(p−1)
2 and similarly for η, ζ, and so

cos1(θ1) = (ε, ψ)2

(ε, ε)(ψ,ψ) = (p− 1)2(εp−1, ψ)2

p(p−1)
2 · 1

= p− 1
p

1/4
1/2

= 1
2

(
1− 1

p

)
,

where we’ve used that 4(εp−1, ψ) = 1. Similarly (and summarizing),

cos2(θ1) = 1
2

(
1− 1

p

)
cos2(θ2) = 1

2

(
1− 1

q

)
cos2(θ3) = 1

2

(
1− 1

r

)

=⇒ 1
2

(
1− 1

p
+ 1− 1

q
+ 1− 1

r

)
< 1

=⇒ p−1 + q−1 + r−1 > 1.

and since p ≥ q ≥ r ≥ 2 =⇒ p−1 ≤ q−1 ≤ r−1 ≤ 2−1, we have 3
r > 1 by replacing p, q with r

above. So r < 3, forcing r = 2, and there is only one “top leg” in the graph for (d) above.
We also have

2
q
≥ 1
p

+ 1
q
>

1
2 , (⋆).

so q < 4 forces q = 2, 3.
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• If q = 2, then (⋆) is true for any p ≥ 2, and the bottom leg has two vertices and this
yields type Dℓ.

• If q = 3 then 1
p >

1
2 −

1
3 = 1

6 implies p < 6, forcing p = 3, 4, 5 corresponding to E6, E7, E8.

Remark 30.0.4: Note that the diagrams we’ve constructed are the only possible Coxeter graphs
of a root system, since normalizing any set of simple roots yields an admissible set. This proves one
direction of a correspondence, but what are all possible Dynkin diagrams? Note that types Bℓ, Cℓ
have the same underlying Coxeter graph, and only differ by directions on the multi-edges.

Question 30.0.5
Does every connected Dynkin diagram correspond to an irreducible root system.

Yes: types A,B,C,D can be constructed from root systems in classical Lie algebras, and the
corresponding Dynkin diagrams can be constructed directly. The 5 exceptional types must be
constructed directly.

Question 30.0.6
Does each irreducible root system occur as the root system of some semisimple Lie algebra over C?

The answer is of course: yes!

Next time: starting Ch. V.

31
Part V: Existence Theorem. Ch. 17: The
Universal Enveloping Algebra (Monday,
October 31)

E
31.1 17.1: The tensor algebra and

symmetric algebra e

Remark 31.1.1: Let F be an arbitrary field, not necessarily characteristic zero, and let L ∈ LieAlg/F
be an arbitrary Lie algebra, not necessarily finite-dimensional. Recall that the tensor algebra T (V )
is the Z≥0 graded unital algebra where gr nT (V ) = Tn(V ) := V ⊗n

F where T 0(V ) := F. Note
T (V ) = ⊕

n≥0 T
n(V ). If V has a basis {xk}k∈K then T (V ) ∼= F

〈
xk
∣∣∣ k ∈ K〉, a polynomial ring

in the noncommuting variables xk. Degree n monomials in this correspond to pure tensors with n
components in T (V ).
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There is an F-linear map V
i−→ T (V ), and T (V ) satisfies a universal property: given any linear

map φ ∈ FMod(V,A) where A has the structure of an associative algebra, there exists a unique
ψ ∈ AssocAlg/F(T (V ), A) making the diagram commute:

V T (V )

A

i

∃!φ

Link to Diagram

In fact, one can explicitly write ψ as ψ(xk1 ⊗ · · ·xkn) = φ(xk) · · ·φ(xkn) using the multiplication in
A.

The symmetric algebra and exterior algebra are defined as

S(V ) := T (V )/
〈
x⊗ y − y ⊗ x

∣∣∣ x, y ∈ V 〉 ,∧•(V ) := T (V )/
〈
x⊗ y + y ⊗ x

∣∣∣ x, y ∈ V 〉 .
Definition 31.1.2 (The Universal Enveloping Algebra)
Let L ∈ LieAlg/F with basis {xk}k∈K . A universal enveloping algebra for L is a pair (U, i)
where U is a unital associative F-algebra and i : L → UL (where UL is U equipped with the
commutator bracket multiplication) is a morphism of Lie algebras, i.e.

i([xy]) = i(x)i(y)− i(y)i(x) = [i(x)i(y)] ∀x, y ∈ L.

It satisfies a universal property: for any unital associative algebra A receiving a Lie algebra
morphism j : L→ AL, there is a unique φ in the following:

LieAlg AssocAlg

L U

A

i

∃!φ
j

Link to Diagram

Remark 31.1.3: Uniqueness follows from the usual proof for universal objects. Existence: let

U(L) := T (L)/J, J :=
〈
x⊗ y − y ⊗ x− [xy]

∣∣∣ x, y ∈ L〉 .
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Warning: J is a two-sided ideal, but is not homogeneous!

One can form the required map:

T (L)

L

U(L)

A

i∗
π

∃!ψ
j∈LieAlg(L,A)

i

Link to Diagram

This satisfies ψ(x⊗ y − y ⊗ x− [xy]) = j(x)j(y)− j(y)j(x)− j([xy]) = 0 using the properties of j.
φ is unique because U(L) is generated by 1 and im i, since T (L) is generated by 1 and the image
of L = T 1(L).

Remark 31.1.4: If L is abelian, U(L) = S(L) is the symmetric algebra.

Note that J ⊆⊕n≥1 T
n(L) so F = T 0(L) maps isomorphically into U(L) under π. So F ↪→ U(L),

meaning U(L) ̸= 0, although we don’t yet know if L injects into U(L).

Theorem 31.1.5(Poincaré-Birkhoff-Witt (PBW) Theorem).
Let L be a Lie algebra with basis {xk}k∈K , and filter T (L) by Tm := ⊕

i≤m T
i(L). Then Tm

is the span of words of length at most m in the basis elements xk. Note Tm · Tn ⊆ Tm+n,
and the projection π : T (L) ↠ U(L) induces an increasing filtration U0 ⊆ U1 ⊆ · · · of U(L).
Let Gm := Um/Um−1 be the mth graded piece. The product on U(L) induces a well-defined
product Gm×Gn → Gm+n since Um−1×Un−1 ⊆ Um+n−2 ⊆ Um+n−1. Extending this bilinearly
to ⊕m≥0G

m to form the associated graded algebra of U(L).
Note that this construction generally works for any
filtered algebra where the multiplication is compat-
ible with the filtration.

Example 31.1.6(?): Let L := sl2(C) with ordered basis {x, h, y}. Then y ⊗ h ⊗ x ∈ T 3(L) –
denote the image of this monomial in U(L) by yhx ∈ U3. We can reorder this:

yhx = hyx+ [yh]x = hyx+ 2yx ∈ U3 + U2

,
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so in G3 we have yhx = hyx. This is a general feature: reordering introduces error terms of lower
degree, which are quotiented out. Continuing,

hyx+ 2yx = hxy + h[yx] + 2xy + 2[yx]
= hxy − h2 + 2xy − 2h
= xhy + [hx]y − h2 + 2xy − 2h
= xhy + 2xy − h2 + 2xy − 2h
= xhy + 4xy − h2 − 2h ∈ U3 + U2 + U2 + U2.

32 Wednesday, November 02

Remark 32.0.1: Clarification from last time: for L ∈ LieFAlg over F an arbitrary field:

T (L) ⊵ J :=
〈
x⊗ y − y ⊗ x− [xy]

∣∣∣ x, y ∈ L = T 1(L)
〉

L

U(L)

A

i0

i

π

∃ψ

∃!φ

j

Link to Diagram

Then i is a Lie algebra morphism since i([xy]) = i(x)i(y)− i(x)i(y) = [i(x)i(y)]. We know

0 = π(x⊗ y − y ⊗ x− [xy])
= π(i0(x)i0(y)− i0(y)i0(x)− i0([xy]))
= i(x)i(y)− i(y)i(x)− i([xy]).

Remark 32.0.2: Recall that we filtered 0 ⊆ U1 ⊆ · · · ⊆ U(L) and defined the associated graded
Gm = Um/Um−1 and G(L) := ⊕

m≥0G
m, and we saw by example that yhx = hyx = xhy in G3(sl2).

There is a projection map Tm(L)→ U(L) whose image is contained in Um, so there is a composite
map

Tm(L)→ Um → Um/Um−1 = Gm.

Since T (L) = ⊕
m≥0 T

m(L), these can be combined into an algebra morphism T (L) → G(L).
It’s not hard to check that this factors through S(L) := T (L)/

〈
x⊗ y − y ⊗ x

∣∣∣ x, y ∈ L〉 since
x ⊗ y = y ⊗ x + [xy] and the [xy] term is in lower degree. So this induces w : S(L) → G(L), and
the PBW theorem states that this is an isomorphism of graded algebras.
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Corollary 32.0.3(C).
Let {xk}k∈K be an ordered basis for L, then the collection of monomials xk1 · · ·xkm for m ≥ 0
where k1 ≤ · · · km is a basis for U(L).

Proof (?).
The collection of such monomials of length exactly n forms a basis for Sm(L), and via w, a
basis for Gm(L). In particular these monomials form a linearly independent in Um/Um−1, since
taking quotients can only increase linear dependencies, and hence these are linearly independent
in Um and U(L). By induction on m, Um−1 has a basis consisting of all monomials of length
≤ m− 1. We can then get a basis of Um by adjoining to this basis of Um−1 any preimages in
Um of basis elements for the quotient Um/Um−1. So a basis for Um is all ordered monomials
of length ≤ m. Since U(L) = ∪m≥0Um, taking the union of bases over all m yields the result.

■

Corollary 32.0.4(B).
The canonical map i : L→ U(L) is injective.
This follows from taking m = 1 in the previous corollary.

Corollary 32.0.5(D).
Let H ≤ L be a Lie subalgebra and extend an ordered basis for H, say {h1, h2, · · ·}, and
extend it to an ordered basis {h1, h2, · · · , x1, x2, · · ·}. Then the injection H ↪→ L induces an
injective morphism U(H) ↪→ U(L). Moreover, U(L) ∈ U(H)Modfree with a basis of monomials
xk1xk2 · · ·xkm for m ≥ 0.
This follows directly from corollary C.

Remark 32.0.6: We’ll skip 17.4, which proves the PBW theorem. The hard part: linear indepen-
dence, which is done by constructing a representation of U(L) in another algebra.

E 32.1 17.5: Free Lie algebras e

Definition 32.1.1 (Free Lie algebras)
Let L ∈ LieFAlg which is generated as a Lie algebras (so allowing commutators) by a subset
X ⊆ L.a We say L is free on X and write L = L(X) if for any set map φ : X → M with
M ∈ LieFAlg there exists an extension:
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LieFAlg

Set X L

M

∃!ψ
φ

Link to Diagram

aNote that sl2 has a basis {x, h, y} but is freely generated by x, y since h = [xy].

Remark 32.1.2: Existence:

• Let V = V (X) be the free FMod on X.
• Let L(X) ≤ T (V )L4 be the Lie subalgebra generated by X (or equivalently by V ), which has

elements like

x, y, z ∈ X, x⊗ y − y ⊗ x, z(x⊗ y − y ⊗ x)− (x⊗ y − y ⊗ x)z, · · · .

• Check that L(X) is free on X by letting φ : X →M for M a Lie algebra, then by the universal
property of V (X) we get a unique linear map φ̃ : V (X)→M extending φ:

V (X) T (V )

M

U(M)

φ

∃!φ̃ (an algebra morphism)

Link to Diagram

One checks that φ̃ restricts to a Lie algebra morphisms φ̃ : L(X) → U(M) whose image is the
Lie subalgebra of U(M) generated by M – but this subalgebra is precisely M , since e.g. U(M) ∋
x⊗ y − y ⊗ x = [xy] ∈M . Thus we can view φ̃ as a map φ̃ : L(X)→M .

Remark 32.1.3: One can check that U(L(X)) = T (V (X)).

4WL is W made into a Lie algebra via [xy] = xy − yx.
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33 §18: Generators and Relations for Simple
Lie Algebras (Friday, November 04)

Remark 33.0.1: Recall that the free Lie algebra of a set X, L(X) satisfies a universal property:

X L(X)

M

ι

∀φ ∃!φ̃

Link to Diagram

E 33.1 §18.1: Relations satisfied by L e

Definition 33.1.1 (Relations)
Given an arbitrary L ∈ Lie-Alg and fix a set X of generators for L and form LX(), then there
is a Lie algebra morphism π : L(X) ↠ L which is surjective since X generates L. Defining
R := kerπ, one has L ∼= L(X)/R, so R is called the ideal of relations.

Remark 33.1.2: Let L ∈ Lie-Algfd,ss
C , let H ⊆ L be a maximal toral subalgebra, and Φ its root

system. Fix a base ∆ = {α1, · · · , αℓ} ⊆ Φ. Recall

⟨αj , αi⟩ := 2(αj , αi)
(αi, αi)

= αj(hi), gi := hαi = 2αi
(αi, αi)

.

The root strings are of the form β − rα, · · · , β, · · · , β + qα where r − q = β(hα). For any i we can
fix a standard sl2 triple {xi, hi, yi} such that xi ∈ Lαi , yi ∈ L−αi , hi ∈ [xiyi].

Proposition 33.1.3(Serre relations).
L is generated as a Lie algebra by the 3ℓ generators X :=

{
xi, hi, yi

∣∣∣ 1 ≤ i ≤ ℓ
}

subject to at
least the following relations:

• S1: [hihj ] = 0,
• S2: [xiyj ] = δijhi,
• S3: [hixj ] = ⟨αj , αi⟩xj and [hiyj ] = −⟨αj , αi⟩yj .
• S+

ij : ad−⟨αj , αi⟩+1
xi (xj) = 0 for i ̸= j

• S−
ij : ad−⟨αj , αi⟩+1

yi (xj) = 0 for i ̸= j
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Proof (?).
Recall that differences of simple roots are never roots, since the coefficients have mixed signs.
Since αi − αj ̸∈ Φ, we have [xiyj ] = 0 for i ̸= j since it would have to be in Lαi−αj . Consider
the αi root string through αj : we have r = 0 from above, and the string is

α, α+ αi, · · · , αj − ⟨αj , αi⟩αi

since Lβ = 0 for β := αj − (⟨αj , αi⟩+ 1)αi. The relations for S±
ij follow similarly.

■

Remark 33.1.4: Note that these relations are all described in a way that only involves the Cartan
matrix of Φ, noting that changing bases only permutes its rows and columns.

Theorem 33.1.5(Serre).
These five relations form a complete set of defining relations for L, i.e. L ∼= L(X)/R where
R is the ideal generated by the Serre relations above. Moreover, given a root system Φ and
a Cartan matrix, one can define a Lie algebra using these generators and relations that is
finite-dimensional, simple, and has root system Φ.

E
33.2 §18.2: Consequences of Serre relations

S1, S2, S3 e

Remark 33.2.1: Fix an irreducible root system Φ of rank ℓ with Cartan matrix A. Let L̂ := L(X̂)
where X̂ :=

{
x̂i, ĥi, ŷi

∣∣∣ 1 ≤ i ≤ ℓ
}

. Let K̂ ⊴ L̂ be the 2-sided ideal generated by the relations
S1, S2, S3. Let L0 := L̂/K̂ and write π for the quotient map L̂ → L0 – note that L0 is infinite-
dimensional, although it’s not yet clear that L0 ≠ 0. We’ll study L0 by defining a representation of
it, which is essentially the adjoint representation of L0 acting on {yi}.

Remark 33.2.2: Recall that a representation of M ∈ Lie-Alg is a morphism φ ∈ Lie-Alg(M, gl(V ))
for V ∈ FMod. This yields a diagram

AssocAlg

M U(M)

End(V )

ι

φ ∃!φ

Link to diagram
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Conversely given an algebra morphism φ̃ : U(M) → End(V ), and restricting φ̃ to M ⊆ U(M)
gives a Lie algebra morphism φ : M → End(V ) = gl(V ). This representations of M (using gl(V ))
correspond to associative algebra representations of U(M) (using End(V )). Since U(M) = T (V (X̂)),
using the various universal properties, having a representation V of L̂ is equivalent to having a set
map X̂ → End(V ), i.e. elements of X̂ should act linearly on V .

Remark 33.2.3: Let V be the tensor algebra on a vector space with basis {v1, · · · , vℓ}, thinking of
each vi being associated to ŷi. Write v1v2 · · · vt := v1 ⊗ v2 ⊗ · · · ⊗ vt, and define elements of End(V )
by

• ĥj · 1 := 0,
• ĥj · vi1 · · · vit := − (⟨αi1 , αj⟩+ · · · ⟨αit , αj⟩) vi1 · · · vit ,
• ŷj · vi1 · · · vit := vjvi1 · · · vit for t ≥ 0,
• x̂j · 1 := 0,
• x̂j · vi := 0 for all i,
• x̂j · vi1 · · · vit := vi1 (x̂jvi2 · · · vit)− δi1,j (⟨αi2 , αj⟩+ · · ·+ ⟨αi2 , αj⟩) vi2 · · · vit for t ≥ 2.

34 Monday, November 07

Remark 34.0.1: Last time: constructing a semisimple Lie algebra that has a given root system.
Setup:

• ∆ = {α1, · · · , αl}.
• L̂ the free Lie algebra on

{
x̂i, ĥi, ŷi

}
1≤i≤l

.

• K̂ the ideal generated by the Serre relations.
• L0 := L̂/K̂ with quotient map π.
• φ̂ : L̂→ gl(V ) a representation we constructed.
• Ĥ the free Lie algebra on {hi}.

Theorem 34.0.2(?).
K̂ ⊆ ker φ̂, so φ̂ induces a representation φ of L0 on gl(V )

L̂ gl(V )

L0

φ̂

π ∃φ

Link to Diagram
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Proof (?).
Straightforward but tedious checking of all relations, e.g.

φ̂(ĥi) ◦ φ̂(x̂j)− φ̂(x̂j)φ̂(ĥi) = ⟨αj , αi⟩φ̂(x̂j).

■

Theorem 34.0.3(?).
In L0, the hi form a basis for an ℓ-dimensional abelian subalgebra H of L0, and moreover
L0 = Y ⊕H ⊕X where Y,X are the subalgebras generated by the xi and yi respectively.

Proof (?).
Steps 1 and 2: :::{.claim} π(Ĥ) = H is ℓ-dimensional.

■

Clearly the ĥi span an ℓ-dimensional subspace of L̂, so we need to show that π restricts to an
isomorphism π : Ĥ ∼−→H. Suppose ĥ := ∑ℓ

j=1 cj ĥj ∈ kerπ, so φ̂(ĥ) = 0. Thus

0 = ĥ · vi =
∑
j

cj ĥj · vi = −
∑
j

cj⟨αi, αj⟩ = −
∑
j

aijcj ∀i,

so Ac = 0 where A is the Cartan matrix, and so c = 0 since A is invertible (since it was essentially
a Gram matrix).

Step 3: Now ∑
Fxi +∑

Fhi +∑
Fyi

π−→ L0 maps isomorphically to L0, and S2, S3 show that for
each i. Then Fxi + Fhi + Fyi is a homomorphic image of sl2, which is simple if ch F ̸= 2. Note
π(ĥi) = hi ≠ 0 in L0 by (1), so this subspace of L0 is isomorphic to sl2(F). In particular {xi, hi, yi}
is linearly independent in L0 for each fixed i. Supposing 0 = ∑ℓ

j=1(ajxj + bjhj + cjyj), applying
adL0,hi

for each i to obtain

0 =
ℓ∑

j=1
(aj⟨αj , αi⟩xj + bj0− cj⟨αj , αi⟩yj) =

ℓ∑
j=1
⟨αj , αi⟩(ajxj − xyyj),

and by invertibility of A we have ajxj−cjyj = 0 for each j. So aj = cj = 0 for all j, and ∑ bjhj = 0
implies bj = 0 for all j from (1).

Step 4: H = ∑ℓ
j=1 Fhj is an ℓ-dimensional abelian subalgebra of L0 by (1) and S1.

Step 5: Write [xi1 · · ·xit ] := [xi1 [xi2 [· · · [xit−1xit ] · · · ]] ∈ X for an iterated bracket, taken by
convention to be bracketing from the right. We have

adL0,hj
([xi1 · · ·xit ]) = (⟨αi1 , αj⟩+ · · ·+ ⟨αit , αj⟩) [xi1 · · ·xit ] t ≥ 1,

and similarly for [yi1 · · · yit ].

