# Wednesday, November 16 :::{.remark} Let $L\in \Lie\Alg^{\fd, \semisimple}$ containing $H$ with $\Phi, \Delta, W$ as usual. Recall that $V\in \mods{L}\implies V = \bigoplus _{\lambda\in H\dual} V_{ \lambda}$ where $V_{ \lambda} \da \ts{v\in V\st h.v = \lambda(h)v\, \forall h\in H}$, which we call a **weight space** when \( \lambda\neq 0 \). Note that if if $V$ is *any* representation of $V$, even finite-dimensional, $V' \da \bigoplus _{ \lambda\in H\dual} V_{ \lambda} \leq V$ is always an $L\dash$submodule. The sum is still direct since the terms correspond to eigenspaces with distinct eigenvalues. Note that if $h\in H, x\in L_{\alpha}, v\in V_{ \lambda}$, then \[ h.(x.v) &= x.(h.v) + [hx].v \\ &= \lambda(h) x.v + \alpha(h) x.v \\ &= (\lambda+ \alpha)(h) x.v ,\] so $L_{ \alpha} V_{ \lambda} \subseteq V_{ \lambda+ \alpha}$. ::: :::{.lemma title="?"} Let $V\in \mods{L}$, then a. $L_{\alpha}$ maps $V_{ \lambda}$ into $V_{ \lambda + \alpha}$, b. The sum $V' \da \sum _{ \lambda\in H\dual} V_{ \lambda}$ is direct and $V' \leq V$ is an $L\dash$submodule, c. If $\dim V < \infty$ then $V = V'$. ::: ## $\S 20.2$: Highest weight modules :::{.definition title="Maximal vectors"} A **maximal vector** in an $L\dash$module $V$ is a nonzero weight vector $v\in V_{ \lambda}$ such that $L_ \alpha.v = 0$ for all positive roots \( \alpha \in \Phi^+ \). Equivalently, $L_ \alpha .v = 0$ for all \( \alpha\in \Delta \). ::: :::{.definition title="Highest weight vectors"} A **highest weight vector** is a nonzero $v\in V_{ \lambda}$ where \( \lambda \) is maximal among all weights of $V$ with respect to the ordering $\leq$ corresponding to the choice of $\Delta$. ::: :::{.observation} If $v$ is a highest weight vector then $v$ is necessarily a maximal vector, since \( \lambda+ \alpha > \lambda \), but the converse is not necessarily true. ::: :::{.warnings} I.e., the weight of a highest weight vector need not be maximal. ::: :::{.example title="?"} In $\S 18$, $L$ is constructed using the Serre relations to get $L_0 \surjects L$ where $L$ involved $(S_{ij}^{\pm})$ and $L_0$ involved S1-S3. Recalling $y_i^{m+1} y_j = y_{ij}$, since $x_k . y_{ij} = 0$, $y_{ij}$ is a maximal vector in $L_0$ as an $L\dash$module but is *not* a highest weight vector since $\mathrm{wt} y_{ij} = (-m+1) \alpha_i - \alpha_j < - \alpha_j = \mathrm{wt}(y_j)$ and the weight is not maximal. ::: :::{.example title="?"} View $L\in \mods{L}$ via $\ad_L$, then $\S 10.4$ shows that there is a unique highest root $\tilde \alpha$ satisfying \( \tilde \alpha \geq \alpha \) for all \( \alpha\in \Phi \). Any nonzero $v\in L_{\tilde \alpha}$ is a highest weight vector for the adjoint representation. ::: :::{.definition title="Borel subalgebras"} A **Borel subalgebra** of $L$ is a maximal solvable subalgebra $B\leq L$. ::: :::{.proposition title="?"} $B \da H \oplus \bigoplus _{\alpha\in \Phi^+} L_ \alpha$ is a Borel subalgebra of $L$. ::: :::{.proof title="?"