# Monday, October 03 ## Integrality and Rationality Properties :::{.claim} Setup: - Decompose $L = H \oplus \bigoplus _{ \alpha\in \Phi} L_{ \alpha}$ - Use the isomorphism \[ H &\iso H\dual \\ \varphi &\mapsfrom t_{ \varphi} \] to define $(\lambda, \mu) \da \kappa(t_ \lambda, t_ \mu)$ on $H$. - Choose a basis $\ts{ \alpha_i} \subseteq \Phi \subseteq H\dual$ - For any $\beta \in \Phi$, write \( \beta= \sum c_i \alpha_i \) with $c_i\in \CC$. Then \[ c_i\in \QQ .\] ::: :::{.proof title="?"} Write \( ( \beta, \alpha_j) = \sum c_i (\alpha_i, \alpha_j) \) and m \[ {2 (\beta, \alpha_j) \over (\alpha_j, \alpha_j) } = \sum c_i {2 (\alpha_i, \alpha_j) \over (\alpha_j, \alpha_j) } ,\] where the LHS is in $\ZZ$, as is $2( \alpha_i, \alpha_j) \over (\alpha_j, \alpha_j)$. On the other hand \[ {2 (\beta, \alpha_j) \over (\alpha_j, \alpha_j) } = {2 (t_ \beta, t_{\alpha_j} ) \over \kappa(t_{ \alpha_j}, \kappa_{ \alpha_j} ) } = \kappa(t_ \beta, h_{\alpha_j} ) = \beta(h_{ \alpha_j}) \] using that \( ( \alpha_j, \alpha_j) = \kappa( t_{ \alpha_j}, t_{ \alpha_j} )\neq 0 \) from before.[^more_gen] Since $\ts{ \alpha_i}$ is a basis for $H\dual$ and $(\wait, \wait)$ is nondegenerate, the matrix $[ ( \alpha_i, \alpha _j) ]_{1\leq i, j\leq n}$ is invertible. Thus so is $\left[ 2 ( \alpha_i, \alpha_j) \over (\alpha_j, \alpha_j ) \right]_{1\leq i,j \leq n}$, since it's given by multiplying each column as a nonzero scalar, and one can solve for the $c_i$ by inverting it. This involves denominators coming from the determinant, which is an integer, yielding entries in $\QQ$. [^more_gen]: More generally, \[ {2 (\lambda, \alpha)\over (\alpha, \alpha) } = \lambda(h_ \alpha) \qquad\forall \alpha\in \Phi .\] ::: :::{.remark} Given \( \lambda, \mu \in H\dual \) then \[ (\lambda, \mu) = \kappa(t_ \lambda, t_\mu) = \Trace(\ad_{t_ \lambda} \circ \ad_{t_\mu} ) = \sum_{ \alpha\in \Phi} \alpha(t_ \lambda) \cdot \alpha(t_\mu) ,\] using that both ads are diagonal in this basis, so their product is given by the products of their diagonal entries. One can write this as $\sum_{ \alpha\in \Phi} \kappa(t_ \alpha, t_ \lambda) \kappa(t_ \alpha, t_\mu)$, so we get a formula \[ ( \lambda, \mu ) = \sum_{ \alpha\in \Phi} ( \alpha, \lambda) (\alpha, \mu), \qquad (\lambda, \lambda) = \sum_{ \alpha\in \Phi} (\alpha, \lambda)^2 .\] Setting $\lambda = \beta$ and dividing by $(\beta, \beta)^2$ yields \[ {1\over (\beta, \beta)} = \sum_{ \alpha\in \Phi} {(\alpha, \beta)^2 \over (\beta, \beta)^2} \in {1\over 4}\ZZ ,\] since $(\alpha, \beta)\over (\beta, \beta)\in {1\over 2} \ZZ$. So $(\beta, \beta)\in \QQ$ and thus $(\alpha, \beta)\in \QQ$ for all \( \alpha, \beta\in \Phi \). It follows that the pairings \( (\lambda, \mu) \) on the $\QQ\dash$subspace $\EE_\QQ$ of $H\dual$ spanned by $\ts{ \alpha_i}$ are all rational. ::: :::{.claim} $(\wait, \wait)$ on $\EE_\QQ$ is still nodegenerate ::: :::{.proof title="?"