Step 6: For t ≥ 2, [yj [xi1 · · ·xit ]] ∈ X, and similarly with the roles of xi, yi reversed. This follows
from the fact that adL0,yj acts by derivations, and using S2 and S3.
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Step 7: It follows from steps 4 through 6 that Y +H +X is a subalgebra of L0. One shows that
[[xi1 · · ·xit ], [yi1 · · · yit ]], which comes down to the Jacobi identity and induction on s+ t. E.g.

[[x1x2], [y3y4]] = [x1[x2[y3y4]]]− [x2[x1[y3y4]] ∈ [x1,Fy3 + Fy4] + · · · ∈ H + · · · ,

which lands in H since there are as many xi as yi, whereas if there are more xi than yi this lands
in X, and so on. Since Y +H +X is a subalgebra that contains the generators xi, hi, yi of L0, it
must be equal to L0.

Step 8: The decomposition L0 = X +H + Y is a direct sum decomposition of L0 into submodule
for the adjoint action of H. Use the computation in the previous step to see that every element of
X is a linear combination of elements [xi1 · · ·xit ] and similarly for Y . These are eigenvectors for the
action of adH ↷ L0 by (5), and eigenfunctions for X have the form λ = ∑ℓ

i=1 ciαi with ci ∈ Z≥0.
The λi is referred to as a weight, and ci is the number of times i appears is an index in i1, · · · , it.
So every weight space Xλ is finite-dimensional, and the weights of Y are −λ. Since the weights in
X,H, Y are all different, their intersections must be trivial and the sum is direct. :::

Remark 34.0.4: L0 = Y
⊕
H
⊕
X is known as the triangular decomposition, where the xi are

on the super diagonal and bracket to upper-triangular elements, and the yi are their transposes.

35 Wednesday, November 09

Remark 35.0.1: Progress so far: we start with the data of an irreducible root system Φ ⊇ ∆ =

{α1, · · · , αℓ} and Cartan matrixA = (⟨αi, αj⟩) and Weyl groupW . We set L0 :=

〈
xi,yi,hi

∣∣∣ 1≤i≤ℓ
〉

⟨S1, S2, S3⟩ =

Y⊕H⊕X. Letting h ∈ H act by adh, we get weight spaces (L0)λ :=
{
v ∈ L0

∣∣∣ [hv] = λ(h)v ∀h ∈ H
}

.

E 35.1 § 18.3: Serre’s Theorem e

Remark 35.1.1: For i ̸= j, set

yij := (adyi)−⟨αj , αi⟩+1(yj),

and similarly for xij . Recall αi(hj) := ⟨αi, αj⟩.

Lemma 35.1.2(A).

adxk
(yij) = 0 ∀i ̸= j,∀k.
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Proof (?).
Case 1: k ̸= i.
In this case, [xkyi] = 0 and thus

(adxk
)(adyi)−⟨αj , gai⟩+1(yj) = (adyi)−⟨αj , αi⟩+1(adxk

)(yj).

• Case i, k ̸= j: then (adxk
)(yj) = 0.

• Case ii, k = j: then (adxj )(yj) = hj and (adyi)(hj) = ⟨αi, αj⟩yi.

– Case a, ⟨αj , αi⟩ ≠ 0, then

(adyi)−⟨αj , αi⟩+1(adxj )(yj) = ⟨αi, αj⟩(adyi)−⟨αj , αi⟩(yi) = 0.

– Case b, ⟨αj , αi⟩ = 0, then ⟨αi, αj⟩ = 0. In this case we have (adyi)1(hj) =
⟨αi, αj⟩yi = 0.

Case 2: k = i.
In this case, we saw that for any fixed i, {xi, hi, yi} spans a standard sl2 triple in L0, so
consider the sl2-submodule of YJ ≤ L0 generated by yj . Since i ̸= j, we know [xiyj ] = 0, so yj
is a maximal vector for Yj with weight m := −⟨αj , αi⟩.
One can show by induction on t that the following formula holds:

(adxi)(adyi)t(yj) = t(m− t+ 1)(adyi)t−1(yj) t ≥ 1.

So in particular (adxi)(adyi)m+1(yj) = 0, and the LHS is yij .
■

Definition 35.1.3 (Locally nilpotent and the exponential)
An endomorphism x ∈ End(V ) is locally nilpotent if for all v ∈ V there exists some n
depending on v such that xn · v = 0. If x is locally nilpotent, then define the exponential as

exp(x) =
∑
k≥0

1
k!x

k = 1 + x+ 1
2x

2 + · · · ∈ End(V ),

which is in fact an automorphism of V since its inverse is exp(−x).

Lemma 35.1.4(B).
Suppose adxi , adyi are locally nilpotent on L0 and define

τi := exp(adxi) ◦ exp(ad−yi) ◦ exp(adxi).

Then τi((L0)λ) = (L0)si(λ) where si := sαi ∈ W for αi ∈ Φ. Here λ ∈ H∨ ∼= C ⟨α1, · · · , αℓ⟩
since H = C ⟨h1, · · · , hℓ⟩, using that A is invertible. We use the formula sαi(αj) = αj −
⟨αj , αi⟩αi and extending linearly to H∨ as done previously.
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Proof (?).
Omitted. See §14.3 and §2.3 for a very similar calculation.

■

Theorem 35.1.5(Serre).
The Lie algebra L generated by the 3ℓ elements {xi, hi, yi}1≤i≤ℓ subject to relations S1-S3 and
the remaining two relations S±

ij (which hold in any finite dimensional semisimple Lie algebra)
is a finite dimensional semisimple Lie algebra with maximal torus spanned by {hi}1≤i≤ℓ and
with corresponding root system Φ.

E 35.2 Proof of Serre’s Theorem e

Proof (?).
By definition, L := L0/K where K ⊴ L0 is generated by the elements xij , yij where i ̸= j.
Recall that X,Y ≤ L0 are the subalgebras generated by the xi and yi respectively, so let I
(resp. J) be the ideal in X (resp. Y ) generated by the xij (resp. yij) for i ̸= j. Clearly
I, J ⊆ K.

Claim Step 1:

I, J ⊴ L0.

Proof (of Step 1).
We’ll prove this for J , and I is similar. Note J ⊴ Y and write J =

〈
yij

∣∣∣ i ̸= j
〉
. Fix

1 ≤ k ≤ ℓ, then (adyk
)(yij) ∈ J by definition. Recall yij = (adyi)−⟨αi, αj⟩+1(yij). Note

(adhk
)(yij) = cijkyij for some constant cijk ∈ Z, and (adxk

)(yij) = 0 by lemma A above.
Since xk, hk, yk generate L0, we have [L0, yij ] ⊆ J . Using the Jacobi identity and that
adz is a Lie algebra derivation for z ∈ L0, it follows that [L0, J ] ⊆ J .

This essentially follows from [hℓ, Y ] ⊆ Y and
[xℓ, Y ] ⊆ H + Y , and bracketing these against
yij lands in J .

■

Claim Step 2:

K = I + J.

Proof (of Step 2).
We have I + J ⊆ K, but I + J ⊴ L0 by claim 1 and it contains the generators of K –
since K is the smallest such ideal, K ⊆ I + J .

■

Observation (Step 3)
We have a decomposition L0 = Y ⊕H ⊕X as modules under adH , and K = J ⊕ 0⊕ I. Taking
the quotient yields L := L0/K = Y/J ⊕H ⊕X/I := N− ⊕H ⊕N+.
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Observation (Step 4)
As in the proof last time, {xi, hi, yi} ⊆ L spans a copy of sl2. We deduce that ∑1≤i≤ℓ Fxi +
Fhi + Fyi ⊆ L0 maps isomorphically into L, so we can identify xi, hi, yi with their images in
L, which are still linearly independent and still generate L as a Lie algebra.

Observation (Step 5)
For λ ∈ H∨, set Lλ :=

{
z ∈ L

∣∣∣ [hz] = λ(h)z ∀h ∈ H
}

and write λ > 0 ⇐⇒ λ ∈ Z≥0∆ and
similarly define λ < 0. View αi ∈ H∨, extended linearly as before. Note H = L0, N

+ =∑
λ>0 Lλ, N

− = ∑
λ<0 Lλ, and thus

L = N− ⊕H ⊕N+,

which is a direct sum since the eigenvalues in different parts are distinct.

■

36 Serre’s Theorem, Continued (Friday,
November 11)

Proof (of Serre’s theorem, continued).
Recall that we have

L = N− ⊕H ⊕N+ := Y/
〈
(S−
ij )
〉
⊕C ⟨h1, · · · , hℓ⟩ ⊕X/

〈
(S+
ij )
〉
.

Remark 36.0.1(Step 6): For 1 ≤ i ≤ ℓ, note adL,xi (and similarly adL,yi) is locally nilpotent
on L. Let M ⊆ L be the subspace of elements on which adxi acts nilpotently. By the Leibniz
rule, (adxi)m+n([uv]) when (adxi)m(v) = 0 and (adxy )n(u) = 0, so M ≤ L is a Lie subalgebra.
By the Serre relations, (adxi)2(hj) = 0 and (adxi)3(yj) = 0, so the generators of L are in M
and thus L = M .
Remark 36.0.2(Step 7): Defining τi := exp(adxi) ◦ exp(ad−yi) ◦ exp(adxi) ∈ Aut(L), by
lemma (B) we have τi(Lλ) = Lsiλ where si := sαi and λ ∈ H∨.
Remark 36.0.3(Step 8): Let λ, µ ∈ H∨ and suppose wλ = µ; we want to show dimLλ =
dimLµ. Note W is generated by simple reflections si, so it STS this when w = si, whence it
follows from lemma (B).
Remark 36.0.4(Step 9): Clearly dim(L0)αi = 1 since it’s spanned by xi. Then dim(L0)kαi

=
0 for k ̸= 0,±1, so dimLαi ≤ 1 and dimLkα = 0 for k ̸= 0,±1. Since xi ∈ Lαi has a nonzero
image in L, dimLαi = 1.
Remark 36.0.5(Step 10): If β ∈ Φ, conjugate it to a simple root using β = wαi with
w ∈W,αi ∈ ∆. By step 8, dimLβ = 1 and Lkβ = 0 for k ̸= 0,±1.
Remark 36.0.6(Step 11): Suppose Lλ ̸= 0 where λ ̸= 0. Then λ ∈ Z≥0∆ or Z≤0∆, i.e. all
coefficients are the same sign. Suppose λ ̸∈ Φ, then λ ∈ ZΦ by (10). Exercise 10.10 yields
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∃w ∈W such that wλZ∆ with both positive and negative coefficients. Thus wλ can not be a
weight, and by step 8, 0 = dimLwλ = dimLλ.
Remark 36.0.7(Step 12): Writing L = N− ⊕ H ⊕ N+ with H = L0, N

+ = ∑
λ>0 Lλ =∑

β∈Φ+ Lλ and N− = ∑
λ<0 Lλ = ∑

β∈Φ− Lβ , by step 10 we can conclude dimL = ℓ+ ♯φ <∞.
This shows that H is toral, i.e. its elements are ad-semisimple.
Remark 36.0.8(Step 13): We have that L is a finite-dimensional Lie algebra. To show
semisimplicity, we need to now L has no nonzero solvable ideals, and as before it’s ETS L
has no nonzero abelian ideals. Suppose A ⊆ L is an abelian ideal; we WTS A = 0. Since
[H,A] ⊆ A and H ↷ L diagonally, H ↷ A diagonally as well and thus

A = (A ∩H)⊕
⊕
α∈Φ

(A ∩ Lα).

If A ∩ Lα ̸= 0 then A ∩ Lα = Lα, which is 1-dimensional.
Note: the argument in Humphreys here may not be
quite right, so we have to do something different.

Now ∃w ∈W such that wα = αi ∈ ∆ as in step 8, so write w = si1 · · · sit . Then τi1 · · · τit(Lα) =
Lα. Set A′ := τ(A), then A′ ⊴ L is necessarily an abelian ideal and A′ ∩ Lαi = Lαi .
So we can replace α by a simple root and replace A by A′. Then xi ∈ Lαi ⊆ A′ ⊴ L, but
A′ ∋ −[yi, xi] = hi, but [hi, xi] ̸= 0, contradicting that A′ is abelian. E.
Note [A′, Lαj ] ⊆ A′ ⊆ H and [A′, Lαj ] ⊆ Lαj , but H ↷ Lαj with eigenvalues αj and thus
A′ ⊆ ∩ℓj=1 kerαj = 0 since the αj span H∨. So A′ = 0 and L is semisimple.
Remark 36.0.9(Step 14): Since L = H ⊕

⊕
α∈Φ Lα, it’s easy to check that CL(H) = H by

considering what happens when bracketing against any nonzero element in ⊕Lα. Thus H is
a maximal toral subalgebra with corresponding root system Φ.

■

Remark 36.0.10: Next: part VI on representation theory, although we’ll first cover §13 on weights,
especially §13.1, §13.2. Goal: Weyl’s character formula.

37 Part 5: Representation Theory (Monday,
November 14)

E 37.1 §13 Abstract theory of integral weights e

Definition 37.1.1 (Integral weights and the root lattice)
Let E ⊇ Φ ⊇ ∆ with Weyl group W . An element λ ∈ E is an integral weight if ⟨λ, β⟩ =
(λ, β∨) ∈ Z for all β ∈ Φ, where β∨ := 2β

(β,β) . We write the set of all weights as Λ, and write
Λr := ZΦ for the root lattice.
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Remark 37.1.2: Recall ∆∨ :=
{
α∨

∣∣∣ α ∈ ∆
}

is a base for Φ∨ =
{
β∨

∣∣∣ β ∈ Φ
}

, and so

λ ∈ Λ ⇐⇒ (λ, α∨) = ⟨λ, α⟩ ∈ Z∀α ∈ ∆.

Definition 37.1.3 (Dominant weights)
A weight λ ∈ Λ is dominant iff ⟨λ, α⟩ ≥ 0 for all α ∈ ∆, and we denote the set of all such
dominant weights Λ+. The weight λ is strongly dominant if ⟨λ, α⟩ > 0 for all α ∈ ∆. Writing
∆ = {α1, · · · , αℓ}, let {λi}1≤i≤ℓ be the dual basis for E relative to ⟨−, −⟩, so ⟨λi, αi⟩ = δij .
The λi are referred to as the fundamental dominant weights, written λi = ωi = ϖi.

Remark 37.1.4: If λ ∈ Λ then one can write λ = ∑ℓ
i=1miλi where mi := ⟨λ, αi⟩, so Λ is a

Z-lattice with lattice basis {λi}1≤i≤ℓ containing the root lattice as a sublattice, so in fact Λr = Z∆.
Writing the Cartan matrix as A = (⟨αi, αj⟩) we have αi = ∑ℓ

j=1 ⟨αi, αj⟩λj coming from the ith
row of A. So this matrix expresses how to write simple roots in terms of fundamental dominant
roots, and inverting it allows writing the fundamental roots in terms of simple roots.

Fact 37.1.5
The entires of A−1 are all nonnegative rational numbers, so each fundamental dominant root is a
nonnegative rational linear combination of simple roots.

Example 37.1.6(?): For A3 one has A =

 2 −1 0
−1 2 −1
0 −1 2

, so

α1 = 2λ1 − λ2

α2 = −λ1 + 2λ2 − λ3

α3 = −λ2 + 2λ3.

Definition 37.1.7 (Fundamental group)
The quotient Λ/Λr is called the fundamental group of Φ, and the index f := [Λ : Λr] is
called its index of connection.

Remark 37.1.8: The index is generally small:

• Aℓ has f = ℓ+ 1
• f = 1 is obtained from F4, G2, E8,
• f = 2 is obtained from types B,C,E7,
• f = 3: E6,
• f = 4: type D.
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E 37.2 §13.2 Dominant weights e

Remark 37.2.1: Note that

siλj = λj − ⟨λj , αi⟩αi = λj − δijαi,

so Λ is invariant under W . In fact, any sublattice of Λ containing Λr is W -invariant.

Lemma 37.2.2(A).
Each integral weight is W -conjugate to exactly one dominant weight. If λ is dominant, then
wλ ≤ λ for all w ∈W , and if λ is strongly dominant then wλ = λ ⇐⇒ w = 1.

Proof (Sketch).
Most of this follows from Theorem 10.3, exercise 10.14, lemma 10.3B, and corollary 10.2C,
along with induction on ℓ(w). We’ll omit the details.

■

Remark 37.2.3: The ordering ≤ on Λ is not well-behaved with respect to dominant weights,
i.e. one can have µΛ with µ ∈ Λ+ dominant but λ ̸∈ Λ+ not dominant.

Example 37.2.4(?): Let Φ be indecomposable of type A1 with two roots α, β, then 0 ∈ Λ+ is
dominant, but 0 < α ∈ ∆ is not dominant: (α, β) < 0 =⇒ ⟨α, β⟩ < 0.

Lemma 37.2.5(?).
Let λ ∈ Λ+ be dominant, then the number of dominant µ ∈ Λ+ with µ ≤ λ is finite.

Proof (?).
Let λ, µ ∈ Λ+ and write λ − µ as a nonnegative integer linear combination of simple roots.
Note

0 ≤ (λ+ µ, λ− µ) = (λ, λ)− (µ, µ) = ∥λ∥2 − ∥µ∥2,

so µ lies in the compact set of vectors whose length is ∥λ∥ and also in the discrete set Λ+.
The intersection of a compact set and a discrete set is always finite.

■

E 37.3 §13.3 The weight ρ e
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Definition 37.3.1 (ρ)

ρ := 1
2
∑
α∈Φ+

α.

Remark 37.3.2: This section shows ρ = ∑ℓ
i=l λi and ∥λ+ ρ∥2 ≥ ∥wλ+ ρ∥2 when λ is the unique

dominant weight in the orbit Wλ.

E 37.4 §13.4: Saturated sets of weights e

Remark 37.4.1: This section will be used later to analyze the set of weights in a finite-dimensional
module for semisimple Lie algebra over C.

E 37.5 §20: Weights and maximal vectors. e

Remark 37.5.1: Let L be finite-dimensional semisimple over C containing H its toral subalgebra.
This corresponds to Φ ⊇ ∆ with Weyl group W and Φ ⊆ E = RΦ.

E 37.6 §20.1 e

Definition 37.6.1 (Weight spaces and weights for L-modules)
Let V be a finite-dimensional L-module. By corollary 6.4, H ↷ V semisimply (diagonally)
and we can simultaneously diagonalize to get a decomposition

V =
⊕
λ∈H∨

Vλ, Vλ :=
{
v ∈ V

∣∣∣ h.v = λ(h)v ∀h ∈ H
}
.

If Vλ ̸= 0 then λ is a weight.

Example 37.6.2(?): If φ = ad and V = L, then L = H ⊕⊕α∈ΦLα where H = L0.

△! Warning 37.6.3
If dimV =∞, Vλ still makes sense but V may no longer decompose as a direct sum of its weight
spaces. E.g. take V = U(L) and the left regular representation given by left-multiplication in the
algebra U(L) ↷ U(L). This restricts to L = L0 ↷ U(L), the regular action of L on U(L). Note
that there are no eigenvectors, since taking a PBW basis one can write ∏hni

i ·
∏
α∈Φ x

nα
α , which
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strictly increases monomial degrees and thus there are no eigenspaces. So Vλ = 0 for all λ, i.e. there
are no weight spaces at all.

38 Wednesday, November 16

Remark 38.0.1: Let L ∈ LieAlgfd,ss containing H with Φ,∆,W as usual. Recall that V ∈
LMod =⇒ V = ⊕

λ∈H∨ Vλ where Vλ :=
{
v ∈ V

∣∣∣ h.v = λ(h)v ∀h ∈ H
}

, which we call a weight
space when λ ̸= 0. Note that if if V is any representation of V , even finite-dimensional,
V ′ := ⊕

λ∈H∨ Vλ ≤ V is always an L-submodule. The sum is still direct since the terms cor-
respond to eigenspaces with distinct eigenvalues. Note that if h ∈ H,x ∈ Lα, v ∈ Vλ, then

h.(x.v) = x.(h.v) + [hx].v
= λ(h)x.v + α(h)x.v
= (λ+ α)(h)x.v,

so LαVλ ⊆ Vλ+α.

Lemma 38.0.2(?).
Let V ∈ LMod, then

a. Lα maps Vλ into Vλ+α,
b. The sum V ′ := ∑

λ∈H∨ Vλ is direct and V ′ ≤ V is an L-submodule,
c. If dimV <∞ then V = V ′.

E 38.1 §20.2: Highest weight modules e

Definition 38.1.1 (Maximal vectors)
A maximal vector in an L-module V is a nonzero weight vector v ∈ Vλ such that Lα.v = 0
for all positive roots α ∈ Φ+. Equivalently, Lα.v = 0 for all α ∈ ∆.

