# Friday, October 07 :::{.lemma title="?"} Let $\Phi \subseteq \EE$ be a root system with Weyl group $W$. If $\sigma\in \GL(\EE)$ leaves $\Phi$ invariant then \[ \sigma s_{\alpha} \sigma\inv = s_{ \sigma( \alpha)} \qquad\forall \alpha\in \Phi \] and \[ ( \beta, \alpha\dual) = ( \sigma(\beta), \sigma(\alpha)\dual ) \qquad \forall \alpha, \beta \in \Phi .\] ::: :::{.warnings} \[ ( \sigma( \beta), \sigma( \alpha) ) \neq (\beta, \alpha) ,\] i.e. the $(\wait)\dual$ is important here since it involves a ratio. Without the ratio, one can easily scale to make these not equal. ::: :::{.definition title="?"} Two root systems \( \Phi \subseteq \EE, \Phi' \subseteq \EE' \) are **isomorphic** iff there exists $\phi: \EE\to \EE'$ of vector spaces such that $\phi(\Phi) = \Phi'$ such that \[ (\varphi( \beta), \varphi(\alpha)\dual) = (\beta, \alpha) \da {2 (\beta, \alpha) \over (\alpha, \alpha)} \qquad\forall \alpha, \beta \in \Phi .\] ::: :::{.example title="?"} One can scale a root system to get an isomorphism: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/Moduli/sections/figures}{2022-10-07_09-19.pdf_tex} }; \end{tikzpicture} ::: :::{.remark} Note that if $\phi: \Phi \iso \Phi'$ is an isomorphism, then \[ \varphi(s_{ \alpha}( \beta)) = s_{ \varphi( \alpha)}( \varphi(\beta)) \qquad \forall \alpha, \beta\in \Phi \implies \varphi \circ s_{ \alpha} \varphi\inv = s_{ \varphi( \alpha)} .\] So $\phi$ induces an isomorphism of Weyl groups \[ W &\iso W' \\ s_{\alpha} &\mapsto s_{ \varphi( \alpha)} .\] By the lemma, an automorphism of $\Phi$ is the same as an automorphism of $\EE$ leaving $\Phi$ invariant. In particular, $W\injects \Aut( \Phi)$. ::: :::{.definition title="Dual root systems"} If $\Phi \subseteq \EE$ is a root system then the **dual root system** is \[ \Phi\dual \da \ts{ \alpha\dual \st \alpha\in \Phi}, \qquad \alpha\dual \da {2\alpha\over (\alpha, \alpha)} .\] ::: :::{.exercise title="?"} Show that $\Phi\dual$ is again a root system in $\EE$. ::: :::{.remark} One can show $W( \Phi) = W( \Phi\dual)$ and $\inp {\lambda}{ \alpha\dual} \alpha\dual = \inp{ \lambda}{ \alpha} \alpha = (\lambda, \alpha\dual)$ for all \( \alpha\in \Phi, \lambda\in \EE \), so \( s_{\alpha\dual} = s_{\alpha} \) as linear maps on $\EE$. ::: ## 9.3: Example(s) :::{.definition title="Ranks of root systems"} Let \( \Phi \subseteq \EE \) be a root system, then $\ell \da \dim_\RR \EE$ is the **rank** of $\Phi$. ::: :::{.remark} Rank 1 root systems are given by choice of $\alpha\in \RR$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/Moduli/sections/figures}{2022-10-07_09-31.pdf_tex} }; \end{tikzpicture} ::: :::{.remark} Recall ${2( \beta, \alpha) \over (\alpha, \alpha)} \in \ZZ$, and from linear algebra, $\inp{v}{w} = \norm v \cdot \norm w \cos( \theta)$ and $\norm{\alpha}^2 = ( \alpha, \alpha)$. We can thus write \[ \inp{ \beta}{ \alpha} = {2( \beta, \alpha) \over (\alpha, \alpha)} = 2{\norm \beta\over \norm \alpha} \cos (\theta), \qquad \inp \alpha \beta= 2{\norm \alpha\over \norm \beta} \cos( \theta) ,\] and so \[ \inp \alpha \beta\inp \beta \alpha = 4\cos^2( \theta) ,\] noting that $L_{ \alpha, \beta} \da \inp \alpha \beta, \inp \beta \alpha$ are integers of the same sign. If positive, this is in QI, and if negative QII. This massively restricts what the angles can be, since $0 \leq \cos^2( \theta) \leq 1$. First, an easy case: suppose $L_{ \alpha, \beta} = 4$, so $\cos^2( \theta) = 1\implies \cos( \theta) = \pm 1\implies \theta= 0, \pi$. - If $0$, then $\alpha,\beta$ are in the same 1-dimensional subspace and thus $\beta = \alpha$. In this case, \( \inp \beta \alpha = 2 = \inp \alpha \beta \). - If $\pi$, then $\alpha = - \beta$. Here $\inp \beta \alpha = -2$. So assume \( \beta\neq \pm \alpha \), and without loss of generality $\norm \beta\geq \norm \alpha$, or equivalently $\inp \alpha \beta \leq \inp \beta \alpha$. Note that if $\inp \alpha \beta\neq 0$ then \[ { \inp \beta \alpha\over \inp \alpha \beta} = {\norm{ \beta}^2 \over \norm{ \alpha}^2} .\] The other possibilities are as follows: | $\inp \alpha\beta$ | $\inp \beta\alpha$ | $\theta$ | $\norm{\beta}^2/\norm{\alpha}^2$ | |-------------------- |-------------------- |---------- |---------------------------------- | | 0 | 0 | $\pi/2$ | Undetermined | | 1 | 1 | $\pi/3$ | 1 | | -1 | -1 | $2\pi/3$ | 1 | | 1 | 2 | $\pi/4$ | 2 | | -1 | -2 | $3\pi/4$ | 2 | | 1 | 3 | $\pi/6$ | 3 | | -1 | -3 | $5\pi/6$ | 3 | Cases for the norm ratios: - $1: A_2$ - $2: B_2 = C_2$ - $3: G_2$ These are the only three irreducible rank 2 root systems. ::: :::{.lemma title="?"} Let \( \alpha, \beta\in\Phi \) lie in distinct linear subspaces of $\EE$. Then 1. If $(\alpha, \beta) > 0$, i.e. their angle is strictly acute, then $\alpha - \beta$ is a root 2. If $(\alpha, \beta) < 0$ then \( \alpha + \beta \) is a root. ::: :::{.proof title="?"} Note that (2) follows from (1) by replacing $\beta$ with $-\beta$. Assume $(\alpha, \beta) > 0$, then by the chart \( \inp \alpha \beta =1 \) or \( \inp \beta \alpha = 1 \). In the former case, \[ \Phi\ni s_{ \beta}( \alpha) = \alpha - \inp \alpha \beta \beta = \alpha- \beta .\] In the latter, \[ s_{ \alpha}(\beta) = \beta- \alpha \in \Phi\implies - (\beta- \alpha) = \alpha- \beta\in \Phi .\] ::: :::{.remark} Suppose $\rank( \Phi) = 2$. Letting \( \alpha\in \Phi \) be a root of shortest length, since $\RR\Phi = \EE$ there is some $\beta \in \EE$ not equal to $\pm \alpha$. Without loss of generality assume $\angle_{\alpha, \beta}$ is obtuse by replacing $\beta$ with $-\beta$ if necessary: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/Moduli/sections/figures}{2022-10-07_09-57.pdf_tex} }; \end{tikzpicture} Also choose $\beta$ such that $\angle_{ \alpha, \beta}$ is maximal. **Case 0**: If $\theta = \pi/2$, one gets $\AA_1\times \AA_1$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/Moduli/sections/figures}{2022-10-07_09-59.pdf_tex} }; \end{tikzpicture} We'll continue this next time. :::