# $\S 18$: Generators and Relations for Simple Lie Algebras (Friday, November 04) :::{.remark} Recall that the free Lie algebra of a set $X$, $L(X)$ satisfies a universal property: \begin{tikzcd} X && {L(X)} \\ \\ && M \arrow["\iota", hook, from=1-1, to=1-3] \arrow["{\forall \phi}"', from=1-1, to=3-3] \arrow["{\exists ! \tilde \phi}", dashed, from=1-3, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwwLCJYIl0sWzIsMCwiTChYKSJdLFsyLDIsIk0iXSxbMCwxLCJcXGlvdGEiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFswLDIsIlxcZm9yYWxsIFxccGhpIiwyXSxbMSwyLCJcXGV4aXN0cyAhIFxcdGlsZGUgXFxwaGkiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=) ::: ## $\S 18.1$: Relations satisfied by $L$ :::{.definition title="Relations"} Given an arbitrary $L\in \liealg$ and fix a set $X$ of generators for $L$ and form $LX()$, then there is a Lie algebra morphism $\pi: L(X) \surjects L$ which is surjective since $X$ generates $L$. Defining $R\da \ker \pi$, one has $L \cong L(X)/R$, so $R$ is called the **ideal of relations**. ::: :::{.remark} Let $L \in \liealg^{\fd, \ss}_{\CC}$, let $H \subseteq L$ be a maximal toral subalgebra, and $\Phi$ its root system. Fix a base $\Delta = \ts{ \alpha_1, \cdots, \alpha_\ell} \subseteq \Phi$. Recall \[ \inp{ \alpha_j}{ \alpha_i} \da {2 (\alpha_j, \alpha_i) \over (\alpha_i, \alpha_i)} = \alpha_j(h_i),\qquad g_i \da h_{\alpha_i} = {2 \alpha_i \over (\alpha_i, \alpha_i)} .\] The root strings are of the form $\beta - r \alpha, \cdots, \beta, \cdots, \beta+ q \alpha$ where $r-q = \beta(h_ \alpha)$. For any $i$ we can fix a standard $\liesl_2$ triple $\ts{x_i, h_i, y_i}$ such that $x_i\in L_{ \alpha_i}, y_i \in L_{- \alpha_i}, h_i\in [x_i y_i]$. ::: :::{.proposition title="Serre relations"} $L$ is generated as a Lie algebra by the $3\ell$ generators $X\da \ts{x_i, h_i, y_i \st 1\leq i\leq \ell}$ subject to at least the following relations: - S1: $[h_i h_j] = 0$, - S2: $[x_i y_j] = \delta_{ij} h_i$, - S3: $[h_i x_j] = \inp{ \alpha_j}{\alpha_i} x_j$ and $[h_i y_j] = - \inp{ \alpha_j}{ \alpha_i} y_j$. - $\text{S}_{ij}^+$: $\ad_{x_i}^{-\inp{ \alpha_j}{\alpha_i} + 1}(x_j) = 0$ for $i\neq j$ - $\text{S}_{ij}^-$: $\ad_{y_i}^{-\inp{ \alpha_j}{\alpha_i} + 1}(x_j) = 0$ for $i\neq j$ ::: :::{.proof title="?"} Recall that differences of simple roots are never roots, since the coefficients have mixed signs. Since \( \alpha_i - \alpha_j \not\in \Phi \), we have $[x_i y_j] = 0$ for $i\neq j$ since it would have to be in $L_{\alpha_i - \alpha_j}$. Consider the $\alpha_i$ root string through $\alpha_j$: we have $r=0$ from above, and the string is \[ \alpha, \alpha+ \alpha_i, \cdots, \alpha_j - \inp{\alpha_j}{\alpha_i} \alpha_i \] since $L_\beta = 0$ for $\beta \da \alpha_j - \qty{ \inp{\alpha_j}{ \alpha_i} + 1} \alpha_i$. The relations for $S_{ij}^\pm$ follow similarly. ::: :::{.remark} Note that these relations are all described in a way that only involves the Cartan matrix of $\Phi$, noting that changing bases only permutes its rows and columns. ::: :::{.theorem