Definition 38.1.2 (Highest weight vectors)
A highest weight vector is a nonzero v ∈ Vλ where λ is maximal among all weights of V
with respect to the ordering ≤ corresponding to the choice of ∆.

Observation 38.1.3
If v is a highest weight vector then v is necessarily a maximal vector, since λ + α > λ, but the
converse is not necessarily true.
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△! Warning 38.1.4
I.e., the weight of a highest weight vector need not be maximal.

Example 38.1.5(?): In §18, L is constructed using the Serre relations to get L0 ↠ L where L
involved (S±

ij ) and L0 involved S1-S3. Recalling ym+1
i yj = yij , since xk.yij = 0, yij is a maximal

vector in L0 as an L-module but is not a highest weight vector since wtyij = (−m+ 1)αi − αj <
−αj = wt(yj) and the weight is not maximal.

Example 38.1.6(?): View L ∈ LMod via adL, then §10.4 shows that there is a unique highest
root α̃ satisfying α̃ ≥ α for all α ∈ Φ. Any nonzero v ∈ Lα̃ is a highest weight vector for the adjoint
representation.

Definition 38.1.7 (Borel subalgebras)
A Borel subalgebra of L is a maximal solvable subalgebra B ≤ L.

Proposition 38.1.8(?).
B := H ⊕

⊕
α∈Φ+ Lα is a Borel subalgebra of L.

Proof (?).
If α, β ∈ Φ+ then [Lα, Lβ] = Lα+β where α+ β ∈ Φ+ (if this is still a root), so H ≤ L. One
has B(i) := [B(i−1), B(i−1)] ⊆ ∑

ht(β)≥2i−1 Lβ, since bracketing elements of H together will
vanish (since H is abelian) and bracketing height 1 roots yields height 2, bracketing height
2 yields height 4, and so on. Thus B is a solvable subalgebra, since the height is uniformly
bounded above by a finite number. To see that its maximal, note that any subalgebra B′ ≤ L
containing B, it must also contain some L−α for some α ∈ Φ+. But then B′ ⊇ sl2(C) =
L−α ⊕ [L−α, Lα]⊕ Lα which is not solvable, so B′ can not be solvable.

■

Remark 38.1.9: Let V ∈ L-Modfd, then V ∈ BMod by restriction and by Lie’s theorem V must have
a common eigenvector v for the action of B. Since B ⊇ H, v is a weight vector, [B,B] = ⊕

α∈Φ+ Lα
acts by commutators of operators acting by scalars, which commute, and thus this acts by zero on
v and makes v a maximal vector in V . So any finite dimensional L-module as a maximal vector.

Definition 38.1.10 (Highest weight modules)
A module V ∈ L-Mod, possibly infinite dimensional, is a highest weight module if there
exists a λ ∈ H∨ and a nonzero vector v+ ∈ Vλ such that V is generated as an L-module by v+,
i.e. U(L).v+ = V .

Remark 38.1.11: Let xα ∈ Lα, yα ∈ L−α, hα = [xα, yα] be a fixed standard sl2 triple in L.

Theorem 38.1.12(?).
Let V ∈ L-Mod be a highest weight module with maximal vector v+ ∈ Vλ. Write Φ+ =
{β1, · · · , βm}, ∆ = {α1, · · · , αℓ}, then
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39 §21.2: A sufficient condition for finite-dimensionality (Monday, November 21)

a. V is spanned by the vectors yi1β1
· · · yimβm

.v+ for ij ∈ Z≥0. In particular, V = ⊕
µ∈H∨ Vµ.

b. The weights of V are of the form µ = λ −
∑ℓ
i=1 kiαi with ki ∈ Z≥0, and all weights µ

satisfy µ ≤ λ.

c. For each µ ∈ H∨, dimVµ <∞, and for the highest weight λ, one has dimVλ = 1 spanned
by v+.

d. Each L-submodule W of V is a direct sum of its weight spaces.

e. V is indecomposable in L-Mod with a unique maximal proper submodule and a corre-
sponding unique irreducible quotient.

f. Every nonzero homomorphic image of V is also a highest weight module of the same
highest weight.

Proof (Sketch).

a. Use the PBW theorem and extend a basis for any B ≤ L to a basis where the B basis
elements come second. Writing L = N⊕B, one can decompose U(L) = U(N−)⊗C U(B)
and get U(L)v+ = U(N−)U(B)v+ = U(N−)U(H ⊕N+)v+

b. Writing the β in terms of α yields this expression.

c. Clear.

We’ll finish the rest next time.
■

39
§21.2: A sufficient condition for
finite-dimensionality (Monday, November
21)

Remark 39.0.1: Last time: if V ∈ L-Modfd then V = L(λ) for some dominant weight λ ∈ Λ+,
yielding a necessary condition for finite-dimensionality. Today: a sufficient condition.

Lemma 39.0.2(?).
Write ∆ = {α1, · · · , αn} and set xi := xαi , yi := yαi . For k ≥ 0 and 1 ≤ i, j ≤ ℓ, the following
relations hold in U(L):

a. [xj , yk+1
i ] = 0 for i ̸= j

b. [hj , yk+1
i ] = −(k + 1)αi(hj)yk+1

i

c. [xi, yk+1
i ] = (k + 1)yki (hi − k · 1)
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Proof (of (c)).
Use that ad acts by derivations:

[xi, yk+1
i ] = xiy

k+1
i − yk+1

i xi

= xiyiy
k
i − yixiyki + yixiy

k
i − yiyki xi

= [xiyi]yki + yi[xiyki ]
= hiy

k
i + yi[xiyki ]

=
(
yki hi − kαi(hi)yki

)
+ yi

(
kyk−1

i (hi − (k − 1) · 1)
)

by (b) and induction

= yki hi − 2kyki + kyki (hi − (k − 1) · 1)
= (k + 1)yki hi − (2k + k(k − 1))yki
= (k + 1)yki hi − k(k + 1)yki
= (k + 1)yki (hi − k · 1).

■

Theorem 39.0.3(?).
Given V ∈ L-Mod, let Π(V ) :=

{
λ ∈ H∨

∣∣∣ Vλ ̸= 0
}

be the set of weights. If λ ∈ Λ+ is a
dominant weight, then V := L(λ) ∈ L-Modirr is finite-dimensional and Π(V ) is permuted by
W with dimVµ = dimVσµ for all σ ∈W .

Proof (?).
The main work is showing the last part involving equality of dimensions. It STS this for a
simple reflection si := sαi since σ is a product of such reflections. Write φ : L → gl(V ) be
the representation associated to V – the strategy is to show that φ(xi) and φ(yi) are locally
nilpotent endomorphisms of V . Let v+ ∈ Vλ\{0} be a fixed maximal vector and set mi := λ(hi)
so hi.v+ = miv

+.

1. Set w := ymi+1
i .v+, then the claim is that w = 0. Supposing not, we’ll show w is a

maximal vector of weight not equal to λ, and thus not a scalar multiple of v+. We have
wt(w) = λ − (mi + 1)αi < λ (a strict inequality). If j ≠ i then xj .w = xjy

mi+1
i v+ =

ymi+1
i xjv by part (a) of the lemma above, and this is zero since v+ is highest weight and

thus maximal (recalling that these are distinct notions). Otherwise

xiw = xiy
mi+1
i v+

= ymi+1
i xiv

+ + (mi + 1)ymi
i (hi −mi · 1)v+

= 0 + (mi + 1)ymi
i (mi −mi)v+ = 0.

So w is a maximal vector of weight distinct from λ, contradicting corollary 20.2 since
this would generate a proper submodule. E

2. Let Si = ⟨xi, yi, hi⟩ ∼= sl2, then the claim is that v+, yiv
+, · · · , ymi

i v+ span a nonzero
finite-dimensional Si-submodule of V . The span is closed under (the action of) hi since
all of these are eigenvectors for hi, and is closed under yi since yi raises generators
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and annihilates ymi
i v+, and is closed under xi by part (c) of the lemma (since it lowers

generators).

3. The sum of two finite-dimensional Si-submodules of V is again a finite-dimensional
Si-submodule, so let Vi be the sum of all finite-dimensional Si-submodules of V (which
is not obviously finite-dimensional, since we don’t yet know if V is finite-dimensional).
The claim is V ′ is a nonzero L-submodule of V . Let w ∈ V ′, then w is a finite sum
and there exists a finite-dimensional Si-submodule W of V with w ∈ W . Construct
U := ∑

α∈Φ xα.W where xα := y−α if α ∈ Φ−, which is a finite-dimensional vector
subspace of V . Check that

hi(xβ.W ) = xβ(hi.W ) + [hixβ].W ⊆ xβ.W ⊆ U
xi(xβ.W ) = xβ(xi.W ) + [xixβ].W ⊆ xβ.W + xβ+αi

.W ⊆ U
yi(xβ.W ) = xβ(yi.W ) + [yixβ].W ⊆ xβW + xβ−αi

.W ⊆ U,

and so U is a finite-dimensional Si-submodule of V and thus U ⊆ V ′. So if w ∈ V ′ then
xα.w ∈ V ′ for all α ∈ Φ and V ′ is stable under a set of generators for L, making V ′ ≤ V
an L-submodule. Since V ′ ̸= 0 (since it contains at least the highest weight space), it
must be all of V since V is irreducible.

4. Given an arbitrary v ∈ V , apply the argument for w in step 3 to show that there exists a
finite-dimensional Si-submodule W ⊆ V with v ∈W . The elements xi, yi act nilpotently
on any finite-dimensional Si-module, and so in particular they act nilpotently on v and
we get local nilpotence.

5. Now τi := eφ(xi) ◦ eφ(−yi) ◦ eφ(xi) is well-defined. As seen before, τi(Vµ) = Vsiµ, i.e. τi is
an automorphism that behaves like si, and so dimVµ = dimVσµ for all µ ∈ Π(V ) and
σ ∈W . Now any µ ∈ Π(V ) is conjugate under W to a unique dominant weight µ+, and
by (4) µ+ ∈ Π(V ) and since the weights in V = L(λ) has only weights smaller than
λ, we have µ+ ≤ λ. Note λ ∈ Λ+ is dominant, and so by 13.2B there are only finitely
many such weights µ+. Now there are only finitely many conjugates of the finitely many
possibilities for µ+, so ♯Π(V ) <∞. By the general theory of highest weight modules, all
weight spaces Vµ ≤ L(λ) are finite-dimensional. Since dimVµ <∞ for all µ ∈ Π(V ), we
have dimV <∞.

■

Remark 39.0.4: Skipping the next two sections §21.3 on weight strings and weight diagrams, and
§21.4 on generators and relations for L(λ) for λ ∈ Λ+ dominant.

40 Monday, November 28

Remark 40.0.1: Setup: L ∈ Lie-Algfd,ss
/C containing H a maximal toral subalgebra, Φ ⊇ Φ+ =

{β1, · · · , βm} ⊇ ∆ = {α1, · · · , αℓ} with Weyl group W , and we have xi ∈ Lαi , yi ∈ L−αi , hi = [xiyi].
For β ∈ Φ+, we also wrote xβ ∈ Lβ, yβ ∈ L−β. There is also a Borel B = H ⊕

⊕
β>0 Lβ with
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H ⊆ B ⊆ L.

We saw that if V ∈ L-Modfd then V = ⊕
µ∈H∨ Vµ and V is a highest weight module of highest

weight λ where λ ∈ Λ+ =
{
ν ∈ H∨

∣∣∣ ν(hi) ∈ Z≥0 1 ≤ i ≤ ℓ
}

. Writing M(λ) for the Verma module
U(L)⊗U(B) Cλ, there is a unique irreducible quotient M(λ)↠ L(λ) with highest weight λ. It turns
out that L(λ) is finite-dimensional if λ ∈ Λ+.

Question 40.0.2
How can we understand L(λ) for λ ∈ Λ+ better? What is dimL(λ)? What is dimL(λ)µ (i.e. the
dimensions of weight spaces)?

E
40.1 §22 Multiplicity Formulas; §22.5 Formal

characters
e

Remark 40.1.1: Let Λ ⊆ H∨ be the lattice of integral weights. Note that λ(hβ) ∈ Z ∀β ∈ Φ ⇐⇒
λ(hi) ∈ Z for all 1 ≤ i ≤ ℓ. Since Λ ∈ ZMod there is a group algebra Z[Λ], the free Z-module with
basis e(λ) for λ ∈ Λ, also written eλ or eλ. This has a ring structure given by linearly extending
e(λ) · e(µ) := e(λ+ µ), so(∑

aλe(λ)
)
·
(∑

bµe(µ)
)

=
∑

cσe(σ), cσ :=
∑

λ+µ=σ
aλbµ.

Note that if V ∈ L-Modfd then V = ⊕
µ∈H∨ Vµ, where Vµ ̸= 0 =⇒ µ ∈ Λ. In this case we can

define the formal character

chV :=
∑
µ∈Λ

(dimVµ)e(µ) ∈ Z[Λ].

Proposition 40.1.2(?).
Let V,W ∈ L-Modfd, then

chV⊗W = chV · chW .

Proof (?).
Take dimensions in the formula (V ⊗W )σ = ∑

λ+µ=σ Vλ ⊗Wµ.
■

Remark 40.1.3: For λ ∈ Λ+, we have L(λ) (noting Humphreys uses V (λ)), we write

chλ := chL(λ) =
∑

mλ(µ)e(µ)

where mλ(µ) := dimL(λ)µ ∈ Z≥0.
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Remark 40.1.4: We now involve the Weyl group to make more progress: let W be the Weyl group
of (L,H), then W ↷ Z[Λ] by w.e(µ) := e(wµ) for w ∈ W,µ ∈ Λ. So W → AutRing(Z[Λ]), and
recalling that dimL(λ)µ = dimL(λ)wµ, we have

w. chλ =
∑
µ

mλ(µ)e(wµ) =
∑
µ

mλ(wµ)e(wµ) = chλ,

so chλ are W -invariant elements of the group algebra.

Proposition 40.1.5(?).
Let f ∈ Z[Λ]W be a W -invariant element, then f can be written uniquely as a Z-linear
combination of the chλ for λ ∈ Λ+, i.e. these form a Z-basis:

Z[Λ]W =
〈
chλ

∣∣∣ λ ∈ Λ
〉

Z
.

Proof (?).
Recall every λ ∈ Λ is conjugate to a unique λ ∈ Λ+. Since f is W -invariant, we can write it as

f =
∑
λ∈Λ+

c(λ)
( ∑
w∈W

e(wλ)
)

where c(λ) ∈ Z and almost all are zero. Given λ ∈ Λ+ with c(λ) ̸= 0, a previous lemma
(13.2B) shows that ♯

{
µ ∈ Λ+

∣∣∣ µ ≤ λ} <∞ by a compactness argument. Set

Mf :=
⋃

c(λ) ̸=0,λ∈Λ+

{
µ ∈ Λ+

∣∣∣ µ ≤ λ} ,
all of the possible weights that could appear, then ♯Mf < ∞ since this is a finite union of
finite sets. Choose λ ∈ Λ+ maximal with respect to the property that c(λ) ̸= 0, and set
f ′ := f − c(λ) chλ. Note that f ′ is again W -invariant, since f and chλ are both W -invariant,
and Mchλ

⊆ Mf . However λ ̸∈ Mf ′ by maximality, since we’ve subtracted c(λ)e(λ) off, so
♯Mf ′ < ♯Mf . Inducting on ♯Mf , f ′ is a Z-linear combination of chλ′ for λ′ ∈ Λ, and thus so is
f . One checks the base case L(0) ∼= C where everything acts with weight zero. Uniqueness is
relegated to exercise 22.8.

■

Question 40.1.6
Is there an explicit formula for chλ for λ ∈ Λ+? An intermediate goal will be to understand
characters of Verma modules chM(λ) – note that this isn’t quite well-defined yet, since this is an
infinite-dimensional module and thus the character has infinitely many terms and is not an element
in Z[Λ].

E 40.2 §23.2 Characters and Verma Modules e
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Question 40.2.1
Let Z(L) ⊆ U(L) be the center of U(L), not to be confused with Z(L) ⊆ L which is zero since L is
semisimple (since Z(L) is an abelian ideal). How does Z(L) ↷M(λ)?

Remark 40.2.2: Note M(λ) = U(L)⊗U(B) Cλ
∼= U(N−)⊗C Cλ and write v+ for a nonzero highest

weight vector of M(λ). Let z ∈ Z(L) and h ∈ H, then

h.(z.v+) = z.(h.v+) = z.(λ(h))v+ = λ(h)v+,

and xα(z.v+) = z(xα.v+) = 0 for all α ∈ Φ+, so z.v+ is a maximal vector in M(λ) of weight λ,
i.e. there exists χλ(z) ∈ C such that

z.v+ = χλ(z)v+

since dimM(λ)λ = 1. Thus there is an algebra morphism

χλ : Z(L)→ C.

Pick a PBW basis for the Verma module M(λ), then

z.yi1β1
· · · yimβm

v+ = yi1β1
· · · yimβm

z.v+ = χλ(z)yi1β1
· · · yimβm

v+,

so z.m = χλ(z)m for all m ∈ M(λ), and thus Z(L) ↷ M(λ) by the character χλ. Consequently,
Z(L) acts on any subquotient of M(λ).

Question 40.2.3
When is χλ = χµ for two integral weights λ, µ ∈ Λ?

41 Wednesday, November 30

Remark 41.0.1: Recall: Z(L) := Z(µ(L)) acts by a character χλ : Z(L)→ C on M(λ) and thus
any subquotients. For λ, µ ∈ Λ ⊆ H∨, when is χλ = χµ?

Definition 41.0.2 (Linkage)
Two weights λ, µ ∈ H∨ are linked iff ∃w ∈W such that µ+ρ = w(λ+ρ), where ρ := 1

2
∑
β∈Φ+ β.

In this case, write µ ∼ λ for this equivalence relation, i.e. µ = w(λ + ρ) − ρ. We’ll write
w · λ := w(λ+ ρ) and call this the dot action of W on H∨.

△! Warning 41.0.3
This defines an action of a group on a set, but it is not a linear action.
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Proposition 41.0.4(?).
Let λ ∈ Λ, α ∈ ∆ and suppose m := λ(hα) = ⟨λ, α⟩ ∈ Z≥0 and let v+ be a highest weight
vector of M(λ). Then w := ym+1

α · v+ is maximal vector in M(λ) of weight λ− (m+ 1)α.

Proof (?).
The proof that w is a maximal vector is step 1 in theorem 21.2, which showed dimL(λ) <∞
(using lemma 21.2 and commutator relations in U(L)). Then check that

weight(w) = λ− (m+ 1)α = λ− (⟨λ, α⟩+ 1)α.

In fact, for any λ ∈ H∨, α ∈ ∆ we can define

µ := λ− (⟨λ, α⟩+ 1)α,

so in our case weight(w) = µ. Note that

µ = λ− ⟨λ, α⟩α− α
= sα(λ) + (sα(ρ)− ρ)
= sα(λ+ ρ)− ρ
= sα · λ.

Now w generates a highest weight module W ≤M(λ) of highest weight µ = sα · λ. Note that
M(µ) is the universal highest weight module with highest weight µ, i.e. ∃!M(µ)↠ W . This
yields a B-module morphism

Cµ →W

1 7→ w,

which yields an L-module morphism U(L) ⊗U(B) Cµ ↠ W . So W is a nonzero quotient of
M(µ) and Z(L) ↷ W by χµ. On the other hand W ≤ M(λ) and so Z(L) ↷ W by χλ,
yielding χλ = χµ.
So we conclude that if µ = sα · λ with ⟨λ, α⟩ ∈ Z≥0, then χµ = χλ.

■

Corollary 41.0.5(?).
Let λ ∈ Λ, α ∈ ∆, µ = sα · λ. Then χµ = χλ.

Proof (?).
µ = sα · λ = λ− (m+ 1)α where m := ⟨λ, α⟩.

• Case 1: m = −1, then µ = λ and we’re done.
• Case 2: m ≥ 0, then χλ = χµ by the proposition.
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• Case 3: m ≤ −2, then

⟨µ, α⟩ = ⟨λ− (m+ 1)α, α⟩
= m− 2(m+ 1)
= −m− 2 ≥ 0.

We also have µ = sαλ̇ =⇒ sα · µ = s2
α · λ = λ by applying the action on both sides.

By the proposition, swapping µ, λ to get submodules of M(µ) of highest weight λ and
conclude χλ = χµ.

■

Corollary 41.0.6(?).
Let λ, µ ∈ Λ, then if µ ∼ λ then χλ = χµ.

Proof (?).
Say µ = w · λ for w ∈ W , then write w = si1 · · · sit and use induction on t, where the base
case is the previous corollary.

■

Theorem 41.0.7(Harish-Chandra (§23.2)).
If λ, µ satisfy χλ = χµ, then λ ∼ µ.

