# Wednesday, October 12 :::{.remark} Today: finding bases for root systems. It's not obvious they always exist, but e.g. in the previous rank 2 examples, $\alpha,\beta$ formed a base. ::: :::{.definition title="Height, positive/negative roots"} Given a base $\Delta \subseteq \Phi$, the **height** of a root $\beta = \sum_{\alpha\in \Delta} k_ \alpha \alpha$ is \[ \height(\beta) \da \sum k_ \alpha .\] If all $k_\alpha \geq 0$, we say $\beta$ is **positive** and write $\beta\in \Phi^+$. Similarly, $\beta$ is **negative** iff $k_\alpha \leq 0$ for all $\alpha$, and we write $\beta\in \Phi^-$. This decomposes a root system into $\Phi = \Phi^+ \disjoint \Phi^-$, and moreover $-\Phi^+ = \Phi^-$. ::: :::{.remark} A choice of $\Delta$ determines a partial order on $\Phi$ which extends to $\EE$, where \( \lambda\geq \mu \iff \lambda- \mu \) is a non-negative integer linear combination of elements of $\Delta$. ::: :::{.lemma title="?"} If $\Delta \subseteq \Phi$ is a base and $\alpha, \beta\in \Delta$, then \[ \alpha\neq \beta\implies ( \alpha, \beta) \leq 0 \text{ and } \alpha- \beta\not\in \Phi .\] ::: :::{.proof title="?"} We have \( \alpha\neq \pm \beta \) since $\Delta$ is a linearly independent set. By a previous lemma, if $( \alpha, \beta) > 0$ then $\beta- \alpha \in \Phi$ by a previous lemma. $\contradiction$ ::: :::{.definition title="Regular"} An element $\gamma\in \EE$ is **regular** iff $\gamma \in \EE\sm \Union_{\alpha\in \Phi} P_ \alpha$ where $P_ \alpha= \alpha^\perp$, otherwise $\gamma$ is **singular**. ::: :::{.lemma title="?"} Regular vectors exist. ::: :::{.remark} The basic fact used is that over an infinite field, no vector space is the *union* of a finite number of proper subspaces. Note that this is a union, not a sum! Given a regular vector $\gamma\in \EE$, define \[ \Phi^+(\gamma) = \ts{ \alpha\in \Phi \st (\alpha, \gamma) > 0 } ,\] the roots on the positive side of the hyperplane $\alpha^\perp$: \begin{tikzpicture} \fontsize{45pt}{1em} \node (node_one) at (0,0) { \import{/home/zack/SparkleShare/github.com/Notes/Class_Notes/2022/Fall/LieAlgebras/sections/figures}{2022-10-12_09-31.pdf_tex} }; \end{tikzpicture} This decomposes $\Phi = \Phi^+(\gamma) \disjoint \Phi^-(\gamma)$ where $\Phi^-(\gamma) \da - \Phi^+(\gamma)$. Note that $\gamma$ lies on the positive side of $\alpha^\perp$ for every $\alpha\in \Phi^+(\gamma)$. ::: :::{.definition title="Decomposable roots"} A positive root $\beta\in \Phi^+$ is **decomposable** iff $\beta = \beta_1 + \beta_2$ for $\beta_i \in \Phi^+( \gamma)$. Otherwise $\beta$ is **indecomposable**. ::: :::{.theorem title="?"} There exists a base for $\Phi$. ::: :::{.theorem title="?"