title="Serre"} These five relations form a complete set of defining relations for $L$, i.e. $L \cong L(X)/R$ where $R$ is the ideal generated by the Serre relations above. Moreover, given a root system $\Phi$ and a Cartan matrix, one can define a Lie algebra using these generators and relations that is finite-dimensional, simple, and has root system $\Phi$. ::: ## $\S 18.2$: Consequences of Serre relations S1, S2, S3 :::{.remark} Fix an irreducible root system $\Phi$ of rank $\ell$ with Cartan matrix $A$. Let $\hat L \da L(\hat X)$ where $\hat X \da \ts{\hat x_i, \hat h_i, \hat y_i \st 1\leq i\leq \ell}$. Let $\hat K \normal \hat L$ be the 2-sided ideal generated by the relations S1, S2, S3. Let $L_0 \da \hat L/\hat K$ and write $\pi$ for the quotient map $\hat L\to L_0$ -- note that $L_0$ is infinite-dimensional, although it's not yet clear that $L_0\neq 0$. We'll study $L_0$ by defining a representation of it, which is essentially the adjoint representation of $L_0$ acting on $\ts{y_i}$. ::: :::{.remark} Recall that a representation of $M\in \liealg$ is a morphism $\phi\in \liealg(M, \liegl(V))$ for $V\in\fmod$. This yields a diagram \begin{tikzcd} {} && \Assoc\Alg \\ M && {U(M)} \\ \\ && {\Endo(V)} \arrow["\iota", hook, from=2-1, to=2-3] \arrow["\phi"', from=2-1, to=4-3] \arrow["{\exists !\phi}", dashed, from=2-3, to=4-3] \end{tikzcd} > [Link to diagram](https://q.uiver.app/?q=WzAsNSxbMCwxLCJNIl0sWzIsMSwiVShNKSJdLFsyLDMsIlxcZW5kbyhWKSJdLFsyLDAsIlxcQXNzb2NcXEFsZyJdLFswLDBdLFswLDEsIlxcaW90YSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzAsMiwiXFxwaGkiLDJdLFsxLDIsIlxcZXhpc3RzICFcXHBoaSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==) Conversely given an algebra morphism $\tilde \phi: U(M) \to \Endo(V)$, and restricting $\tilde \phi$ to $M \subseteq U(M)$ gives a Lie algebra morphism $\phi: M\to \Endo(V) = \liegl(V)$. This representations of $M$ (using $\liegl(V)$) correspond to associative algebra representations of $U(M)$ (using $\Endo(V)$). Since $U(M) = T(V(\hat X))$, using the various universal properties, having a representation $V$ of $\hat L$ is equivalent to having a set map $\hat X\to \Endo(V)$, i.e. elements of $\hat X$ should act linearly on $V$. ::: :::{.remark} Let $V$ be the tensor algebra on a vector space with basis $\ts{v_1,\cdots, v_\ell}$, thinking of each $v_i$ being associated to $\hat y_i$. Write $v_1 v_2\cdots v_t \da v_1 \tensor v_2\tensor\cdots\tensor v_t$, and define elements of $\Endo(V)$ by - $\hat h_j \cdot 1 \da 0$, - $\hat h_j \cdot v_{i_1}\cdots v_{i_t} \da -\qty{ \inp{ \alpha_{i_1}}{\alpha_j} + \cdots \inp{\alpha_{i_t}}{\alpha_j} }v_{i_1}\cdots v_{i_t}$, - $\hat{y}_j\cdot v_{i_1}\cdots v_{i_t} \da v_j v_{i_1} \cdots v_{i_t}$ for $t\geq 0$, - $\hat x_j \cdot 1 \da 0$, - $\hat x_j \cdot v_i \da 0$ for all $i$, - $\hat x_j \cdot v_{i_1}\cdots v_{i_t} \da v_{i_1} \qty{ \hat x_j v_{i_2} \cdots v_{i_t}} - \delta_{i_1, j}\qty{\inp{\alpha_{i_2} }{\alpha_j} + \cdots + \inp{\alpha_{i_2} }{\alpha_j} }v_{i_2}\cdots v_{i_t}$ for $t\geq 2$. :::