Remark 41.0.8: Goal: find chλ := chL(λ) := ∑
µ∈Λ(dimL(λ)µ)e(µ) ∈ Z[Λ] for λ ∈ Λ+.

E
41.1 §24: Formulas of Weyl, Kostant,

Steinberg; §24.1 functions on H∨
e

Remark 41.1.1: View Z[Λ] as finitely-supported Z-valued functions on Λ with elements f =∑
λ∈Λ aλe(λ) regarded as functions f(µ) := aµ. Thus e(λ)(µ) = δλ=µ. The point of this maneu-

ver: Verma modules will be infinite dimensional, but Z[Λ] only handles finite sums. For f, g ∈
HomZ(Λ,Z), define (f ∗ g)(σ) = ∑

λ+µ f(λ)g(µ). Consider the set X of functions HomC(H∨,C)
whose support is contained in a finite union of sets of the form λ≤ :=

{
λ−

∑
µ∈Φ+ kββ

∣∣∣ kβ ∈ Z≥0
}

.
One can show X is closed under convolution and X becomes a commutative associative algebra
containing Z[Λ] as a subring. Note that supp(f ∗ g) ⊆ (λ+ µ)≤.
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42 Friday, December 02

Write e(λ) as eλ for λ ∈ H∨, regarded as a function eλ : H∨ → C where eλ(µ) = δλ=µ is the
characteristic function of λ, and note that eλ ∗ eµ = eλ+µ. Let p = chM(0) : H∨ → C, then

M(0) = U(L)⊗U(B) C0 ∼= U(N−)⊗C C0 ∈ HMod,N−Mod.

By PBW, U(N−) has a basis yi1β1
· · · yimβm

for ij ∈ Z≥0 where Φ+ = {β1, · · · , βm}. The weights of
M(0) are µ = −∑m

j=1 ijβj and µ ∈ 0≤. Note chM(0)(µ) = dimM(0)µ, and so chM(0) ∈ X and thus
p ∈ X .

42 Friday, December 02

E 42.1 Convolution Formulas e

Remark 42.1.1: Last time:

X :=
{
f ∈ Hom

C
(H∨,C)

∣∣∣ supp f ⊆
n⋃
i=1

(λi − Z≥0Φ+)
}
,

which is a commutative associative unital algebra under convolution, where eλ(µ) = δλµ for µ ∈ H∨

and eλ ∗ eµ = eλ+µ with e0 = 1. We have chM(0) which records weights µ = ∑m
i=1−ijβj with

ij ∈ Z≥0, and

dimM(0)µ := chM(0)(µ) = ♯
{

i ∈ Zm≥0

∣∣∣ ∑ ijβj = −µ
}

:= p(µ)
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42 Friday, December 02

which is the Kostant function – its negative is the Kostant partition function, which records the
number of ways of writing a weight as a sum like this. We’ll regard finding such a count as a known
or easy problem, since this can be done by enumeration.

Define the Weyl function q := ∏
α∈Φ+(eα

2
− e− α

2
) where the product is convolution. For α ∈

Φ+, fα : H∨ → Z, define

fα(λ) :=
{

1 λ = −kα for some k ∈ Z≥0

0 otherwise.
.

We can regard this as an infinite sum fα = e0 + e−α + e−2α + · · · = ∑
k≥0 e−kα.

Lemma 42.1.2(A).

a. p = ∏
α∈Φ+ fα,

b. (e0 − e−α) ∗ fα = e0,
c. q = eρ ∗

∏
α∈Φ+(e0 − e−α).

Proof (of lemma A).
Part a: The coefficient of eµ in ∏m

i=1 fβj
is the convolution∑

i1,··· ,im∈Z≥0,−
∑

ijβj=µ

fβ1(−i1β1) · · · fβm(−imβm) = p(µ).

Part b:

(e0 − e−α) ∗ (e0 + e−α + e−2α + · · · ) = e0 + e−α − e−α + e−2α − e−2α + · · · = e0,

noting the telescoping. This can be checked rigorously by regarding these as functions instead
of series.
Part c: Recall ρ = ∑

α∈Φ+
1
2α, so eρ = ∏

α∈Φ+ eα
2
. Thus the RHS is

∏
α∈Φ+

(
eα

2
∗ (e0 − e−α)

)
=

∏
α∈Φ+

(eα
2
− e−α

2
) := q.

Note that q ̸= 0 since q(ρ) = 1.
■

Lemma 42.1.3(B).
Let w ∈W , recalling that w.eα = ewα,

wq = (−1)ℓ(w)q.

Proof (of lemma B).
ETS for α ∈ ∆. Recall sα permutes Φ+ \ {α} and sα(α) = −α, so sαq permutes the factors
(eβ

2
− e− β

2
) for β ̸= α and negates eα

2
− e−α

2
.
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■

Lemma 42.1.4(C).
q is invertible:

q ∗ p ∗ eρ = e0 =⇒ q−1 = ρ ∗ eρ.

Proof (of lemma C).
Use lemma A:

q ∗ ρ ∗ e−ρ = eρ ∗

 ∏
α∈Φ+

(e0 − e−α)

 ∗ p ∗ e−ρ by C

=

 ∏
α∈Φ+

(e0 − e−α)

 ∗ p
=

 ∏
α∈Φ+

(e0 − e−α) ∗ fα

 by A

=
∏
α∈Φ+

e0 by B

= e0.

■

Lemma 42.1.5(D).
For λ, µ ∈ H∨,

chM(λ)(µ) = p(µ− λ) = (p ∗ eλ)(µ) =⇒ chM(λ) = p ∗ eλ.

Proof (of lemma D).
M(λ) has basis yi1β1

· · · yimβm
· v+ where v+ is a highest weight vector of weight λ. Note that

µ = λ−
M∑
j=1

ijβj ⇐⇒ µ− λ = −
m∑
i=1

ijβj ,

and dimM(λ)µ = p(µ− λ). Now check (p ∗ eλ)(µ) := p(µ− λ)eλ(λ) = p(µ− λ).
■

Lemma 42.1.6(E).

q ∗ chM(λ) = eλ+ρ.
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Proof (of lemma E).

LHS D= q ∗ p ∗ eλ
C= eρ ∗ eλ = eλ+ρ.

■

E 42.2 §24.2 Kostant’s Multiplicity Formula e

Remark 42.2.1: Recall that characters of Verma modules are essentially known. For λ ∈ Λ+,
we have chλ := chL(λ), recalling that L(λ) is a finite-dimensional irreducible representation. Goal:
express this as a finite Z-linear combination of certain chM(λ).

Fix λ ∈ H∨ and let Mλ be the collection of all L-modules satisfying the following:

1. V = ⊕
µ∈H∨ Vµ,

2. Z(L) ↷ V by χλ,
3. chV ∈ X

Note that any highest weight module of highest weight λ is in Mλ, and this is closed under
submodules, quotients, and finite direct sums. The Harish-Chandra theorem implies that

Mλ =Mµ ⇐⇒ λ ∼ µ ⇐⇒ µ = w.λ.

Lemma 42.2.2(?).
If 0 ̸= V ∈Mλ then V has a maximal vector.

Proof (?).
By (3), the weights of V lie in a finite number of cones λi − Z≥0Φ+. So if µ is a weight of V
and α ∈ Φ+, then µ+ kα is not a weight of V for k ≫ 0. Iterating this for the finitely many
positive weights, there exists a weight µ such that µ+α is not a weight for any α ∈ Φ+. Then
any 0 ̸= v ∈ Vµ is a maximal vector.

■

Definition 42.2.3 (?)
For λ ∈ H∨, set

Θ(λ) :=
{
µ ∈ H∨

∣∣∣ µ ∼ λ and µ ≤ λ
}
,

which by the Harish-Chandra theorem is a subset of W · λ which is a finite set.
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43 Monday, December 05

Remark 42.2.4: The following tends to hold in any setting with “standard” modules, e.g. quantum
groups or superalgebras:

Proposition 42.2.5(?).
Let λ ∈ H∨, then

a. M(λ) has a composition series,
b. Each composition factor of M(λ) is of the form L(µ) for some µ ∈ Θ(λ). Define

[M(λ) : L(µ)] to be the multiplicity of L(µ) as a composition factor of M(λ).
c. [M(λ) : L(λ)] = 1.

Proof (?).
By induction on the number of maximal vectors (up to scalar multiples). If M(λ) is irreducible
then it’s an irreducible highest weight module, and these are unique up to isomorphism and
so M(λ) = L(λ) and we’re done. Otherwise M(λ) has a proper irreducible submodule V ,
and V ∈Mλ by closure under submodules. By the lemma, V has a maximal vector of some
weight µ which must be strictly less than λ, i.e. µ < λ. As before, χµ = χλ and thus µ ∈ Θ(λ).
Consider V and M(λ)/V – each lies in Mλ and either has fewer weights linked to λ than
M(λ) has, or else it must have exactly the same set of weights linked to λ, just with smaller
multiplicities. By induction each of these has a composition series, and these can be pieced
together into a series for M since they fit into a SES.

■

43 Monday, December 05

E 43.1 Kostant’s Character Formula e

Remark 43.1.1: Last time: Mλ defined as a certain category of L-modules for λ ∈ H∨, and we
defined θ(λ) :=

{
µ ∈ H∨

∣∣∣ µ ∼ λ, µ ≤ λ} ⊆W.λ. Proposition from last time:

a. M(λ) has a composition series,
b. Each composition factor of M(λ) is of the form L(µ) for some µ ∈ θ(λ),
c. [M(λ) : L(µ)] = 1.

Note that any character of M is the sum of the characters of its composition factors.

Proof (of proposition).
Part b: Each composition factor of M(λ) is inMλ, hence by the lemma has a maximal vector.
Since it’s irreducible, it is a highest weight module L(µ) for some µ ∈ θ(λ).
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Part c: [M(λ) : L(λ)] = 1 since dimM(λ)λ = 1 and all other weights are strictly less than λ.
■

Remark 43.1.2: Order θ(λ) = {µ1, · · · , µt} such that µ≤µj =⇒ i ≤ j. In particular, µt = λ. By
the proposition, chM(µj) is a Z≥0-linear combination of chL(µi) where i ≤ j, and the coefficient of
chL(µj) is 1. Recording multiplicities in a matrix, we get the following:

chM(µj)

chL(µi) 1 • • •

0 1 • •

0 0 . . . •

0 0 0 1

Link to Diagram

This is an upper triangular unipotent matrix, and thus invertible.

Corollary 43.1.3(?).
Let λ ∈ H∨, then

chL(λ) =
∑

µ∈θ(λ)
c(µ) chM(µ), c(µ) ∈ Z, c(λ) = 1.

Remark 43.1.4: Assume λ ∈ Λ+, and recall:

• X =
{
f : H∨ → C

∣∣∣ the "forest" support condition
}

,
• p = chM(0),
• p(µ) = ♯

{
[i1 : · · · : im] ∈ Zm≥0

}
,

• q := ∏
α∈Φ+(eα

2
− e− α

2
),

• µ = −∑1≤j≤m ijβj ,
• wq = (−1)ℓ(w)q for w ∈W ,
• q ∗ p ∗ e−ρ = e0,
• chM(λ) = p ∗ eλ,
• q ∗ chM(λ) = eλ+ρ,
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43 Monday, December 05

• chλ := chL(λ) = ∑
µ∈θ(λ) c(µ) chM(µ),

• q ∗ chL(λ) = ∑
c(µ)q ∗ chM(µ) = ∑

c(µ)eµ+ρ. ⋆1

Fixing w ∈W , we have∑
µ∈θ(λ)

c(µ)ew(λ+ρ) = w(q ∗ chλ)

= wq ∗ w chλ
= (−1)ℓ(w)q chλ since chλ is W -invariant
= (−1)ℓ(w)∑

µ

c(µ)eµ+ρ.

Since λ ∈ Λ+, W acts simply transitively on θ(λ) + ρ :=
{
v + ρ

∣∣∣ v ∈ θ(λ)
}

. Note µ ∼ λ ⇐⇒
µ + ρ = w(λ + ρ) for some w ∈ W , which is unique since λ + ρ is strongly/strictly dominant,
and lemma 13.2A shows its stabilizer is the identity. So StabW (λ + ρ) = {1}. The equation
µ + ρ = w(λ + ρ) implies µ + ρ ≤ λ + ρ, since apply W to dominant elements goes down in the
partial order. Thus µ ∈ θ(λ), and θ(λ) consists of precisely those µ satisfying this equation, and

θ(λ) = W · λ.

Continuing the computation, take µ = λ on the LHS, so w(λ+ ρ) = µ+ ρ and
c(λ)ew(λ+ρ) = (−1)ℓ(w)c(µ)eµ+ρ =⇒ c(µ) = (−1)ℓ(w)c(λ).

Substituting this into ⋆1 yields
q ∗ chλ =

∑
w∈W

(−1)ℓ(w)ew(λ+ρ) ⋆2,

so
chλ = q ∗ p ∗ e−ρ ∗ chλ

= p ∗ e−ρ ∗
∑
w∈W

(−1)ℓ(w)ew(λ+ρ)

=
∑
w∈W

(−1)ℓ(w)p ∗ ew(λ+ρ)−ρ =
∑
w∈W

(−1)ℓ(w)p ∗ ew·λ.

This yields the following:

Theorem 43.1.5(Kostant).
For λ ∈ Λ+ dominant, the weight multiplicities in L(λ) are given by

dimL(λ)µ := mλ(µ) =
∑
w∈W

(−1)ℓ(w)p(µ+ ρ− w(λ+ ρ)) =
∑
w∈W

(−1)ℓ(w)p(µ− w · λ).

E 43.2 §24.3 Weyl’s Character Formula e
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44 Tuesday, December 06

Lemma 43.2.1(?).

q =
∑
w∈W

(−1)ℓ(w)ewρ.

Proof (?).
Take λ = 0 in ⋆2, and use that ch0 = e0 where L(0) ∼= C.

■

Theorem 43.2.2(Weyl’s Character Formula).
Let λ ∈ Λ+, then ( ∑

w∈W
(−1)ℓ(w)ewρ

)
∗ chL(λ) =

∑
w∈W

(−1)ℓ(w)ew(λ+ρ).

Proof (?).
Apply ⋆2 and the lemma.

■

Corollary 43.2.3(Weyl’s Dimension Formula).

dimL(λ) =
∏
α∈Φ+ ⟨λ+ ρ, α⟩∏
α∈Φ+ ⟨ρ, α⟩

=
∑

µ∈Π(λ)
mλ(µ).

44 Tuesday, December 06

E 44.1 Weyl Dimension Formula e

Remark 44.1.1: Last time:

• q := ∑
α∈Φ+(eα

2
− e− α

2
) = ∑

w∈W (−1)ℓ(w)ewρ.
• The WCF: q ∗ chλ = ∑

w∈W (−1)ℓ(w)ew(λ+ρ)
• An alternative writing of the WCF:

chλ =
∑
w∈W (−1)ℓ(w)ew(λ+ρ)∑
w∈W (−1)ℓ(w)ewρ

,

where the denominator is denoted the Weyl denominator.
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Corollary 44.1.2(Weyl dimension formula).

dimL(λ) =
∏
σ∈Φ+ ⟨λ+ ρ, α⟩∏
α∈Φ+ ⟨ρ, α⟩

,

which is a quotient of two integers.

Exercise 44.1.3 (?)
Show that W always has an equal number of even and odd elements, so ∑w∈W (−1)ℓ(w) = 0.

Proof (?).
Note chλ = ∑

µ dimL(λ)µeµ ∈ Z[Λ], and dimL(λ) = ∑
µ∈Λmλ(µ). Viewing chλ : Λ → Z as

a restriction of a function H∨ → C, dimL(λ) is the sum of all values of chλ. Work in the
C-subalgebra X0 of X generated by the characteristic functions S :=

{
eµ
∣∣∣ µ ∈ Λ

}
; this equals

the span of S since eµ ∗ eν = eµ+ν . We have a map

v : X0 → C
f 7→

∑
µ∈Λ

f(µ),

which makes sense since ♯ supp f <∞. This function sums the values we’re after, so the goal
is to compute v(chλ). By the exercise, attempting to apply this directly to the numerator and
denominator yields 0/0, and we get around this by using a variant of L’Hopital’s rule. Define
∂α(eµ) = (µ, α)eµ, extended linearly to X0. In the basis S this operator is diagonal, and this
is a derivation relative to convolution:

∂α (eµ ∗ eν) = ∂α(eµ+ν)
= (µ+ ν, α)eµ+ν

= ((µ, α)eµ) ∗ eν + eµ ∗ ((ν, α)eν)
= (∂αeµ) ∗ eν + eµ ∗ (∂αeν).

Moreover they commute, i.e. ∂α∂β = ∂β∂β. Set ∂ := ∏
α∈Φ+ ∂α where the product here

is composition, and view ∂ as an mth order differential operator. Write ω(λ + ρ) :=∑
w∈W (−1)ℓ(w)ew(λ+ρ) for λ ∈ Λ+, so q = ω(ρ). Rewriting the WCF we have

ω(ρ) ∗ chλ = ω(λ+ ρ) ⋆1,

and ∏
α∈Φ+

(
eα

2
− e− α

2

)
∗ chλ = ω(λ+ ρ).

We now try to apply ∂ to both sides, followed by v. Note that if any two factors of ∂ hit the
same factor on the LHS, then noting that v(eα

2
− e− α

2
) = 0, such terms will vanish. So the

total result will be zero unless all of the factors of ∂ are applied to the q factor in the LHS.
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So apply v ◦ ∂ to ⋆1 to get

v(∂ω(ρ))v(chλ) = v(∂ω(λ+ ρ)).

We can compute

v(∂ω(ρ)) = v

(
∂
∑
w∈W

(−1)ℓ(w)ewρ

)
=
∑
w∈W

(−1)ℓ(w)v(∂(ewρ)).

We have

v(∂(ewρ)) = v

 ∏
α∈Φ+

∂α

 ewρ


= v

 ∏
α∈Φ+

(wρ, α)ewρ


=

∏
α∈Φ+

(wρ, α)

=
∏
α∈Φ+

(ρ, w−1α) ⋆2 .

Note that w−1 ·Φ+ is a permutation of Φ+, just potentially with some signs changed – in fact,
exactly n(w−1), the number of positive roots sent to negative roots, and n(w−1) = ℓ(w−1).
Thus the above is equal to

(−1)ℓ(w) ∏
α∈Φ+

(ρ, α).

Continuing ⋆2, we have

v(∂(ewρ)) =
∑
w∈W

(−1)ℓ(w)(−1)ℓ(w) ∏
α∈Φ+

(ρ, α)

= ♯W
∏
α∈Φ+

(ρ, α),

which is the LHS. Similarly for the RHS,

v(∂(λ+ ρ)) = ♯W
∏
α∈Φ+

(λ+ ρ, α).

Taking the quotient yields

dimL(λ) = ♯W
∏
α∈Φ+(ρ, α)

♯W
∏
α∈Φ+(λ+ ρ, α) =

∏
α∈Φ+(ρ, α)∏

α∈Φ+(λ+ ρ, α) .

Multiplying the numerator and denominator by ∏α∈Φ+
2

(α,α) yields∏
α∈Φ+ ⟨ρ, α⟩∏

α∈Φ+ ⟨λ+ ρ, α⟩.

■
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Remark 44.1.4: If α ∈ Φ+, using that α∨ is a basis of Φ∨, one can write α∨ = ∑ℓ
i=1 c

α
i αi

∨ for
some cαi ∈ Z≥0 and λ = ∑ℓ

i=1miλi for mi ∈ Z≥0, using that (ρ, αi∨) = ⟨ρ, αi⟩ = 1 one can rewrite
the dimension formula in terms of the integers cαi and mi.

E 44.2 New Directions e

Remark 44.2.1: Where you could go after studying semisimple finite-dimensional Lie algebras
over C:

• Infinite-dimensional representations of such algebras, e.g. the Verma modules M(λ). One has
a SES K(λ) ↪→M(λ)↠ L(λ), which doesn’t split since M(λ) is indecomposable.

• Category O, expressing characters of simples in terms of characters of Vermas.

• Parabolic versions of Verma modules: we’ve looked at modules induced from B = H +N , but
one could look at parabolics P = U +∑

Li.

• Coxeter groups, i.e. groups generated by reflections, including Weyl groups. These can be
infinite, which ones are finite?

• Quantize Coxeter groups to get Hecke algebras, which are algebras over C[q, q−1]. See
Humphreys.

• Representations of Lie groups over R, semisimple algebraic groups, representations of finite
groups of Lie type (see the classification of finite simple groups, e.g. algebraic groups over
finite fields).

• Characteristic p representation theory, which is much more difficult.