} If \( \alpha, \beta\in \Phi^+ \) then $[L_{ \alpha}, L_{ \beta}] = L_{\alpha + \beta}$ where \( \alpha + \beta\in \Phi^+ \) (if this is still a root), so $H\leq L$. One has $B^{(i)} \da [B^{(i-1)}, B^{(i-1)}] \subseteq \sum_{\height( \beta) \geq 2^{i-1} } L_{\beta}$, since bracketing elements of $H$ together will vanish (since $H$ is abelian) and bracketing height 1 roots yields height 2, bracketing height 2 yields height 4, and so on. Thus $B$ is a solvable subalgebra, since the height is uniformly bounded above by a finite number. To see that its maximal, note that any subalgebra $B' \leq L$ containing $B$, it must also contain some $L_{ - \alpha}$ for some $\alpha\in \Phi^+$. But then $B' \contains \liesl_2(\CC) = L_{ - \alpha} \oplus [ L_{ - \alpha }, L_{ \alpha}] \oplus L_{ \alpha}$ which is not solvable, so $B'$ can not be solvable. ::: :::{.remark} Let $V\in \lmod^\fd$, then $V\in \mods{B}$ by restriction and by Lie's theorem $V$ must have a common eigenvector $v$ for the action of $B$. Since $B\contains H$, $v$ is a weight vector, $[B, B] = \bigoplus _{ \alpha\in \Phi^+} L_ \alpha$ acts by commutators of operators acting by scalars, which commute, and thus this acts by zero on $v$ and makes $v$ a maximal vector in $V$. So any finite dimensional $L\dash$module as a maximal vector. ::: :::{.definition title="Highest weight modules"} A module $V\in \lmod$, possibly infinite dimensional, is a **highest weight module** if there exists a \( \lambda \in H\dual \) and a nonzero vector $v^+ \in V_{ \lambda}$ such that $V$ is generated as an $L\dash$module by $v^+$, i.e. $U(L).v^+ = V$. ::: :::{.remark} Let $x_ \alpha \in L_ \alpha, y_ \alpha\in L_{- \alpha}, h_{\alpha} = [x_ \alpha, y_ \alpha]$ be a fixed standard $\liesl_2$ triple in $L$. ::: :::{.theorem title="?"} Let $V\in \lmod$ be a highest weight module with maximal vector $v^+ \in V_{ \lambda}$. Write \( \Phi^+ = \tsl \beta 1 m \), \( \Delta = \tsl \alpha 1 \ell \), then a. $V$ is spanned by the vectors $y_{\beta_1}^{i_1}\cdots y_{ \beta_m}^{i_m} .v^+$ for $i_j\in \ZZ_{\geq 0}$. In particular, $V = \bigoplus _{ \mu\in H\dual} V_ \mu$. b. The weights of $V$ are of the form $\mu = \lambda- \sum_{i=1}^\ell k_i \alpha_i$ with $k_i\in \ZZ_{ \geq 0}$, and all weights $\mu$ satisfy $\mu \leq \lambda$. c. For each $\mu\in H\dual$, $\dim V_{ \mu} < \infty$, and for the highest weight \( \lambda \), one has $\dim V_{ \lambda} = 1$ spanned by $v^+$. d. Each $L\dash$submodule $W$ of $V$ is a direct sum of its weight spaces. e. $V$ is indecomposable in $\lmod$ with a unique maximal proper submodule and a corresponding unique irreducible quotient. f. Every nonzero homomorphic image of $V$ is also a highest weight module of the same highest weight. ::: :::{.proof title="Sketch"} \envlist a. Use the PBW theorem and extend a basis for any $B\leq L$ to a basis where the $B$ basis elements come second. Writing $L = N^ \oplus B$, one can decompose $U(L) = U(N^-) \tensor_\CC U(B)$ and get $U(L) v^+ = U(N^-)U(B)v^+ = U(N^-)U(H \oplus N^+)v^+$ b. Writing the $\beta$ in terms of $\alpha$ yields this expression. c. Clear. We'll finish the rest next time. :::