} If \( \lambda\in \EE_\QQ, ( \lambda, \mu) =0 \forall \mu\in \EE_\QQ \), then $( \lambda, \alpha_i) = 0 \forall i \implies (\lambda, \nu) = 0 \forall \nu\in H\dual \implies \lambda= 0$. ::: :::{.remark} Similarly, $(\lambda, \lambda) = \sum_{ \alpha\in \Phi \subseteq \EE_\QQ} ( \alpha, \lambda)^2$ is a sum of squares of rational numbers, and is thus non-negative. Since $( \lambda, \lambda) = 0 \iff \lambda= 0$, the form on $\EE_\QQ$ is positive definite. Write $\EE \da \EE_\QQ \tensor_\QQ \RR = \RR\ts{\alpha_i}$, then $(\wait, \wait)$ extends in the obvious way to an $\RR\dash$values positive definite bilinear form on $\EE$, making it a real inner product space. ::: :::{.theorem title="?"} Let $L, H, \Phi, \EE\slice\RR$ be as above, then a. $\Phi$ is a finite set which spans $\EE$ and does not contain zero. b. If $\alpha\in \Phi$ then $-\alpha\in \Phi$ and thus is the only other scalar multiple in $\Phi$. c. If \( \alpha, \beta \in \Phi \) then \[ \beta - \beta(h_ \alpha) \alpha = \beta - {2 (\beta, \alpha) \over ( \alpha, \alpha) } \alpha\in \Phi ,\] which only depends on $\EE$. Note that this swaps $\pm \alpha$. d. If \( \alpha, \beta \in \Phi \) then $\beta(h_\alpha) = {2(\beta, \alpha) \over (\alpha, \alpha)}\in \ZZ$. Thus $\Phi$ satisfies the axioms of a **root system** in $\EE$. ::: :::{.example title="?"} Recall that for $\liesl_3(\CC)$, $\kappa(x,y) = 6 \Trace(xy)$. Taking the standard basis $\ts{v_i} \da \ts{x_i, h_i, y_i \da x_i^t}$, the matrix $\Trace(v_i v_j)$ is of the form \[ \mattt 0 0 I 0 A 0 I 0 0\qquad A \da \matt 2 {-1} {-1} 2 .\] This is far from the matrix of an inner product, but the middle block corresponds to the form restricted to $H$, which is positive definite. One can quickly check this is positive definite by checking positivity of the upper-left $k\times k$ minors, which here yields $\det(2) = 2, \det A = 4-1 = 3$. ::: ## Part III: Root Systems ## Ch. 9, Axiomatics. 9.1: Reflections in a Euclidean Space :::{.remark} Let $\EE$ be a fixed real finite-dimensional Euclidean space with inner product $(\alpha, \beta)$, we consider property (c) from the previous theorem: \[ \beta - {2( \beta, \alpha) \over (\alpha, \alpha)} \in \Phi \qquad\forall \alpha, \beta\in \Phi .\] ::: :::{.definition title="Reflections"} A **reflection** in $\EE$ is an invertible linear map on an $n\dash$dimensional Euclidean space that fixes pointwise a hyperplane $P$ (of dimension $n-1$) and sending any vector $v\perp P$ to $-v$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/LieAlgebras/sections/figures}{2022-10-03_09-52.pdf_tex} }; \end{tikzpicture} ::: :::{.remark} If $\sigma$ is a reflection sending \( \alpha\mapsto - \alpha \), then \[ \sigma_\alpha(\beta) = \beta - {2( \beta, \alpha) \over (\alpha, \alpha)} \alpha \qquad \forall \beta\in \EE .\] One can check that $\sigma_\alpha^2 = \id$. Some notes on notation: - Humphreys writes $\inp{ \beta}{ \alpha} \da {2 ( \beta, \alpha) \over (\alpha, \alpha)}$ This is linear in $\beta$ but not in $\alpha$! - More modern: $(\beta, \alpha\dual) \da \inp{ \beta}{\alpha}$ where \( \alpha\dual \da {2\alpha\over (\alpha, \alpha)} \) corresponds to $h_\alpha$. - Modern notation for the map: $s_\alpha$ instead of $\sigma_\alpha$. :::