• Infinite-dimensional Lie algebras over C, e.g. affine/Kac-Moody algebras using the Serre
relations on generalized Cartan matrices. See also current algebras, loop algebras.

• Quantum groups (quantized enveloping algebras), closely tied to modular representation
theory.

45 Useful Tricks

• [[xy]z] = [x[yz]] + [[xz]y] = [x[yz]]− [y[xz]].
• xz.w = zx.w + [xz].w.
• If N,M are upper triangular, [NM ] has zeros along the diagonal.
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46 Summary of main results

E 46.1 Computation e

• Bracketing elementary matrices:

[eij , ekl] = δjkeil − δliekj .

E 46.2 Classical Algebras e

• sl2(F) is dimension 3, corresponds to type A2, and generated by

x =
(

0 1
0 0

)
h =

(
1 0
0 −1

)
y =

(
0 0
1 0

)

[x, y] = h, [h, x] = 2x, [y, h] = 2y.

- sln(F) is dimension n2 − 1 and corresponds to type An−1.

E 46.3 Definitions e

• NL(S) =
{
x ∈ L

∣∣∣ [xS] ⊆ S
}

.

• CL(S) =
{
x ∈ L

∣∣∣ [xS] = 0
}

.
• L is simple iff L ̸= 0 and Id(L) = {0, L}.
• L is solvable iff L(n+1) := [L(n)L(n)] n→∞→ 0.
• L is semisimple iff Rad(L) := ∑

I ⊴ L solvable I = 0.
• L is nilpotent iff Ln+1 := [LLn−1] n→∞→ 0.
• The Killing form is κ(x, y) := Trace(adx ◦ ady).
• Checking L-Mod actions:

– (λ1x+ λ2y).v = λ1(x.v) + λ2(y.v)
– x.(λ1v + λ2w) = λ1(x.v) + λ2(x.w)
– [xy].v = x.(y.v) − y.(x.v). This is the axiom that introduces weird formulas for hom-

s/tensors/duals.

• Duals: (x.f)(v) := −f(x.v)
• Tensors: x.(v⊗w) := ((x.v)⊗w) + (v⊗ (x.w)).
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• The Casimir element: for φ : L→ gl(V ) an irreducible representation of L semisimple, define
β(x, y) := Trace(φ(x) ◦ φ(y)). Pick a basis and dual basis {ei} , {ei∨} with respect to β and
define cφ(β) := ∑

φ(ei)φ(ei∨) ∈ End(V ).

– This is an endomorphism of V commuting with the L-action which has nonzero trace.

E 46.4 Results e

• Engel’s theorem: if every x ∈ L is ad-nilpotent then L is nilpotent.

– Since conversely (for free) L nilpotent implies adx is nilpotent for every x, this becomes
an iff: L is nilpotent iff every x ∈ L is ad-nilpotent.

• Lie’s theorem: if L ≤ gl(V ) is solvable then L stabilizes a flag in V (i.e. L has an upper
triangular basis).

• Cartan’s criterion: if L ≤ gl(V ) and Trace(xy) = 0 for all x ∈ [LL] and y ∈ L, then L is
solvable.

• L is semisimple iff κL is nodegenerate.
• If L is semisimple, it decomposes as L = ⊕

Li where the Li are uniquely determined simple
ideals, and every simple ideal of L is one such Li.

• ker(L adL−−→ gl(V )) = Z(L) and simple algebras are centerless, so any simple Lie algebra is
isomorphic to a linear Lie algebra gl(V ) for some V , namely im adL.

• Schur’s lemma: if L φ−→ gl(V ) is an irreducible representation, then Cgl(V )(φ(L)) = CI, i.e. the
only endomorphisms of V commuting with every φ(x) are scalar operators. Equivalently,
EndL(V ) ∼= C.

• Weyl’s theorem: if L is semisimple and φ : L→ gl(V ) is a finite-dimensional representation
then φ is completely reducible.

47 Problem Set 1

E 47.1 Section 1 e

Problem 47.1.1 (Humphreys 1.1)
Let L be the real vector space R3. Define [xy] = x× y (cross product of vectors) for x, y ∈ L,
and verify that L is a Lie algebra. Write down the structure constants relative to the usual
basis of R3.

Solution:
It suffices to check the 3 axioms given in class that define a Lie algebra:
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• L1 (Bilinearity): This can be quickly seen from the formula

a× b = ∥a∥ · ∥b∥ sin(θab)n̂ab

where n̂ab is the vector orthogonal to both a and b given by the right-hand rule. The
result follows readily from a direct computation:

(ra)× (tb) = ∥ra∥ · ∥tb∥ sin(θra,tb)n̂ra,tb
= (rt)∥a∥ · ∥b∥ sin(θa,b)n̂a,b
= (rt) (a× b) ,

where we’ve used the fact that the angle between a and b is the same as the angle between
any of their scalar multiples, as is their normal.

• L2: that a× a = 0 readily follows from the same formula, since sin(θa,a) = sin(0) = 0.

• L3 (The Jacobi identity): This is most easily seen from the “BAC - CAB” formula,

a× (b× c) = b⟨a, c⟩ − c⟨a, b⟩.

We proceed by expanding the Jacobi expression:

a× (b× c) + c× (a× b) + b× (c× a) = b⟨a, c⟩ − c⟨a, b⟩
+ a⟨c, b⟩ − b⟨c, a⟩
+ c⟨a, b⟩ − a⟨b, c⟩

= 0.

For the structure constants, let {e1, e2, e3} be the standard Euclidean basis for R3; we can
then write ei × ej = ∑3

k=1 c
k
ijek and we would like to determine the ckij . One can compute the

following multiplication table:

ei × ej e1 e2 e3

e1 0 e3 −e2
e2 −e3 0 e1
e3 e2 −e1 0
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Thus the structure constants are given by the antisymmetric Levi-Cevita symbol,

ckij = εijk :=
{

0 if any index i, j, k is repeated
sgn σijk otherwise,

where σijk ∈ S3 is the permutation associated to (i, j, k) in cycle notation and sgn σ is the sign
homomorphism.
Remark 47.1.1: An example to demonstrate how the Levi-Cevita symbol works:

e1 × e2 = c1
12e1 + c2

12e2 + c3
12e3 = 0e1 + 0e2 + 1e3

since the first two terms have a repeated index and

c3
12 = ε1,2,3 = sgn(123) = sgn(12)(23) = (−1)2 = 1

using that sgn σ = (−1)m where m is the number of transpositions in σ.

Problem 47.1.2 (Humphreys 1.6)
Let x ∈ gln(F) have n distinct eigenvalues a1, . . . , an in F. Prove that the eigenvalues of adx
are precisely the n2 scalars ai − aj for 1 ≤ i, j ≤ n, which of course need not be distinct.

Solution:
For a fixed n, let eij ∈ gln(F) be the matrix with a 1 in the (i, j) position and zeros elsewhere.
We will use the following fact:

eijekl = δjkeil,

where δjk = 1 ⇐⇒ j = k, which implies that

[eijekl] = eijekl − ekleij = δjkeil − δliekj .

Suppose without loss of generalitya that x is diagonal and of the form x = diag(a1, a2, · · · , an).
Then the eigenvectors of x are precisely the eij , since a direct check via matrix multiplication
shows xeij = aieij .
We claim that every eij is again an eigenvector of adx with eigenvalue ai − aj . Noting that
the eij are also left eigenvectors satisfying eijx = ajeij , one readily computes

adxeij := [x, eij] = xeij − eijx = aieij − ajeij = (ai − aj)eij ,

yielding at least n2 eigenvalues. Since adx expanded in the basis {eij}1≤i,j≤n is an n × n
matrix, this exhausts all possible eigenvalues.

aIf x is not diagonal, one can use that x is diagonalizable over F since x has distinct eigenvalues in F. So one
can reduce to the diagonal case by a change-of-basis of Fn that diagonalizes x.
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Problem 47.1.3 (Humphreys 1.9, one Lie type only)
When ch F = 0, show that each classical algebra L = Aℓ,Bℓ,Cℓ, or Dℓ is equal to [LL]. (This
shows again that each algebra consists of trace 0 matrices.)

Solution:
We will check for this type An, corresponding to L := sln+1. Since [LL] ⊆ L, it suffices to show
L ⊆ [LL], and we can further reduce to writing every basis element of L as a commutator in
[LL]. Note that L has a standard basis given by the matrices

•
{
xi := eij

∣∣∣ i > j
}

corresponding to n−,

•
{
hi := eii − ei+1,i+1

∣∣∣ 1 ≤ i ≤ n
}

corresponding to h, and

•
{
yi := eij

∣∣∣ i < j
}

corresponding to n+.

Considering the equation [eijekl] = δjkeil − δliekj , one can choose j = k to preserve the first
term and l ̸= i to kill the second term. So letting t, i, j be arbitrary with i ̸= j, we have

[eitetj ] = δtteij − δijett = eij ,

yielding all of the xi and yi. But in fact we are done, using the fact that hi = [xiyi].

Problem 47.1.4 (Humphreys 1.11)
Verify that the commutator of two derivations of an F-algebra is again a derivation, whereas
the ordinary product need not be.

Solution:
We want to show that [Der(L) Der(L)] ⊆ Der(L), so let f, g ∈ Der(L). The result follows from
a direct computation; letting D := [fg], we have

D(ab) = [fg](ab) = (fg − gf)(ab)
= fg(ab)− gf(ab)
= f (g(a)b+ ag(b))− g (f(a)b+ af(b))
= f (g(a)b) + f (ag(b))− g (f(a)b)− g (af(b))
= (fg)(a)b+ g(a)f(b)

+ f(a)g(b) + a(fg)(b)
− (gf)(a)b+ f(a)g(b)
− g(a)f(b)− a(gf)(b)

= [fg](a)b− a[fg](b)
= D(a)b− aD(b).

To see that ordinary products of derivations need not be derivations, consider the operators
Dx := ∂

∂x , Dy = ∂
∂y acting on a finite-dimensional vector space of multivariate polynomials of

some bounded degree, as a sub R-algebra of R[x, y]. Take f(x, y) = x+ y and g(x, y) = xy,
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so that fg = gf = x2y + xy2. Then [DxDy] = 0 since mixed partial derivatives are equal, but

DxDy(fg) = Dx

(
x2 + 2xy

)
= 2x+ 2y ̸= 0.

Problem 47.1.5 (Humphreys 1.12)
Let L be a Lie algebra over an algebraically closed field F and let x ∈ L. Prove that the
subspace of L spanned by the eigenvectors of adx is a subalgebra.

Solution:
Let Ex ⊆ L be the subspace spanned by eigenvectors of adx; it suffices to show [ExEx] ⊆ Ex.
Letting yi ∈ Ex, we have adx(yi) = λiyi for some scalars λi ∈ F, and we want to show
adx([y1y2]) = λ12[y1y2] for some scalar λ12. Note that the Jacobi identity is equivalent to ad
acting as a derivation with respect to the bracket, i.e.

adx([yz]) = [adx(y)z] + [yadx(z)] =⇒ [x[yz]] = [[xy]z] + [y[xz]].

The result then follows from a direct computation:

adx([y1y2]) = [[xy1]y2] + [y1[xy2]]
= [λ1y1y2] + [y1λ2y2]
= (λ1 + λ2)[y1y2].

E 47.2 Section 2 e

Problem 47.2.1 (Humphreys 2.1)
Prove that the set of all inner derivations adx, x ∈ L, is an ideal of DerL.

Solution:
It suffices to show [Der(L) Inn(L)] ⊆ Inn(L), so let f ∈ Der(L) and adx ∈ Inn(L). The result
follows from the following check:

[fadx](l) = (f ◦ adx)(l)− (adx ◦ f)(l)
= f([xl])− [xf(l)]
= [f(x)l] + [xf(l)]− [xf(l)]
= [f(x)l]
= adf(x)(l), and adf(x) ∈ Inn(L).

Problem 47.2.2 (Humphreys 2.2)
Show that sln(F) is precisely the derived algebra of gln(F) (cf. Exercise 1.9).
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Solution:
We want to show gln(F)(1) := [gln(F)gln(F)] = sln(F).
⊆: This immediate from the fact that for any matrices A and B,

tr([AB]) = tr(AB −BA) = tr(AB)− tr(BA) = tr(AB)− tr(AB) = 0.

⊇: From a previous exercise, we know that [sln(F)sln(F)] = sln(F), and since sln(F) ⊆ gln(F)
we have

sln(F) = sln(F)(1) ⊆ gln(F)(1).

Problem 47.2.3 (Humphreys 2.5)
Suppose dimL = 3 and L = [LL]. Prove that L must be simple. Observe first that any
homomorphic image of L also equals its derived algebra. Recover the simplicity of sl2(F) when
ch F ̸= 2.

Solution:
Let I ⊴ L be a proper ideal, then dimL/I < dimL forces dimL/I = 1, 2. Since L ↠ L/I,
the latter is the homomorphic image of a Lie algebra and thus (L/I)(1) = L/I by the hint.
Note that in particular, L/I is not abelian. We proceed by cases:

• dimL/I = 1.

– In this case, L/I = Fx is generated by a single element x. Since [xx] = 0 in any
Lie algebra, we have (Fx)(1) = 0, contradicting that L/I is not abelian. E

• dimL/I = 2: Write L/I = Fx + Fy for distinct generators x, y, and consider the
multiplication table for the bracket.

– If [xy] = 0, then L/I is abelian, a contradiction. E
– Otherwise, without loss of generality [xy] = x as described at the end of section 1.4.

In this case, (L/I)(1) ⊆ Fx ⊊ L/I, again a contradiction. E

So no such proper ideals I can exist, forcing L to be simple.
Applying this to L := sl2(F), we have dimF sl2(F) = 22 − 1 = 3, and from a previous exercise
we know sl2(F)(1) = sl2(F), so the above argument applies and shows simplicity.

Problem 47.2.4 (Humphreys 2.10)
Let σ be the automorphism of sl2(F) defined in (2.3). Verify that

• σ(x) = −y,
• σ(y) = −x,
• σ(h) = −h.

Note that this automorphism is defined as

σ = exp(adx) ◦ exp(ad−y) ◦ exp(adx).
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Solution:
We recall that exp adx(y) := ∑

n≥0
1
n!adnx(y), where the exponent denotes an n-fold composition

of operators. To compute these power series, first note that adt(t) = 0 for t = x, y, h by axiom
L2, so

(exp adt)(t) = 1(t) + adt(t) + 1
2ad2

t (t) + · · · = 1(t) = t

where 1 denotes the identity operator. It is worth noting that if adnt (t′) = 0 for some n
and some fixed t, t′, then it is also zero for all higher n since each successive term involves
bracketing with the previous term:

adn+1
t (t′) = [t adnt (t′)] = [t 0] = 0.

We first compute some individual nontrivial terms that will appear in σ. The first order terms
are given by standard formulas, which we collect into a multiplication table for the bracket:
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x h y

x 0 −2x h
h 2x 0 −2y
y −h 2y 0
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We can thus read off the following:

• adx(y) = h
• adx(h) = −2x
• ad−y(x) = [−yx] = [xy] = h
• ad−y(h) = [−yh] = [hy] = −2y

For reference, we compute and collect higher order terms:

• adnx(y):

– ad1
x(y) = h from above,

– ad2
x(y) = adx([xy]) = adx(h) = [xh] = −[hx] = −2x,

– ad3
x(y) = adx(−2x) = 0, so ad≥3

x (y) = 0.

• adnx(h):

– ad1
x(h) = −2x from above,

– ad2
x(h) = adx(−2x) = 0, so ad≥2

x (h) = 0.

• adn−y(x):

– ad1
−y(x) = h from above,

– ad2
−y(x) = ad−y(h) = [−yh] = [hy] = −2y,

– ad2
−y(x) = ad−y(−2y) = 0, so adn≥2

−y (x) = 0.

• adn−y(h):

– ad1
−y(h) = −2y from above, and so ad≥2

−y(h) = 0.

Finally, we can compute the individual terms of σ:
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(exp adx)(x) = x

(exp adx)(h) = 1(h) + adx(h)
= h+ (−2x)
= h− 2x

(exp adx)(y) = 1(y) + adx(y) + 1
2ad2

x(y)

= y + h+ 1
2(−2x)

= y + h− x

(exp ad−y)(x) = 1(x) + ad−y(x)x+ 1
2ad2

−y(x)

= x+ h+ 1
2(−2y)

= x+ h− y

(exp ad−y)(h) = 1(h) + ad−y(h)
= h− 2y

(exp ad−y)(y) = y,

and assembling everything together yields
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σ(x) = (exp adx ◦ exp ad−y ◦ exp adx)(x)
= (exp adx ◦ exp ad−y)(x)
= (exp adx)(x+ h− y)
= (x) + (h− 2x)− (y + h− x)
= −y

σ(y) = (exp adx ◦ exp ad−y ◦ exp adx)(y)
= (exp adx ◦ exp ad−y)(y + h− x)
= exp adx ((y) + (h− 2y)− (x+ h− y))
= exp adx (−x)
= −x

σ(h) = (exp adx ◦ exp ad−y ◦ exp adx)(h)
= (exp adx ◦ exp ad−y)(h− 2x)
= (exp adx)((h− 2y)− 2(x+ h− y))
= (exp adx)(−2x− h)
= −2(x)− (h− 2x)
= −h.

48 Problem Set 2

E 48.1 Section 3 e

Problem 48.1.1 (Humphreys 3.1)
Let I be an ideal of L. Then each member of the derived series or descending central series of
I is also an ideal of L.

Solution:
To recall definitions:

• The derived series of L is L ⊇ L(0) := [LL] ⊇ L(1) := [[LL][LL]] ⊇ · · · and termination
implies solvability.

• The descending central series of L is L ⊇ L1 := [LL] ⊇ L2 := [L[LL]] ⊇ · · ·, and
termination implies nilpotency (and hence solvability since [LL] ⊆ L =⇒ L(i) ⊆ Li).

• I ⊴ L ⇐⇒ [L, I] ⊆ I.

Problem Set 2 139



48 Problem Set 2

For the derived series, inductively suppose I := I(i) is an ideal, so [LI] ⊆ I. We then want to
show I(i+1) := [I, I] is an ideal, so [L, [I, I]] ⊆ [I, I]. Letting l ∈ L, and i, j ∈ I, one can use
the Jacobi identity, antisymmetry of the bracket, and the fact that [I, I] := L(i+1) ⊆ I to write

[L, [I, I]] ∋ [l[ij]]
= [[li]j]− [[lj]i]
∈ [[L, I], I]− [[L, I], I]
⊆ [[L, I], I] ⊆ [I, I].

Similarly, for the lower central series, inductively suppose I := Ii is an ideal, so [L, I] ⊆ I; we
want to show [L, [L, I]] ⊆ [L, I]. Again using the Jacobi identity and antisymmetry, we have

[L, [L, I]] ∋ [l1, [l2, i]]
= [[i, l1], l2] + [[l2, l1], i]
⊆ [[I, L], L] + [[L,L], I]
⊆ [I, L] + [L, I] ⊆ [L, I].

Problem 48.1.2 (Humphreys 3.4)
Prove that L is solvable (resp. nilpotent) if and only ad(L) is solvable (resp. nilpotent).

Solution:
=⇒ : By the propositions in Section 3.1 (resp. 3.2), the homomorphic image of any solvable

(resp. nilpotent) Lie algebra is again solvable (resp. nilpotent).
⇐= : There is an exact sequence

0→ Z(L)→ L
ad−→ ad(L)→ 0,

exhibiting ad(L) ∼= L/Z(L). Thus if ad(L) is solvable, noting that centers are always solvable,
we can use the fact that the 2-out-of-3 property for short exact sequences holds for solvability.
Moreover, by the proposition in Section 3.2, if L/Z(L) is nilpotent then L is nilpotent.