} Let \( \gamma\in \EE \) be regular. Then the set $\Delta(\gamma)$ of all indecomposable roots in $\Phi^+( \gamma)$ is a base for $\Phi$. Moreover, any base for $\Phi$ arises in this way. ::: :::{.proof title="in 5 easy steps"} \envlist 1. Claim: each root in $\Phi^+( \gamma)$ is in $\ZZ_{\geq 0} \Delta( \gamma)$. The proof: if not, pick $\beta\in \Phi^+(\gamma)$ which cannot be written this way and choose it such that $(\beta, \gamma)$ is maximal (by finiteness). Since $\beta\not\in \Delta( \gamma)$, it is decomposable as $\beta = \beta_1 + \beta_2$ with \( \beta_i \in \Phi^+ \). Now \( (\beta, \gamma) = \sum (\beta_i, \gamma) \) is a sum of nonnegative numbers, so $(\beta_i, \gamma) < (\beta, \gamma)$ for $i=1,2$. By minimality, \( \beta_i\in \ZZ_{\geq 0 } \Delta(\gamma) \), but then by adding them we get \( \beta\in \ZZ_{\geq 0 } \Delta(\gamma) \). 2. Claim: if \( \alpha, \beta\in \Delta( \gamma) \) with \( \alpha\neq \beta \) then \( (\alpha, \beta) \leq 0 \). Note \( \alpha\neq - \beta \) since $(\alpha, \gamma), (\beta, \gamma) > 0$. By lemma 9.4, if $( \alpha, \beta) > 0$ then \( \alpha - \beta\in \Phi \) is a root. Then one of \( \alpha- \beta, \beta- \alpha\in \Phi^+( \gamma) \). In the first case, \( \beta + (\alpha- \beta ) = \alpha \), decomposing \( \alpha \). In the second, \( \alpha + (\beta- \alpha) = \beta \), again a contradiction. 3. Claim: \( \Delta\da \Delta( \gamma) \) is linearly independent. Suppose $\sum_{ \alpha\in \Delta} r_ \alpha \alpha = 0$ for some $r_ \alpha \in \RR$. Separate the positive terms $\alpha\in \Delta'$ and the remaining $\alpha\in \Delta''$ to write $\eps \da \sum_{ \alpha\in \Delta'}r_ \alpha \alpha = \sum_{ \beta\in \Delta''} t_\beta \beta$ where now $r_ \alpha, t_\beta > 0$. Use the two expressions for $\eps$ to write \[ (\eps, \eps) = \sum _{ \alpha\in \Delta', \beta\in \Delta''} r_ \alpha t_ \beta (\alpha, \beta) \leq 0 ,\] since $r_ \alpha t_ \beta >0$ and $(\alpha, \beta) \leq 0$. So $\eps = 0$, since $(\wait, \wait)$ is an inner product. Write $0 = (\gamma, \eps) = \sum_{ \alpha\in \Delta'} r_\alpha (\alpha, \delta)$ where $r_ \alpha > 0$ and $(\alpha, \gamma) > 0$, so it must be the case that $\Delta' = \emptyset$. Similarly $\Delta'' = \emptyset$, so $r_\alpha = 0$ for all \( \alpha\in \Delta \). 4. Claim: \( \Delta( \gamma) \) is a base for $\Phi$. Since $\Phi = \Phi^+(\gamma)\disjoint \Phi^-( \gamma)$, we have B2 by step 1. This also implies $\Delta( \gamma)$ is a basis for $\EE$, since we have linear independent by step 3. Thus $\ZZ \Delta ( \gamma) \contains \Phi$ and $\RR \Phi = \EE$. 5. Claim: every base of $\Phi$ is $\Delta( \gamma)$ for some regular $\gamma$. Given $\Delta$, choose $\gamma\in \EE$ such that $(\gamma, \alpha) > 0$ for all \( \alpha\in \Delta \). Then $\gamma$ is regular by B2. Moreover $\Phi^+ \subseteq \Phi^+( \gamma)$ and similarly $\Phi^- \subseteq \Phi^-( \gamma)$, and taking disjoint unions yields $\Phi$ for both the inner and outer sets, forcing them to be equal, i.e. $\Phi^{\pm} = \Phi^{\pm}( \gamma)$. One can check that $\Delta \subseteq \Delta( \gamma)$ using $\Phi^+ = \Phi^+( \gamma)$ and linear independence of $\Delta$ -- but both sets are bases for $\EE$ and thus have the same cardinality $\ell = \dim \EE$, making them equal. :::