# Part V: Existence Theorem. Ch. 17: The Universal Enveloping Algebra (Monday, October 31) ## 17.1: The tensor algebra and symmetric algebra :::{.remark} Let $\FF$ be an arbitrary field, not necessarily characteristic zero, and let $L\in \Lie\Alg\slice\FF$ be an arbitrary Lie algebra, not necessarily finite-dimensional. Recall that the tensor algebra $T(V)$ is the $\ZZ_{\geq 0}$ graded unital algebra where $\gr_n T(V) = T^n(V) \da V\tensorpower{\FF}{n}$ where $T^0(V) \da \FF$. Note $T(V) = \bigoplus _{n\geq 0} T^n(V)$. If $V$ has a basis $\ts{x_k}_{k\in K}$ then $T(V) \cong \FF\gens{x_k \st k\in K}$, a polynomial ring in the noncommuting variables $x_k$. Degree $n$ monomials in this correspond to pure tensors with $n$ components in $T(V)$. There is an $\FF\dash$linear map $V \mapsvia{i} T(V)$, and $T(V)$ satisfies a universal property: given any linear map $\phi\in \mods{\FF}(V, A)$ where $A$ has the structure of an associative algebra, there exists a unique $\psi\in \Assoc\Alg\slice\FF(T(V), A)$ making the diagram commute: \begin{tikzcd} V && {T(V)} \\ \\ && A \arrow["i", from=1-1, to=1-3] \arrow["{\exists !}", dashed, from=1-3, to=3-3] \arrow["\phi"', from=1-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJWIl0sWzIsMCwiVChWKSJdLFsyLDIsIkEiXSxbMCwxLCJpIl0sWzEsMiwiXFxleGlzdHMgISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDIsIlxccGhpIiwyXV0=) In fact, one can explicitly write $\psi$ as $\psi(x_{k_1}\tensor \cdots x_{k_n}) = \phi(x_k)\cdots \phi(x_{k_n})$ using the multiplication in $A$. The **symmetric algebra** and **exterior algebra** are defined as \[ S(V) \da T(V)/\gens{x\tensor y -y\tensor x \st x,y\in V}, \Extalg(V) \da T(V)/\gens{x\tensor y + y\tensor x \st x,y\in V} .\] ::: :::{.definition title="The Universal Enveloping Algebra"} Let $L\in \Lie\Alg\slice \FF$ with basis $\ts{x_k}_{k\in K}$. A **universal enveloping algebra** for $L$ is a pair $(U, i)$ where $U$ is a unital associative $\FF\dash$algebra and $i: L \to U_L$ (where $U_L$ is $U$ equipped with the commutator bracket multiplication) is a morphism of Lie algebras, i.e. \[ i([xy]) = i(x) i(y) - i(y) i(x) = [i(x) i(y) ] \quad \forall x,y\in L .\] It satisfies a universal property: for any unital associative algebra $A$ receiving a Lie algebra morphism $j: L\to A_L$, there is a unique $\phi$ in the following: \begin{tikzcd} \Lie\Alg && \Assoc\Alg \\ L && U \\ \\ && A \arrow["i", from=2-1, to=2-3] \arrow["{\exists ! \phi}", dashed, from=2-3, to=4-3] \arrow["j"', from=2-1, to=4-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNSxbMiwxLCJVIl0sWzIsMywiQSJdLFsyLDAsIlxcQXNzb2NcXEFsZyJdLFswLDAsIlxcTGllXFxBbGciXSxbMCwxLCJMIl0sWzQsMCwiaSJdLFswLDEsIlxcZXhpc3RzICEgXFxwaGkiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbNCwxLCJqIiwyXV0=) ::: :::{.remark} Uniqueness follows from the usual proof for universal objects. Existence: let \[ U(L) \da T(L) / J, \qquad J \da \gens{x\tensor y - y\tensor x - [xy] \st x,y\in L} .\] Warning: $J$ is a two-sided ideal, but is not homogeneous! One can form the required map: \begin{tikzcd} && {T(L)} \\ L \\ && {U(L)} \\ \\ && A \arrow["{i_*}"', from=2-1, to=1-3] \arrow["\pi", from=1-3, to=3-3] \arrow["{\exists ! \psi}", dashed, from=3-3, to=5-3] \arrow["{j\in \Lie\Alg(L, A)}"', from=2-1, to=5-3] \arrow["i"', from=2-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwxLCJMIl0sWzIsMCwiVChMKSJdLFsyLDIsIlUoTCkiXSxbMiw0LCJBIl0sWzAsMSwiaV8qIiwyXSxbMSwyLCJcXHBpIl0sWzIsMywiXFxleGlzdHMgISBcXHBzaSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFswLDMsImpcXGluIFxcTGllXFxBbGcoTCwgQSkiLDJdLFswLDIsImkiLDJdXQ==) This satisfies $\psi(x\tensor y - y\tensor x - [xy]) = j(x) j(y) - j(y)j(x) - j([xy]) = 0$ using the properties of $j$. $\phi$ is unique because $U(L)$ is generated by 1 and $\im i$, since $T(L)$ is generated by 1 and the image of $L = T^1(L)$. ::: :::{.remark} If $L$ is abelian, $U(L) = S(L)$ is the symmetric algebra. Note that $J \subseteq \bigoplus _{n\geq 1} T^n(L)$ so $\FF = T^0(L)$ maps isomorphically into $U(L)$ under $\pi$. So $\FF\injects U(L)$, meaning $U(L) \neq 0$, although we don't yet know if $L$ injects into $U(L)$. ::: :::{.theorem title="Poincaré-Birkhoff-Witt (PBW) Theorem"} Let $L$ be a Lie algebra with basis $\ts{x_k}_{k\in K}$, and filter $T(L)$ by $T_m \da \bigoplus _{i\leq m} T^i (L)$. Then $T_m$ is the span of words of length at most $m$ in the basis elements $x_k$. Note $T_m \cdot T_n \subseteq T_{m+n}$, and the projection $\pi: T(L) \surjects U(L)$ induces an increasing filtration $U_0 \subseteq U_1 \subseteq \cdots$ of $U(L)$. Let $G^m \da U_m / U_{m-1}$ be the $m$th graded piece. The product on $U(L)$ induces a well-defined product $G^m \times G^n \to G^{m+n}$ since $U_{m-1}\times U_{n-1} \subseteq U_{m+n-2} \subseteq U_{m+n-1}$. Extending this bilinearly to \( \bigoplus _{m\geq 0} G^m \) to form the associated graded algebra of $U(L)$. > Note that this construction generally works for any filtered algebra where the multiplication is compatible with the filtration. ::: :::{.example title="?"} Let $L \da \liesl_2(\CC)$ with ordered basis $\ts{x,h,y}$. Then $y\tensor h\tensor x\in T^3(L)$ -- denote the image of this monomial in $U(L)$ by $yhx \in U_3$. We can reorder this: \[ yhx &= hyx + [yh]x &= hyx + 2yx \qquad \in U_3 + U_2 \\ ,\] so in $G^3$ we have $yhx=hyx$. This is a general feature: reordering introduces error terms of lower degree, which are quotiented out. Continuing, \[ hyx + 2yx &= hxy + h[yx] + 2xy + 2[yx] \\ &= hxy - h^2 + 2xy - 2h \\ &= xhy + [hx]y - h^2 + 2xy - 2h \\ &= xhy + 2xy - h^2 + 2xy - 2h \\ &= xhy + 4xy - h^2 - 2h \qquad \in U_3 + U_2 + U_2 + U_2 .\] :::