Problem 48.1.3 (Humphreys 3.6)
Prove that the sum of two nilpotent ideals of a Lie algebra L is again a nilpotent ideal. There-
fore, L possesses a unique maximal nilpotent ideal. Determine this ideal for the nonabelian
2-dimensional algebra Fx+ Fy where [xy] = x, and the 3-dimensional algebra Fx+ Fy + Fz
where

• [xy] = z
• [xz] = y
• [yz] = 0
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Solution:
To see that sums of nilpotent ideals are nilpotent, suppose IN = JM = 0 are nilpotent ideals.
Then (I + J)M+N ⊆ IM + JN by collecting terms and using the absorbing property of ideals.
One can now construct a maximal nilpotent ideal in L by defining M as the sum of all nilpotent
ideals in L. That this is unique is clear, since M is nilpotent, so if M ′ is another maximal
nilpotent ideal then M ⊆M ′ and M ′ ⊆M .
Consider the 2-dimensional algebra L := Fx + Fy where [xy] = x and let I be the maximal
nilpotent ideal. Note that L is not nilpotent since Lk = Fx for all k ≥ 0, since L1 = Fx and
[L,Fx] = Fx (since all brackets are either zero or ±x). However, this also shows that the
subalgebra Fx is an ideal, and is in fact a nilpotent ideal since [Fx,Fx] = 0. Although Fy is
a nilpotent subalgebra, it is not an ideal since [L,Fy] = Fx. So I is at least 1-dimensional,
since it contains Fx, and at most 1-dimensional, since it is not all of L, forcing I = Fx.
Consider now the 3-dimensional algebra L := Fx+Fy+Fz with the multiplication table given
in the problem statement above. Note that L is not nilpotent, since L1 = Fy+ Fz = Lk for all
k ≥ 2. This follows from consider [L,Fy + Fz], where choosing x ∈ L is always a valid choice
and choosing y or z in the second slot hits all generators; however, no element brackets to x.
So similar to the previous algebra, the ideal J := Fx+ Fy is an ideal, and it is nilpotent since
all brackets between y and z vanish. By similar dimensional considerations, J must equal the
maximal nilpotent ideal.

Problem 48.1.4 (Humphreys 3.10)
Let L be a Lie algebra, K an ideal of L such that L/K is nilpotent and such that adx|K is
nilpotent for all x ∈ L. Prove that L is nilpotent.

Solution:
Suppose that M := L/K is nilpotent, so the lower central series terminates and Mn = 0 for
some n. Then Ln ⊆ K for the same n, and the claim is that Ln is nilpotent. This follows from
applying Engel’s theorem: let x ∈ Ln ⊆ K, then adx|Ln = 0 by assumption. So every element
of Ln is ad-nilpotent, making it nilpotent. Since 0 = (Ln)k = Ln+k for some k, this forces L
to be nilpotent as well.

E 48.2 Section 4 e

Problem 48.2.1 (Humphreys 4.1)
Let L = sl(V ). Use Lie’s Theorem to prove that RadL = Z(L); conclude that L is semisimple.

Hint: observe that RadL lies in each maximal solv-
able subalgebra B of L. Select a basis of V so that
B = L ∩ t(n, F), and notice that Bt is also a
maximal solvable subalgebra of L. Conclude that
RadL ⊂ L ∩ d(n, F) (diagonal matrices), then
that RadL = Z(L).]
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Solution:
Let R = Rad(L) be the radical (maximal solvable ideal) of L. Using the hint, if S ≤ L is a
maximal solvable subalgebra then it must contain R. By (a corollary of) Lie’s theorem, S
stabilizes a flag and thus there is a basis with respect to which all elements of S (and thus
R) are upper triangular. Thus S ⊆ b; however, taking the transpose of every element in S
again yields a maximal solvable ideal which is lower triangular and thus contained in b−. Thus
R ⊆ S ⊆ b ∩ b− = h, which consists of just diagonal matrices.
We have Z(L) ⊆ R since centers are solvable, and the claim is that R ⊆ h =⇒ R ⊆ Z(L). It
suffices to show that R consists of scalar matrices, since it is well-known that Z(gln(F)) consists
of precisely scalar matrices, and this contains Z(L) since L ≤ gln(F) is a subalgebra. This
follows by letting ℓ = ∑

aiei,i be an element of Rad(L) and considering bracketing elements
of sln(F) against it. Bracketing elementary matrices ei,j with i ̸= j yields

[ei,j , ℓ] = ajei,j − aiei,j ,

which must be an element of Rad(L) and thus diagonal, which forces aj = ai for all i, j.
To conclude that L is semisimple, note that a scalar traceless matrix is necessarily zero, and
so Z(sl(V )) = 0. This suffices since Rad(L) = 0 ⇐⇒ L is semisimple.

Problem 48.2.2 (Humphreys 4.3, Failure of Lie’s theorem in positive characteristic)
Consider the p× p matrices:

x =


0 1 0 . . 0
0 0 1 0 . 0
. . · · · ·
0 · · · · 1
1 . · · · · · 0

 , y = diag(0, 1, 2, 3, · · · , p− 1).

Check that [x, y] = x, hence that x and y span a two dimensional solvable subalgebra L of
gl(p, F ). Verify that x, y have no common eigenvector.

Solution:
Note that x acts on the left on matrices y by cycling all rows of y up by one position, and
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similar yacts on the right by cycling the columns to the right. Thus

xy − yx =


0 1 0 0 0
0 0 2 0 0

0
...

...
. . . 0

0 0 · · · 0 p− 1
0 0 · · · 0 0

−


0 0 0 0 0
0 0 1 0 0
... · · · 0 2 0
0 0 · · · 0 3

p− 1 0 · · · 0 0



=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−(p− 1) 0 0 0 0



≡


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 ∈ GLn(Fp)

= x.

Thus L := Fx+ Fy span a solvable subalgebra, since L(1) = Fx and so L(2) = 0.
Moreover, note that every basis vector ei is an eigenvector for y since y(ei) = iei, while no
basis vector is an eigenvector for x since x(ei) = ei+1 for 1 ≤ i ≤ p− 1 and x(ep) = e1, so x
cycles the various basis vectors.

Problem 48.2.3 (Humphreys 4.4)
For arbitrary p, construct a counterexample to Corollary Ca as follows: Start with L ⊂ glp(F)
as in Exercise 3. Form the vector space direct sum M = L⊕Fp, and make M a Lie algebra by
decreeing that Fp is abelian, while L has its usual product and acts on Fp in the given way.
Verify that M is solvable, but that its derived algebra (= Fx+ Fp) fails to be nilpotent.

aCorollary C states that if L is solvable then every x ∈ L(1) is ad-nilpotent, and thus L(1) is nilpotent.

Solution:
For pairs A1 ⊕ v1 and A2 ⊕ v2 in M , we’ll interpret the given definition of the bracket as

[A1 ⊕ v1, A2 ⊕ v2] := [A1, A2]⊕ (A1(v2)−A2(v1)),

where Ai(vj) denotes evaluating an endomorphism A ∈ glp(F) on a vector v ∈ Fp. We also
define L = Fx+ Fy with x and y the given matrices in the previous problem, and note that
L is solvable with derived series

L = Fx⊕ Fy ⊇ L(1) = Fx ⊇ L(2) = 0.

Consider the derived series of M – by inspecting the above definition, we have

M (1) ⊆ L(1) ⊕ Fp = Fx⊕ Fp.
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Moreover, we have

M (2) ⊆ L(2) ⊕ Fp = 0⊕ Fp,

which follows from considering considering bracketing two elements in M (1): set wij := Ai(vj)−
Aj(vi), then

[[A1, A2]⊕ w1,2, [A3, A4]⊕ w3,4]
= [[A1, A2], [A3, A4]]⊕ [A1, A2](w3,4)− [A3, A4](w1,2).

We can then see that M (3) = 0, since for any wi ∈ Fp,

[0⊕ w1, 0⊕ w2] = 0⊕ 0(w2)− 0(w1) = 0⊕ 0,

and so M is solvable.
Now consider its derived subalgebra M (1) = Fx ⊕ Fp. If this were nilpotent, every element
would be ad-nilpotent, but let v = [1, 1, · · · , 1] and consider adx⊕0. We have

adx⊕0(0⊕ v) = [x⊕ 0, 0⊕ v] = 0⊕ xv = 0⊕ v,

where we’ve used that x acts on the left on vectors by cycling the entries. Thus adnx⊕0(0⊕v) =
0⊕ v for all n ≥ 1 and x⊕ 0 ∈M (1) is not ad-nilpotent.

49 Problem Set 3

E 49.1 Section 5 e

Problem 49.1.1 (5.1)
Prove that if L is nilpotent then the Killing form of L is identically zero.

Solution:
Note that if L is nilpotent than every ℓ ∈ L is ad-nilpotent, so letting x, y ∈ L be arbitrary,
their commutator ℓ := [xy] is ad-nilpotent. Thus ad[xy] ∈ End(L) is a nilpotent endomorphism
of L, which are always traceless.
The claim is the following: for any x, y ∈ L,

Trace(ad[xy]) = 0 =⇒ Trace(adx ◦ ady) = 0,

from which it follows immediately that β is identically zero.
First we can use the fact that ad : L→ gl(L) preserves brackets, and so

ad[xy]L = [adxady]gl(L) = adx ◦ ady − ady ◦ adx,
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and so

0 = Trace(ad[xy]) = Trace(adxady − adyadx) = Trace(adxady)− Trace(adyadx).

where we’ve used that the trace is an F-linear map gl(L)→ F. This forces

Trace(adxady) = −Trace(adyadx),

but by the cyclic property of traces, we always have

Trace(adxady) = Trace(adyadx).

Combining these yields Trace(adxady) = 0.

Problem 49.1.2 (5.7)
Relative to the standard basis of sl3(F), compute detκ. What primes divide it?

Hint: use 6.7, which says κgln(x, y) =
2nTrace(xy).

Solution:
We have the following standard basis:

x1 =

 · 1 ·
· · ·
· · ·

 x2 =

 · · 1
· · ·
· · .

 x3 =

 · · ·· · 1
· · ·


h1 =

 1 · ·
· −1 ·
· · ·

 h2 =

 · · ·
· 1 ·
· · −1


y1 =

 · · ·1 · ·
· · ·

 y2 =

 · · ·· · ·
1 · ·

 y3 =

 · · ·· · ·
· 1 ·

 .
For notational convenience, let {v1, · · · , v8} denote this ordered basis.
Direct computations show

• [x1v1] = [x1x1] = 0
• [x1v2] = [x1x2] = 0
• [x1v3] = [x1x3] = e13 = x2 = v2
• [x1v4] = [x1h1] = −2e12 = −2x2 = −2v2
• [x1v5] = [x1h2] = e12 = x1 = v1
• [x1v6] = [x1y1] = e11 − e22 = h1 = v4
• [x1v7] = [x1y2] = −e31 = −y2 = v6
• [x1v8] = [x1y3] = 0

Let Eij denote the elementary 8× 8 matrices with a 1 in the (i, j) position. We then have, for
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example,

adx1 = 0 + 0 + E2,3 − 2E2,4 + E1,5 + E4,6 + E6,7 + 0

=



· · · · 1 · ·
· · 1 −2 · · ·
· · · · · · ·
· · · · · 1 ·
· · · · · · ·
· · · · · · 1
· · · · · · ·


.

The remaining computations can be readily automated on a computer, yielding the following
matrices for the remaining advi :

• adx1 = 0 + 0 + E2,3 − 2E1,4 + E1,5 + E4,6 + E8,7 + 0

• adx2 = 0 + 0 + 0− E2,4 − E2,5 − E3,6 + (E4,7 + E5,7) + E1,8

• adx3 = −E2,1 + 0 + 0 + E3,4 − 2E3,5 + 0 + E6,7 + E5,8

• adh1 = 2E1,1 + E2,2 − E3,3 + 0 + 0− 2E6,6 − E7,7 + E8,8

• adh2 = −E1,1 + E2,2 + 2E3,3 + 0 + 0 + E6,6 − E7,7 − 2E8,8

• ady1 = −E4,1 + E3,2 + 0 + 2E6,4 − E6,5 + 0 + 0− E7,8

• ady2 = E8,1 − (E4,2 + E5,2)− E6,3 + E7,4 + E7,5 + 0 + 0 + 0

• ady3 = 0− E1,2 − E5,3 − E8,4 + 2E8,5 + E7,6 + 0 + 0

Now forming the matrix (β)ij := Trace(adviadvj ) yields

β =



· · · · · 2 · ·
· · · · · · 6 ·
· · · · · · · 6
· · · 12 −6 · · ·
· · · −6 12 · · ·
2 · · · · · · ·
· 6 · · · · · ·
· · 6 · · · · ·


,

whence det(β) = (2 · 6 · 6)2(122 − 36) = −2837.

E 49.2 Section 6 e
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Problem 49.2.1 (6.1)
Using the standard basis for L = sl2(F), write down the Casimir element of the adjoint
representation of L (cf. Exercise 5.5). Do the same thing for the usual (3-dimensional)
representation of sl3(F), first computing dual bases relative to the trace form.

Solution:
A computation shows that in the basis {ei} := {x, h, y}, the Killing form is represented by

β =

0 0 4
0 8 0
4 0 0

 =⇒ β−T =

0 0 1
4

0 1
8 0

1
4 0 0

,
yielding the dual basis {ei∨} read from the columns of β−T :

• x∨ = 1
4y,

• h∨ = 1
8h,

• y∨ = 1
4x.

Thus letting φ = ad, we have

cφ =
∑

φ(ei)φ(ei∨)
= ad(x)ad(x∨) + ad(h)ad(h∨) + ad(y)ad(y∨)
= ad(x)ad(y/4) + ad(h)ad(h/8) + ad(y)ad(x/4)

= 1
4adxady + 1

8ad2
h + 1

4adyadx.

For sl3, first take the ordered basis {v1, · · · , v8} = {x1, x2, x3, h1, h2, y1, y2, y3} as in the previ-
ous problem. So we form the matrix (β)ij := Trace(vivj) by computing various products and
traces on a computer to obtain

β =



· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1
· · · 2 −1 · · ·
· · · −1 2 · · ·
1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·


=⇒ β−T =



· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1
· · · 2

3
1
3 · · ·

· · · 1
3

2
3 · · ·

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·


,

which yields the dual basis

• xi
∨ = yi

• h1
∨ = 2

3h1 + 1
3h2

• h2
∨ = 1

3h1 + 2
3h2

• yi
∨ = xi
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We can thus compute the Casimir element of the standard representation φ on a computer as

cφ =
∑
i

φ(xi)φ(xi∨) + φ(h1)φ(h1
∨) + φ(h2)φ(h2

∨) +
∑
i

φ(yi)φ(yi∨)

=
∑
i

xiyi + h1h1
∨ + h2h2

∨ +
∑
i

yixi

=
∑
i

(xiyi + yixi)

= 8
3I.

Problem 49.2.2 (6.3)
If L is solvable, every irreducible representation of L is one dimensional.

Solution:
Let φ : L → V be an irreducible representation of L. By Lie’s theorem. L stabilizes a flag
in V , say F • = F 1 ⊂ · · ·Fn = V where F k = ⟨v1, · · · , vk⟩ for some basis {vi}i≤n. Since φ is
irreducible, the only L-invariant subspaces of V are 0 and V itself. However, each F k is an
L-invariant subspace, which forces n = 1 and F 1 = V . Thus V is 1-dimensional.

Problem 49.2.3 (6.5)
A Lie algebra L for which RadL = Z(L) is called reductive.a

(a) If L is reductive, then L is a completely reducible ad L-module. b In particular, L is the
direct sum of Z(L) and [LL], with [LL] semisimple.

(b) If L is a classical linear Lie algebra (1.2), then L is semisimple. (Cf. Exercise 1.9.)
(c) If L is a completely reducible ad(L)-module, then L is reductive.
(d) If L is reductive, then all finite dimensional representations of L in which Z(L) is

represented by semisimple endomorphisms are completely reducible.
aExamples: L abelian, L semisimple, L = gln(F).
bIf ad L ̸= 0, use Weyl’s Theorem.

Solution:
Part 1: If ad(L) ̸= 0, as hinted, we can attempt to apply Weyl’s theorem to the representation
φ : ad(L)→ gl(L): if we can show ad(L) is semisimple, then φ (and thus L) will be a completely
reducible ad(L)-module. Assume L is reductive, so ker(ad) = Z(L) = Rad(L), and by the first
isomorphism theorem ad(L) ∼= L/Rad(L). We can now use the fact stated in Humphreys on
page 11 that for an arbitrary Lie algebra L, the quotient L/Rad(L) is semisimple – this follows
from the fact that Rad(L/Rad(L)) = 0, since the maximal solvable ideal in the quotient would
need to be a maximal proper ideal in L containing Rad(L), which won’t exist by maximality
of Rad(L). Thus ad(L) is semisimple, and Weyl’s theorem implies it is completely reducible.
To show that L = Z(L)⊕ [LL], we first show that it decomposes as a sum L = Z(L) + [LL],
and then that the intersection is empty so the sum is direct. We recall that a Lie algebra is
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semisimple if and only if it has no nonzero abelian ideals. Since L/Z(L) is semisimple, we have
[L/Z(L), L/Z(L)] = L/Z(L) since it would otherwise be a nonzero abelian ideal in L/Z(L). We
can separately identify [L/Z(L), L/Z(L)] ∼= [LL]/Z(L), since the latter is also semisimple and
the former is an abelian ideal in it. Combining these, we have [LL]/Z(L) ∼= L/Z(L) ∼= ad(L),
and so we have an extension

0→ Z(L)→ L→ [LL]→ 0.

Since this sequence splits at the level of vector spaces, L = Z(L)+[LL] as an ad(L)-module, al-
though the sum need not be direct. To show that it is, note that Z(L) ≤ L is an ad(L)-invariant
submodule, and by complete reducibility has an ad(L)-invariant complement W . We can
thus write L = W ⊕ Z(L), and moreover [LL] ⊆ W , and so we must have W = [LL] and
L = [LL]⊕ Z(L).
Finally, to see that [LL] is semisimple, note that the above decomposition allows us to write
L/Z(L) ∼= [LL], and Rad(L/Z(L)) = Rad(L/Rad(L)) = 0 so Rad([LL]) = 0.
Part 2: Omitted for time.
Part 3: Omitted for time.
Part 4: Omitted for time.

Problem 49.2.4 (6.6)
Let L be a simple Lie algebra. Let β(x, y) and γ(x, y) be two symmetric associative bilinear
forms on L. If β, γ are nondegenerate, prove that β and γ are proportional.

Hint: Use Schur’s Lemma.

Solution:
The strategy will be to define an irreducible L-module V and use the two bilinear forms to
produce an element of EndL(V ), which will be 1-dimensional by Schur’s lemma.
The representation we’ll take will be φ := ad : L → gl(L), and since L is simple, ker ad = 0
since otherwise it would yield a nontrivial ideal of L. Since this is a faithful representation,
we will identify L with its image V := ad(L) ⊆ gl(L) and regard V as an L-module.
As a matter of notation, let βx(y) := β(x, y) and similarly γx(y) := γ(x, y), so that βx, γx can
be regarded as linear functionals on V and thus elements of V ∨. This gives an F-linear map

Φ1 : V → V ∨

x 7→ βx,

which we claim is an L-module morphism.
Assuming this for the moment, note that by the general theory of bilinear forms on vector
spaces, since β and γ are nondegenerate, the assignments x 7→ βx and x 7→ γx induce vector
space isomorphisms V ∼−→V ∨. Accordingly, for any linear functional f ∈ V ∨, there is a unique
element z(f) ∈ V such that f(v) = γ(z(f), v). So define a map using the representing element
for γ:

Φ2 : V ∨ → V

f 7→ z(f),

which we claim is also an L-module morphism.
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We can now define their composite

Φ := Φ2 ◦ Φ1 : V → V

x 7→ z(βx),

which sends an element x ∈ V to the element z = z(βx) ∈ V such that βx(−) = γz(−) as
functionals. An additional claim is that Φ commutes with the image V := ad(L) ⊆ gl(L).
Given this, by Schur’s lemma we have Φ ∈ EndL(V ) = F (where we’ve used that a compositions
of morphisms is again a morphism) and so Φ = λ idL for some scalar λ ∈ F.
To see why this implies the result, we have equalities of functionals

β(x,−) = βx(−)
= γz(βx)(−)
= γ(z(βx),−)
= γ(Φ(x),−)
= γ(λx,−)
= λγ(x,−),

and since this holds for all x we have β(−,−) = λγ(−,−) as desired.

Claim: Φ1 is an L-module morphism.

Proof (?).
We recall that a morphism of L-modules φ : V →W is an F-linear map satisfying

φ(ℓ.x) = ℓ.φ(x) ∀ℓ ∈ L, ∀x ∈ V.

In our case, the left-hand side is

Φ1(ℓ.x) := Φ1(adℓ(x)) = Φ1([ℓ,x]) = β[ℓ,x] = β([ℓ,x],−).

and the right-hand side is

ℓ.Φ1(x) := ℓ.βx := (y 7→ −βx(ℓ.y)) := (y 7→ −βx([ℓ,y])) = −β(x, [ℓ,−]).

By anticommutativity of the bracket, along with F-linearity and associativity of β, we
have

β([ℓ,x],y) = −β([x, ℓ],y) = −β(x, [ℓ,y]) ∀y ∈ V

and so the above two sides do indeed coincide.
■

Claim: Φ2 is an L-module morphism.

Proof (?).
Omitted for time, proceeds similarly.

■
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Claim: Φ commutes with ad(L).

Proof (?).
Letting x ∈ L, we want to show that Φ ◦ adx = adx ◦ Φ ∈ gl(L), i.e. that these two
endomorphisms of L commute. Fixing ℓ ∈ L, the LHS expands to

Φ(adx(ℓ)) = z(βadx(ℓ)) = z(β[xℓ]),

while the RHS is

adx(Φ(ℓ)) = adx(z(βℓ)) = [x, z(βℓ)].

Recalling that Φ(t) = z(βt) is defined to be the unique element t ∈ L such that β(t,−) =
γ(z(βt),−), for the above two to be equal it suffices to show that

β([x, ℓ],−) = γ([x, z(βℓ)],−)

as linear functionals. Starting with the RHS of this expression, we have

γ([x, z(βℓ)],−) = −γ([z(βℓ), x],−) by antisymmetry
= −γ(z(βℓ), [x,−]) by associativity of γ
= −β(ℓ, [x,−]) by definition of z(βℓ)
= −β([ℓ, x],−)
= β([x, ℓ],−).

■

Problem 49.2.5 (6.7)
It will be seen later on that sln(F) is actually simple. Assuming this and using Exercise 6, prove
that the Killing form κ on sln(F) is related to the ordinary trace form by κ(x, y) = 2nTr(xy).

Solution:
By the previous exercise, the trace pairing (x, y) 7→ Trace(xy) is related to the Killing form
by κ(x, y) = λTrace(x, y) for some λ – here we’ve used the fact that since sln(F) is simple,
Rad(Trace) = 0 and thus the trace pairing is nodegenerate. Since the scalar only depends on
the bilinear forms and not on any particular inputs, it suffices to compute it for any pair (x, y),
and in fact we can take x = y. For sln, we can take advantage of the fact that in the standard
basis, adhi

will be diagonal for any standard generator hi ∈ h, making Trace(ad2
hi

) easier to
compute for general n.
Take the standard h1 := e11 − e22, and consider the matrix of adh1 in the ordered basis
{x1, · · · , xk, h1, · · · , hn−1, y1, · · · , yk} which has k + (n − 1) + k = n2 − 1 elements where
k = (n2 − n)/2. We’ll first compute the Killing form with respect to this basis. In order to
compute the various [h1, vi], we recall the formula [eij , ekl] = δjkeil − δliekj . Applying this to
h1 yields

[h1, eij ] = [e11 − e22, eij ] = [e11, eij ]− [e22, eij ] = (δ1ie2j − δ1jei1)− (δ2ie2j − δ2jei2).
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We proceed to check all of the possibilities for the results as i, j vary with i ≠ j using the
following schematic: 

· a R1 · · ·
b · R2 · · ·
C1
...

C2
... M

 .
The possible cases are:

• a : i = 1, j = 2 =⇒ [h1, eij ] = 2e12, covering 1 case.
• b : i = 2, j = 1 =⇒ [h1, eij ] = −2e21 covering 1 case.
• R1 : i = 1, j > 2 =⇒ [h1, eij ] = e1j covering n− 2 cases.
• R2 : i = 2, j > 2 =⇒ [h1, eij ] = e2j covering n− 2 cases.
• C1 : j = 1, i > 2 =⇒ [h1, eij ] = ei1 covering n− 2 cases.
• C2 : j = 2, i > 2 =⇒ [h1, eij ] = ei2 covering n− 2 cases.
• M : i, j > 2 =⇒ [h1, eij ] = 0 covering the remaining cases.

Thus the matrix of adh1 has 4(n − 2) ones and 2,−2 on the diagonal, and ad2
h1 as 4(n − 2)

ones and 4, 4 on the diagonal, yielding

Trace(ad2
h1) = 4(n− 2) + 2(4) = 4n.

On the other hand, computing the standard trace form yields

Trace(h2
1) = Trace(diag(1, 1, 0, 0, · · · )) = 2,

and so

Trace(ad2
h1) = 4n = 2n · 2 = 2n · Trace(h2

1) =⇒ λ = 2n.

50 Problem Set 3

E 50.1 Section 7 e

Problem 50.1.1 (Humphreys 7.2)
M = sl(3,F) contains a copy of L := sl(2,F) in its upper left-hand 2× 2 position. Write M as
direct sum of irreducible L-submodules (M viewed as L module via the adjoint representation):

V (0)⊕ V (1)⊕ V (1)⊕ V (2).
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Solution:
Noting that

• dimV (m) = m+ 1
• dim sl3(F) = 8
• dim(V (0)⊕ V (1)⊕ V (1)⊕ V (2)) = 1 + 2 + 2 + 3 = 8,

it suffices to find distinct highest weight elements of weights 0, 1, 1, 2 and take the irreducible
submodules they generate. As long as the spanning vectors coming from the various V (n) are
all distinct, they will span M as a vector space by the above dimension count and individually
span the desired submodules.
Taking the standard basis {v1, · · · , v8} := {x1, x2, x3, h1, h2, y1, y2, y3} for sl3(F) with yi = xti,
note that the image of the inclusion sl2(F) ↪→ sl3(F) can be identified with the span of
{w1, w2, w3} := {x1, h1, y1} and it suffices to consider how these 3× 3 matrices act.
Since any highest weight vector must be annihilated by the x1-action, to find potential highest
weight vectors one can compute the matrix of adx1 in the above basis and look for zero columns:

adx1 =



0 0 0 −2 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0


.

Thus {v1 = x1, v2 = x2, v8 = y3} are the only options for highest weight vectors of nonzero
weight, since adx1 acts nontrivially on the remaining basis elements.
Computing the matrix of adh1, one can read off the weights of each:

adh1 =



2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


.

Thus the candidates for highest-weight vectors are:

• x1 for V (2),
• x2 for one copy of V (1),
• y3 for the other copy of V (1),
• h1 or h2 for V (0).

We can now repeatedly apply the y1-action to obtain the other vectors in each irreducible
module.
For V (2):
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• v0 = x1 which has weight 2,
• v1 = y1.v0 = [y1, x1] = −h1 which has weight 0,
• v2 = 1

2y
2
1.v0 = 1

2 [y1, [y1, x1]] = −y1 which has weight -2.

Since we see h1 appears in this submodule, we see that we should later take h2 as the maximal
vector for V (0). Continuing with V (1):

• v0 = x2 which has weight 1,
• v1 = y1.v0 = [y1, x2] = x3 which has weight -1.

For the other V (1):

• v0 = y3 with weight 1,
• v1 = −y2 with weight -1.

For V (0):

• v0 = h2.

We see that we get the entire basis of sl3(F) this way with no redundancy, yielding the desired
direct product decomposition.

Problem 50.1.2 (Humphreys 7.5)
Suppose char F = p > 0, L = sl(2,F). Prove that the representation V (m) of L constructed
as in Exercise 3 or 4 is irreducible so long as the highest weight m is strictly less than p, but
reducible when m = p.

Note: this corresponds to the formulas in lemma
7.2 parts (a) through (c), or by letting L ↷ F2

in the usual way and extending L ↷ F[x, y] by
derivations, so l.(fg) = (l.f)g + f(l.g) and taking
the subspace of homogeneous degree m polynomials〈
xm, xm−1y, · · · , ym

〉
to get an irreducible module

of highest weight m.

Solution:
The representation V (m) in Lemma 7.2 is defined by the following three equations, where
v0 ∈ Vm is a highest weight vector and vk := ykv0/k!:

1. h · vi = (m− 2i)vi
2. y · vi = (i+ 1)vi+1
3. x · vi = (m− i+ 1)vi−1.

Supposing m < p, the vectors {v0, v1, · · · , vm} still span an irreducible L-module since it
contains no nontrivial L-submodules, just as in the characteristic zero case.
However, if m = p, then note that y.vm−1 = (m − 1 + 1)vm = 0vm = 0 and consider the set
{v0, · · · , vm−1}. This spans an m-dimensional subspace of V , and the equations above show
it is invariant under the L-action, so it yields an m-dimensional submodule of V (m). Since
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dimF V (m) = m+ 1, this is a nontrivial proper submodule, so V (m) is reducible.

Problem 50.1.3 (Humphreys 7.6)
Decompose the tensor product of the two L-modules V (3), V (7) into the sum of irreducible
submodules: V (4)⊕V (6)⊕V (8)⊕V (10). Try to develop a general formula for the decomposition
of V (m)⊗ V (n).

Solution:
By a theorem from class, we know the weight space decomposition of any sl2(C)-module V
takes the following form:

V = V−m ⊕ V−m+2 ⊕ · · · ⊕ Vm−2 ⊕ Vm,

where m is a highest weight vector, and each weight space Vµ is 1-dimensional and occurs with
multiplicity one. In particular, since V (m) is a highest-weight module of highest weight m,
we can write

V (3) = V−3 ⊕ V−1 ⊕ V1 ⊕ V3

V (7) = V−7 ⊕ V−5 ⊕ V−3 ⊕ V−1 ⊕ V1 ⊕ V3 ⊕ V5 ⊕ V7,

and tensoring these together yields modules with weights between −3−7 = −10 and 3+7 = 10:

V (3)⊗ V (7) = V−10 ⊕ V−8
⊕2 ⊕ V−6

⊕3 ⊕ V−4
⊕4 ⊕ V−2

⊕4

⊕ V0
⊕4

⊕ V2
⊕4 ⊕ V4

⊕4 ⊕ V6
⊕3 ⊕ V8

⊕2 ⊕ V10.

This can be more easily parsed by considering formal characters:

ch(V (3)) = e−3 + e−1 + e1 + e3 =
ch(V (7)) = e−7 + e−5 + e−3 + e−1 + e1 + e3 + e5 + e7

ch(V (3)⊗ V (7)) = ch(V (3)) · ch(V (7))

= (e−10 + e10) + 2(e−8 + e8) + 3(e−6 + e6)
+ 4(e−4 + e4) + 4(e−2 + e2) + 4

= (e−10 + e10) + 2(e−8 + e8) + 3(e−6 + e6)
+ 4 ch(V (4)),

noting that ch(V (4)) = e−4 + e−2 + e2 + e4 and collecting terms.
To see that V (3)⊗V (7) decomposes as V (4)⊕V (6)⊕V (8)⊕V (10) one can check for equality
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of characters to see that the various weight spaces and multiplicities match up:

ch(V (4)⊕ V (6)⊕ V (8)⊕ V (10)) = ch(V (4)) + ch(V (6)) + ch(V (8)) + ch(V (10)

=
(
e−4 + · · ·+ e4

)
+
(
e−6 + · · ·+ e6

)
+
(
e−8 + · · ·+ e8

)
+
(
e−10 + · · ·+ e10

)

= 2 ch(V (4)) + (e−6 + e6)
+ ch(V (4)) + (e−6 + e6) + (e−8 + e8)
+ ch(V (4)) + (e−6 + e6) + (e−8 + e8) + (e−10 + e10)

= 4 ch(V (4)) + 3(e−6 + e6)
+ 2(e−8 + e8) + (e−10 + e10),

which is equal to ch(V (3)⊗ V (7)) from above.
More generally, for two such modules V,W we can write

V ⊗F W =
⊕
λ∈h∨

⊕
µ1+µ2=λ

Vµ1 ⊗F Wµ2 ,

where we’ve used the following observation about the weight of h acting on a tensor product
of weight spaces: supposing v ∈ Vµ1 and w ∈Wµ2 ,

h.(v ⊗ w) = (hv)⊗ w + v ⊗ (hw)
= (µ1v)⊗ w + v ⊗ (µ2w)
= (µ1v)⊗ w + (µ2v)⊗ w
= (µ1 + µ2)(v ⊗ w),

and so v ⊗ w ∈ Vµ1+µ2 .
Taking V (m1), V (m2) with m1 ≥ m2 then yields a general formula:

V (m1)⊗F V (m2) =
m1+m2⊕

n=−m1−m2

⊕
a+b=n

Va ⊗F Vb =
m2+m1⊕

n=m1−m2

V (n).

E 50.2 Section 8 e

Problem 50.2.1 (Humphreys 8.9)
Prove that every three dimensional semisimple Lie algebra has the same root system as sl(2,F),
hence is isomorphic to sl(2,F).
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Solution:
There is a formula for the dimension of L in terms of the rank of Φ and its cardinality, which
is more carefully explained in the solution below for problem 8.10:

dim g = rank Φ + ♯Φ.

Thus if dimL = 3 then the only possibility is that rank Φ = 1 and ♯Φ = 2, using that
rank Φ ≤ ♯Φ and that ♯Φ is always even since each α ∈ Φ can be paired with −α ∈ Φ. In
particular, the root system Φ of L must have rank 1, and there is a unique root system of rank
1 (up to equivalence) which corresponds to A1 and sl2(F).
By the remark in Humphreys at the end of 8.5, there is a 1-to-1 correspondence between pairs
(L,H) with L a semisimple Lie algebra and H a maximal toral subalgebra and pairs (Φ,E)
with Φ a root system and E ⊇ Φ its associated Euclidean space. Using this classification, we
conclude that L ∼= sl2(F).

Problem 50.2.2 (Humphreys 8.10)
Prove that no four, five or seven dimensional semisimple Lie algebras exist.

Solution:
We can first write

g = n− ⊕ h⊕ n+, n+ :=
⊕
α∈Φ+

gα, n− :=
⊕
α∈Φ+

g−α.

Writing N := n+⊕n− = ⊕
α∈Φ gα, we note that dimF gα = 1 for all α ∈ Φ. Thus dimFN = ♯Φ

and

dimF g = dimF h + ♯Φ.

We can also use the fact that dimF h = rank Φ := dimR RΦ, the dimension of the Euclidean
space spanned by Φ, and so we have a general formula

dimF g = rank Φ + ♯Φ,

which we’ll write as d = r + f .
We can observe that f ≥ 2r since if B := {α1, · · · , αr} is a basis for Φ, no −αi is in B but
{±α1, · · · ,±αr} ⊆ Φ by the axiomatics of a root system. Thus

dimF g = r + f ≥ r + 2r = 3r.

We can now examine the cases for which d = r + f = 4, 5, 7:

• r = 1: as shown in class, there is a unique root system A1 of rank 1 up to equivalence
and satisfies f = 2 and thus d = 3, which is not a case we need to consider.

• r = 2: this yields d ≥ 3r = 6, so this entirely rules out d = 4, 5 as possibilities for a
semisimple Lie algebra. Using that every α ∈ Φ is one of a pair +α,−α ∈ Φ, we in
fact have that f is always even – in other words, Φ = Φ+∐Φ− with ♯Φ+ = ♯Φ−, so
f := ♯Φ = 2 · ♯Φ+. Thus d = r + f = 2 + f is even in this case, ruling out d = 7 when
r = 2.

• r ≥ 3: in this case we have d ≥ 3r = 9, ruling out d = 7 once and for all.
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E 51.1 Section 9 e

Proposition 51.1.1(Humphreys 9.2).
Prove that Φ∨ is a root system in E, whose Weyl group is naturally isomorphic to W; show
also that ⟨α∨, β∨⟩ = ⟨β, α⟩, and draw a picture of Φ∨ in the cases A1, A2, B2, G2.

Solution:
We recall and introduce some notation:

∥α∥2 := (α, α)

⟨β, α⟩ := 2(β, α)
∥α∥2

= 2(β, α)
(α, α)

sα(β) = β − 2(β, α)
∥α∥2

α

= β − 2(β, α)
(α, α) α

α∨ := 2
∥α∥2

α = 2
(α, α)α.

Claim: 〈
α∨, β∨〉 = ⟨β, α⟩.
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Proof (?).
This is a computation:

〈
α∨, β∨〉 = 2(α∨, β∨)

∥β∨∥2

= 2(α∨, β∨)
(β∨, β∨)

=
2
(

2α
∥α∥2 ,

2β
∥β∥2

)
(

2β
∥β∥2 ,

2β
∥β∥2

)
= 23∥β∥4(α, β)

22∥α∥2∥β∥2(β, β)

= 23∥β∥4(α, β)
22(α, α)∥β∥2∥β∥2

= 2(α, β)
(α, α)

= ⟨β, α⟩.

■

Claim: Φ∨ is a root system.
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Proof (?).
The axioms can be checked individually:

• R1: there is a bijection of sets

Φ ∼−→Φ∨

α 7→ α∨,

thus ♯Φ∨ = ♯Φ <∞. To see that RΦ∨ = E, for v ∈ E, use the fact that RΦ = E
to write v = ∑

α∈Φ cαα, then

v =
∑
α∈Φ

cαα

=
∑
α∈Φ

cα
∥α∥2

2 · 2
∥α∥2

α

:=
∑
α∈Φ

cα
∥α∥2

2 α∨

=
∑

α∨∈Φ∨

dα∨α∨, dα∨ := 1
2cα

∥∥∥α2
∥∥∥,

so v ∈ RΦ∨. Finally, 0 ̸∈ Φ∨ since 2
(α,α)α ̸= 0 since α ∈ Φ =⇒ α ̸= 0, and

2/(α, α) is never zero.

• R2: It suffices to show that if λα∨ = β∨ ∈ Φ∨ then λ = ±1 and β∨ = α∨. So
suppose λα∨ = β∨, then

λ
2
∥α∥2

α = 2
∥β∥2

β =⇒ β = λ
∥β∥2

∥α∥2
α := λ′α,

and since Φ satisfies R2, we have λ′ = ±1 and β = α. But then

±1 = λ
∥β∥2

∥α∥2
= λ
∥α∥2

∥α∥2
= λ.

Finally, if α = β then α∨ = β∨ since Φ,Φ∨ are in bijection.

■
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Proof (of R3 and R4).
Continuing:

• R3: It suffices to show that if α∨, β∨ ∈ Φ∨ then sα∨(β∨) = γ∨ for some γ∨ ∈ Φ∨.
This follows from a computation:

sα∨(β∨) = β∨ −
〈
β∨, α∨〉α∨

= β∨ − ⟨α, β⟩α∨

= 2β
∥β∥2

− ⟨α, β⟩ 2α
∥α∥2

= 2β
∥β∥2

− 2(α, β)
(β, β)

2α
∥α∥2

= 2β
∥β∥2

− 2(α, β)
∥β∥2

2α
∥α∥2

= 2
∥β∥2

(
β − 2(α, β)

∥α∥2
α

)

= 2
(β, β)

(
β − 2(β, α)

∥α∥2
α

)

= 2
(β, β)σα(β)

= 2
(σα(β), σα(β))σα(β)

:= (σα(β))∨,

where we’ve used that σα is an isometry with respect to the symmetric bilinear
form (−,−).

• R4: This follows directly from the formula proved in the claim at the beginning:〈
α∨, β∨〉 = ⟨β, α⟩ ∈ Z,

since α, β ∈ Φ and Φ satisfies R4.

■

Claim: There is an isomorphism of groups W(Φ) ∼−→W(Φ∨).
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Proof (?).
There is a map of Weyl groups

ψ̃ :W(Φ) ∼−→W(Φ∨)
sα 7→ sα∨ ,

which is clearly a bijection of sets with inverse sα∨ 7→ sα. Since it is also a group
morphism, this yields an isomorphism of groups.

■

Remark 51.1.2: The following are pictures of Φ∨ in the stated special cases:

• A1: Writing Φ(A1) = {α = e1 − e2,−α = e2 − e1} ⊆ R2, we have (α, α) =
√

2 and thus
Φ(A1)∨ =

{√
2α,−

√
2α
}

:

• A2: Writing Φ(A2) = {e1 − e2, e1 − e3, e2 − e1, e2 − e3, e3 − e1, e3 − e2} ⊆ R3, noting
that every root has length

√
2, the dual results in a scaled version of A2:

51.1 Section 9 162



51 Problem Set 5

• B2: Let Φ(B2) = {e1,−e1, e2,−e2, e1 + e2, e1 − e2,−e1 + e2,−e1 − e2} with α = e1 the
short root at β = −e1 + e2 the long root, taking the dual fixes the short roots ±e1 and
±e2, and normalizes the lengths of the long roots ±e1 ± e2 to 1:
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• G2: Φ(G2) is shown here in gray, with Φ(G2)∨ in green:
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Proposition 51.1.3(Humphreys 9.3).
In Table 1, show that the order of σασβ in W is (respectively) 2, 3, 4, 6 when θ = π/2, π/3 (or
2π/3 ), π/4 (or 3π/4 ), π/6 (or 5π/6 ).

Note that σασβ = rotation through 2θ.

Solution:
Given the hint, this is immediate: if sαsβ = R2θ is a rigid rotation through an angle of 2θ,
then it’s clear that

R2
2· π

2
= R3

2· π
3

= R4
2· π

4
= R6

2· π
6

= id,

since these are all rotations through an angle of 2π.
To prove the hint, note that in any basis, a reflection has determinant −1 since it fixes an
n − 1-dimensional subspace (the hyperplane Hα of reflection) and negates its 1-dimensional
complement (generated by the normal to Hα). On the other hand, det(sαsβ) = (−1)2 = 1 and
is an isometry that only fixes the intersection Hα = Hβ = {0}, so it must be a rotation.
To see that this is a rotation through an angle of exactly 2θ, consider applying sβ ◦ sα to
a point P . Letting Hα, Hβ by the corresponding hyperplanes. We then have the following
geometric situation:
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We then have θ1 + θ2 = θ, noting that the angle between α and β is equal to the angle
between the hyperplanes Hα, Hβ. The total angle measure between P and sβ(sα(P )) is then
2θ1 + 2θ2 = 2θ.

Proposition 51.1.4(Humphreys 9.4).
Prove that the respective Weyl groups of A1 ×A1, A2, B2, G2 are dihedral of order 4, 6, 8, 12.
If Φ is any root system of rank 2 , prove that its Weyl group must be one of these.

Solution:
In light of the fact that

D2n =
〈
s, r

∣∣∣ rn = s2 = 1, srs−1 = r−1
〉

where r is a rotation and s is a reflection, for the remainder of this problem, let s := sα and
r := sαsβ after choosing roots α and β.

• A1 × A1: we have Φ(A2) = ±e1,±e2, and setting α = e1, β = e2 yields θ = π/2. We
have

W(A2) = {id, sα, sβ, sαsβ}
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where s2
α = s2

β = 1, sαsβ is rotation through 2θ = π radians, and (sαsβ)2 = id. Setting
r = sα, s = sαsβ yields r2 = s2 = id and srs = s, which are the defining relations for
D4.

• A2: there is an inscribed triangle in the regular hexagon formed by the convex
hull of the roots (see the dotted triangle below), and the reflections sα about
the hyperplanes Hα restrict to precisely the symmetries of this triangle, yielding D6:

Alternatively, choose a simple system ∆ = {α = e1, β = −e1 − e2}, then
W(A2) = ⟨sα, sαsβ⟩ is enough to generate the Weyl group. Since we have
s := sα =⇒ s2 = 1 and r := sαsβ =⇒ r3 = 1 (since θ = π/3), these satisfy
the relations of D6.

• B2: there is similarly a square on which the hyper-
plane reflections act on, highlighted with dotted lines here:
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Since the sα act faithfully as the symmetries of a square, we have W(B2) ∼= D8.
Alternatively, take α = e1 and β = −e1 + e2 and set s = sα, r = sαsβ. Then
W(B2) = ⟨s, r⟩ and since s2 = r4 = e (since here θ = π/4) and they satisfy the proper
commutation relation, this yields precisely the relations for D2n, n = 4.

• G2: In this case, the convex hull of the short roots form a hexagon,
on which the hyperplane reflections precisely restrict to symmetries:
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This yields W(G2) ∼= D12. Alternatively, take α = e1 and β the long root in quadrant
II, set s = sα, r = sαsβ, then s2 = r6 = 1 since θ = π/6 and again the commutation
relations for D2n, n = 6 are satisfied.

Finally, for any root system Φ of rank 2, we will have E(Φ) = ⟨s := sα, r := sαsβ⟩. Because
θ is restricted to one of the angles in Table 1 in Humphreys §9.4, i.e. the angles discussed in
problem 9.3 above, the order of s is always 2 and the order of r is one of 4, 6, 8, 12. Since
srs−1 = srs = r−1 in all cases, this always yields a dihedral group.

E 51.2 Section 10 e

Proposition 51.2.1(Humphreys 10.1).
Let Φ∨ be the dual system of Φ,∆∨ =

{
α∨

∣∣∣ α ∈ ∆
}

. Prove that ∆∨ is a base of Φ∨.
Compare Weyl chambers of Φ and Φ∨.
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Solution:
Suppose that ∆ is a base of Φ. We can use the fact that bases are in bijective correspondence
with Weyl chambers via the correspondence

∆→WC(∆) :=
{
v ∈ E

∣∣∣ (v, δ) > 0 ∀δ ∈ ∆
}
,

sending ∆ to all of the vectors making an acute angle with all simple vectors δ ∈ ∆, or
equivalently the intersection of the positive half-spaces formed by the hyperplanes Hδ for
δ ∈ ∆.
The claim is that WC(∆∨) = WC(∆), i.e. the Weyl chamber is preserved under taking duals.
This follows the fact that if v ∈ WC(∆), then (v, δ) > 0 for all δ ∈ ∆. Letting δ∨ ∈ ∆∨, we
have

(v, δ∨) >
(
v,

2
(δ, δ)δ

)
= 2(v, δ)

(δ, δ) > 0

using that every term in the last step is non-negative. Since this works for every δ∨ ∈ ∆∨,
this yields v ∈ WC(∆∨), and a similar argument shows the reverse containment. So ∆∨

corresponds to a fundamental Weyl chamber and thus a base.

Proposition 51.2.2(Humphreys 10.9).
Prove that there is a unique element σ in W sending Φ+to Φ−(relative to ∆ ). Prove that any
reduced expression for σ must involve all σα(α ∈ ∆). Discuss ℓ(σ).

Solution:
The existence and uniqueness of such an element follows directly from the fact that W acts
simply transitively on the set of bases, and since ∆ and −∆ are both bases, there is some
w0 ∈ W such that w0(∆) = −∆ and consequently w0(Φ+) = Φ−. Since ℓ(α) = n(α) ≤ ♯Φ+

for any root α and n(w0) = ♯Φ+ by definition, w0 must be the longest element in W , i.e. ℓ(w0)
is maximal.
Any reduced expression for w0 must involve all sα – if not, and say sα doesn’t occur in any
reduced expression for w0, then w0 does not change the sign of α since every sβ for β ̸= α ∈ ∆
changes the sign of β and acts by permutations on Φ+ \{β}. However, in this case, w′

0 := w0sα
satisfies n(w′

0) = n(w0)+1 since w′
0 necessarily changes the sign of α, contradicting maximality

of w0.
Finally, we have ℓ(w0) = n(w0) = ♯Φ+.

E 51.3 Section 11 e

Proposition 51.3.1(Humphreys 11.3).
Use the algorithm of (11.1) to write down all roots for G2.
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Do the same for C3:  2 −1 0
−1 2 −1

0 −2 2



Solution:
Note that it suffices to find all positive roots, since Φ = Φ+∐Φ− once a simple system ∆
is chosen. Since ♯Φ(G2) = 12, it thus suffices to find 6 positive roots. For G2, the Dynkin
diagram indicates one long and one short root, so let α be short and β be long. In this system
we have

⟨α, α⟩ = ⟨β, β⟩ = 2
⟨α, β⟩ = −1
⟨β, α⟩ = −3.

• The β root string through α: since ht(α) = 1 and β − α ̸∈ Φ, we have r = 0. Since
q = −⟨α, β⟩ = −(−1) = 1, we obtain the string α, α+ β.

• The α root string through β: since ht(β) = 1 and α− β ̸∈ Φ we have r = 0 again. Here
q = −⟨α, β⟩ = −(−3) = 3, we obtain β, β + α, β + 2α, β + 3α

• We know that the α root strings through any of the above roots will yield nothing new.

• The β root strings through α+ β, β + 2α turn out to yield no new roots.

• The β root string through β+ 3α: since (β+ 3α)−β = 3α ̸∈ Φ, using that only ±α ∈ Φ,
we have r = 0. We also have

r − q = ⟨β + 3α, β⟩ = ⟨β, β⟩+ 3⟨α, β⟩ = 2 + 3(−1) = −1,

we have q = 1 and obtain β + 3α, 2β + 3α.

Combining these yields 6 positive roots:

Φ+(G2) = {α, α+ β, β, β + 2α, β + 3α, 2β + 3α} .

For C3, there are 2 · 32 = 18 total roots and thus 9 positive roots to find. Let α, β, γ be the
three ordered simple roots, then the Cartan matrix specifies

⟨α, α⟩ = ⟨β, β⟩ = ⟨γ, γ⟩ = 2
⟨β, α⟩ = ⟨α, β⟩ = −1
⟨α, γ⟩ = ⟨γ, α⟩ = 0

⟨β, γ⟩ = −1
⟨γ, β⟩ = −2.

• The α root string through β: r = 0, q = −⟨α, β⟩ = 1⇝ α, α+ β.
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• The β root string through γ: r = 0, q = −⟨γ, β⟩ = 2⇝ γ, γ + β, γ + 2β.
• The γ root string through α: here r = q = 0 since ⟨γ, α⟩ = 0.
• The α root string through α+ β: r = 0 since α+ β − γ ̸∈ Φ, and r − 1 = ⟨α+ β, γ⟩ =
−1 =⇒ q = 1⇝ α+ β + γ.

• The β root string through α + β + γ: here r = 1 since (α + β + γ) − 2γ ̸∈ Φ, and
r − q = ⟨α+ β + γ, β⟩ = −1 + 2 + 2 = −1 =⇒ q = 2⇝ α+ 2β + γ, α+ 3β + γ.

This yields 9 positive roots:

Φ+(C3) = {α, β, γ, α+ β, γ + β, γ + 2β, α+ β + γ, α+ 2β + γ, α+ 3α+ γ} .

52 Problem Set 6

E 52.1 Section 17 e

Proposition 52.1.1(17.1).

Proposition 52.1.2(17.3).

E 52.2 Section 18 e

Problem 52.2.1 (18.1)

Problem 52.2.2 (18.4)

E 52.3 Section 20 e
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52 ToDos

Problem 52.3.1 (20.3)
Do one type that is not An.

Problem 52.3.2 (20.5)

Problem 52.3.3 (20.8)

ToDos

List of Todos

Check, might have gotten this backward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

52.3 Section 20 173



52

Definitions

1.1.3 Definition – Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.6 Definition – Abelian Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.7 Definition – Morphisms of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.9 Definition – Subobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Definition – Linear Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Definition – Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Definition – Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Definition – Simple Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.1 Definition – Derived series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Definition – Solvable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.8 Definition – Radical and semisimple . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 Definition – Lower central series and nilpotent algebras . . . . . . . . . . . . . . . 14
5.1.8 Definition – ad-nilpotent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2.3 Definition – Bilinear form terminology . . . . . . . . . . . . . . . . . . . . . . . . 23
9.1.7 Definition – Killing form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10.2.1 Definition – Direct sums of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 29
11.3.1 Definition – L-modules and representations . . . . . . . . . . . . . . . . . . . . . . 31
11.3.4 Definition – Morphism of L-modules . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.3.6 Definition – Submodules, irreducible/simple modules . . . . . . . . . . . . . . . . 32
11.3.8 Definition – Quotient modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.1.1 Definition – Natural representation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.1.4 Definition – Direct sums of L-modules . . . . . . . . . . . . . . . . . . . . . . . . 33
12.1.5 Definition – Completely reducible modules . . . . . . . . . . . . . . . . . . . . . . 33
12.1.8 Definition – Indecomposable modules . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.1.16 Definition – Trivial modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.1.17 Definition – Homs, Tensors, and duals . . . . . . . . . . . . . . . . . . . . . . . . . 34
13.1.3 Definition – Casimir element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15.1.2 Definition – Weight decomposition and weight spaces . . . . . . . . . . . . . . . . 41
15.1.5 Definition – Highest weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
16.1.2 Definition – Toral subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
16.1.6 Definition – Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
20.3.2 Definition – Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
21.2.1 Definition – Root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
21.2.2 Definition – Weyl groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
22.0.3 Definition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
22.0.6 Definition – Dual root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
22.1.1 Definition – Ranks of root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
23.2.1 Definition – Base (simple roots) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
24.0.2 Definition – Height, positive/negative roots . . . . . . . . . . . . . . . . . . . . . . 68
24.0.5 Definition – Regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
24.0.8 Definition – Decomposable roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Definitions 174



52

25.0.4 Definition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
26.1.3 Definition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
27.1.1 Definition – Irreducible root systems . . . . . . . . . . . . . . . . . . . . . . . . . 77
28.1.1 Definition – Cartan matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
28.2.1 Definition – Coxeter graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
28.2.4 Definition – Dynkin diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
29.0.4 Definition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
31.1.2 Definition – The Universal Enveloping Algebra . . . . . . . . . . . . . . . . . . . . 90
32.1.1 Definition – Free Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
33.1.1 Definition – Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
35.1.3 Definition – Locally nilpotent and the exponential . . . . . . . . . . . . . . . . . . 100
37.1.1 Definition – Integral weights and the root lattice . . . . . . . . . . . . . . . . . . . 103
37.1.3 Definition – Dominant weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
37.1.7 Definition – Fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
37.3.1 Definition – ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
37.6.1 Definition – Weight spaces and weights for L-modules . . . . . . . . . . . . . . . . 106
38.1.1 Definition – Maximal vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
38.1.2 Definition – Highest weight vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 107
38.1.7 Definition – Borel subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
38.1.10 Definition – Highest weight modules . . . . . . . . . . . . . . . . . . . . . . . . . . 108
41.0.2 Definition – Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
42.2.3 Definition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

175



52

Theorems

4.1.2 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.6 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.10 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1 Proposition – Nilpotent implies solvable . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.5 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.10 Theorem – Engel’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3.1 Theorem – Lie’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2.5 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.2 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.1.2 Theorem – Cartan’s criterion for linear Lie algebras . . . . . . . . . . . . . . . . . 25
10.2.4 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.1.1 Theorem – In semisimples, every derivation is inner . . . . . . . . . . . . . . . . . 31
12.1.12 Theorem – Jordan-Holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12.1.14 Theorem – Schur’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13.2.3 Theorem – Weyl’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14.2.1 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
15.2.3 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
17.1.2 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
17.2.1 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
17.3.1 Proposition – Big! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
18.1.1 Proposition – Big! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
18.2.5 Proposition – A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
19.1.1 Proposition – A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
19.1.2 Proposition – B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
20.1.3 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
24.0.9 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
24.0.10 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
25.0.3 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
26.1.1 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
27.1.2 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
29.0.2 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
30.0.1 Proposition – Step 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
30.0.2 Proposition – Step 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
30.0.3 Proposition – Step 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
31.1.5 Theorem – Poincaré-Birkhoff-Witt (PBW) Theorem . . . . . . . . . . . . . . . . . 91
33.1.3 Proposition – Serre relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
33.1.5 Theorem – Serre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
34.0.2 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
34.0.3 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
35.1.5 Theorem – Serre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Theorems 176



52

38.1.8 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
38.1.12 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
39.0.3 Theorem – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
40.1.2 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
40.1.5 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
41.0.4 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
41.0.7 Theorem – Harish-Chandra (§23.2) . . . . . . . . . . . . . . . . . . . . . . . . . . 116
42.2.5 Proposition – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
43.1.5 Theorem – Kostant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
43.2.2 Theorem – Weyl’s Character Formula . . . . . . . . . . . . . . . . . . . . . . . . . 124
51.1.1 Proposition – Humphreys 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
51.1.3 Proposition – Humphreys 9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
51.1.4 Proposition – Humphreys 9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
51.2.1 Proposition – Humphreys 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
51.2.2 Proposition – Humphreys 10.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
51.3.1 Proposition – Humphreys 11.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
52.1.1 Proposition – 17.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
52.1.2 Proposition – 17.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

177



52

Exercises

1.1.4 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.8 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.8 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.7 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.8 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.5 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.7 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.9 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.3 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.6 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.1.5 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.1.4 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
21.2.5 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
22.0.7 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
44.1.3 Exercise – ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Exercises 178



52 List of Figures

Figures

List of Figures

Figures 179


	Table of Contents
	Finite-dimensional Semisimple Lie Algebras over {\mathbf{C}} (Wednesday, August 17)
	Humphreys 1.1
	Humphreys 1.2: Linear Lie Algebras

	Friday, August 19
	Humphreys 1.3
	Humphreys 2.1
	Humphreys 2.2

	Monday, August 22
	Humphreys 2.3: Automorphisms

	Solvable and Nilpotent Lie Algebras (Wednesday, August 24)
	Humphreys 3.1
	Humphreys 3.2

	Friday, August 26
	3.2: Engel's theorem
	3.3: Proof of Engel's theorem

	Monday, August 29
	Continuation of proof and corollaries
	Chapter 4: Theorems of Lie and Cartan
	4.1: Lie's Theorem

	Wednesday, August 31
	Section 4.1, continuing the proof
	Section 4.3

	Friday, September 02
	4.2: Jordan-Chevalley decomposition

	Wednesday, September 07
	4.3: Cartan's criterion for semisimplicity

	Friday, September 09
	5.1: The Killing form
	5.2: Simple Ideals of L

	Monday, September 12
	5.3: Inner Derivations
	5.4: Abstract Jordan Decompositions
	6.1: Modules (Chapter 6: Complete Reducibility of Representations)

	Wednesday, September 14
	6.1: Structure theory

	Friday, September 16
	6.2: Casimir element of a representation
	6.3: Complete reducibility
	Proof of Weyl's theorem


	Monday, September 19
	Proof of Weyl's theorem (continued)
	6.4: Preservation of Jordan decomposition

	Ch. 7: Representations of {\mathfrak{sl}}_2({\mathbf{C}}) (Wednesday, September 21)
	7.1: Weights and Maximal Vectors
	7.2: Classification of Irreducible {\mathfrak{sl}}_2({\mathbf{C}}){\hbox{-}}Modules

	Ch. 8: Root space decompositions (Friday, September 23)
	8.1: Maximal toral subalgebras and roots

	Monday, September 26
	8.1 Continued
	8.2: C_L(H)
	8.3: Orthogonality properties of \Phi.

	Wednesday, September 28
	Continued proof
	8.4: Integrality properties of \Phi

	Friday, September 30
	8.4
	8.5: Rationality properties of \Phi

	Monday, October 03
	Integrality and Rationality Properties
	Part III: Root Systems
	Ch. 9, Axiomatics. 9.1: Reflections in a Euclidean Space

	Wednesday, October 05
	Reflections in {\mathbb{E}}^n
	Abstract root systems

	Friday, October 07
	9.3: Example(s)

	Monday, October 10
	Classification of Rank 2 Root Systems
	Ch. 10 Simple Roots, 10.1 Bases and Weyl Chambers

	Wednesday, October 12
	Bases \Delta for \Phi (Friday, October 14)
	Monday, October 17
	10.3: The Weyl group

	Wednesday, October 19
	10.4: Irreducible root systems

	Friday, October 21
	11.1: The Cartan Matrix
	11.2: Coxeter graphs and Dynkin diagrams

	Monday, October 24
	Proof of classification

	Wednesday, October 26
	Part V: Existence Theorem. Ch. 17: The Universal Enveloping Algebra (Monday, October 31)
	17.1: The tensor algebra and symmetric algebra

	Wednesday, November 02
	17.5: Free Lie algebras

	\S 18: Generators and Relations for Simple Lie Algebras (Friday, November 04)
	\S 18.1: Relations satisfied by L
	\S 18.2: Consequences of Serre relations S1, S2, S3

	Monday, November 07
	Wednesday, November 09
	\S 18.3: Serre's Theorem
	Proof of Serre's Theorem

	Serre's Theorem, Continued (Friday, November 11)
	Part 5: Representation Theory (Monday, November 14)
	\S 13 Abstract theory of integral weights
	\S 13.2 Dominant weights
	\S 13.3 The weight \rho
	\S 13.4: Saturated sets of weights
	\S 20: Weights and maximal vectors.
	\S 20.1

	Wednesday, November 16
	\S 20.2: Highest weight modules

	\S21.2: A sufficient condition for finite-dimensionality (Monday, November 21)
	Monday, November 28
	\S 22 Multiplicity Formulas; \S 22.5 Formal characters
	\S 23.2 Characters and Verma Modules

	Wednesday, November 30
	\S 24: Formulas of Weyl, Kostant, Steinberg; \S 24.1 functions on H {}^{ \vee }

	Friday, December 02
	Convolution Formulas
	\S 24.2 Kostant's Multiplicity Formula

	Monday, December 05
	Kostant's Character Formula
	\S 24.3 Weyl's Character Formula

	Tuesday, December 06
	Weyl Dimension Formula
	New Directions

	Useful Tricks
	Summary of main results
	Computation
	Classical Algebras
	Definitions
	Results

	Problem Set 1
	Section 1
	Section 2

	Problem Set 2
	Section 3
	Section 4

	Problem Set 3
	Section 5
	Section 6

	Problem Set 3
	Section 7
	Section 8

	Problem Set 5
	Section 9
	Section 10
	Section 11

	Problem Set 6
	Section 17
	Section 18
	Section 20

	ToDos
	Definitions
	Theorems
	Exercises
	Figures

