# Monday, November 28 :::{.remark} Setup: $L\in \liealg^{\fd, \semisimple}\slice \CC$ containing $H$ a maximal toral subalgebra, $\Phi \contains \Phi^+ = \tlset \beta m \contains \Delta = \tlset \alpha \ell$ with Weyl group $W$, and we have $x_i \in L_{ \alpha_i}, y_i\in L_{- \alpha_i}, h_i = [ x_i y_i]$. For $\beta\in \Phi^+$, we also wrote $x_ \beta\in L_ \beta, y_ \beta\in L_{- \beta}$. There is also a Borel $B = H \oplus \bigoplus _{\beta > 0} L_ \beta$ with $H \subseteq B \subseteq L$. We saw that if $V\in \lmod^\fd$ then $V = \bigoplus _{\mu\in H\dual} V_ \mu$ and $V$ is a highest weight module of highest weight $\lambda$ where $\lambda \in \Lambda^+ = \ts{\nu \in H\dual \st \nu(h_i) \in \ZZ_{\geq 0} \, 1\leq i\leq \ell}$. Writing $M( \lambda)$ for the Verma module $\mcu(L) \tensor_{\mcu(B)} C_{ \lambda}$, there is a unique irreducible quotient $M( \lambda) \surjects L( \lambda)$ with highest weight $\lambda$. It turns out that $L ( \lambda)$ is finite-dimensional if \( \lambda\in \Lambda^+ \). ::: :::{.question} How can we understand $L( \lambda)$ for \( \lambda\in \Lambda^+ \) better? What is $\dim L( \lambda)$? What is $\dim L( \lambda)_\mu$ (i.e. the dimensions of weight spaces)? ::: ## $\S 22$ Multiplicity Formulas; $\S 22.5$ Formal characters :::{.remark} Let \( \Lambda \subseteq H\dual \) be the lattice of integral weights. Note that \( \lambda(h_\beta) \in \ZZ \,\, \forall \beta\in \Phi \iff \lambda(h_i) \in \ZZ \) for all $1\leq i\leq \ell$. Since \( \Lambda\in \zmod \) there is a group algebra $\ZZ[ \Lambda]$, the free $\ZZ\dash$module with basis $e( \lambda)$ for \( \lambda\in \Lambda \), also written $e_ \lambda$ or $e^{ \lambda}$. This has a ring structure given by linearly extending $e( \lambda)\cdot e( \mu) \da e( \lambda+ \mu)$, so \[ \qty{ \sum a_ \lambda e( \lambda) } \cdot \qty{\sum b_ \mu e( \mu) } = \sum c_ \sigma e( \sigma), \qquad c_ \sigma\da \sum_{ \lambda+ \mu = \sigma} a_ \lambda b _{\mu} .\] Note that if $V\in \lmod^\fd$ then $V = \bigoplus _{ \mu\in H\dual} V_ \mu$, where $V_{ \mu}\neq 0\implies \mu \in \Lambda$. In this case we can define the **formal character** \[ \mathrm{ch}_V \da \sum_{ \mu\in \Lambda} (\dim V_ \mu) e( \mu) \in \ZZ[ \Lambda ] .\] ::: :::{.proposition title="?"} Let $V, W\in \lmod^\fd$, then \[ \mathrm{ch}_{V\tensor W} = \character_V \cdot \character_W .\] ::: :::{.proof title="?"} Take dimensions in the formula $(V\tensor W)_ \sigma = \sum_{ \lambda+ \mu = \sigma} V_ \lambda\tensor W_ \mu$. ::: :::{.remark} For \( \lambda\in \Lambda^+ \), we have $L( \lambda)$ (noting Humphreys uses $V( \lambda)$), we write \[ \character_ \lambda\da\character_{L( \lambda)} = \sum m_ \lambda(\mu) e( \mu) \] where $m_{\lambda}( \mu) \da \dim L( \lambda)_ \mu\in \ZZ_{\geq 0}$. ::: :::{.remark} We now involve the Weyl group to make more progress: let $W$ be the Weyl group of $(L, H)$, then $W\actson \ZZ[ \Lambda]$ by $w . e( \mu) \da e(w \mu)$ for $w\in W, \mu\in \Lambda$. So $W\to \Aut_{\Ring}(\ZZ[ \Lambda])$, and recalling that $\dim L( \lambda)_ \mu = \dim L(\lambda)_{ w \mu}$, we have \[ w. \character_{\lambda} = \sum_\mu m_ \lambda( \mu) e(w \mu) = \sum_\mu m_ \lambda(w \mu) e(w \mu) = \character_{\lambda} ,\] so $\character_ \lambda$ are $W\dash$invariant elements of the group algebra. ::: :::{.proposition title="?"} Let $f\in \ZZ[ \Lambda]^W$ be a $W\dash$invariant element, then $f$ can be written uniquely as a $\ZZ\dash$linear combination of the $\character_ \lambda$ for \( \lambda \in \Lambda^+ \), i.e. these form a $\ZZ\dash$basis: \[ \ZZ[ \Lambda]^W = \gens{\character_ \lambda\st \lambda\in \Lambda}_\ZZ .\] ::: :::{.proof title="?"} Recall every \( \lambda\in \Lambda \) is conjugate to a unique \( \lambda\in \Lambda^+ \). Since $f$ is $W\dash$invariant, we can write it as \[ f = \sum_{ \lambda\in \Lambda^+} c( \lambda) \qty{\sum_{w\in W} e( w \lambda)} \] where $c( \lambda)\in \ZZ$ and almost all are zero. Given \( \lambda\in \Lambda^+ \) with $c( \lambda)\neq 0$, a previous lemma (13.2B) shows that $\size\ts{ \mu\in \Lambda^+ \st \mu\leq \lambda} < \infty$ by a compactness argument. Set \[ M_f \da \Union_{c( \lambda) \neq 0, \lambda\in \Lambda^+} \ts{ \mu\in \Lambda^+ \st \mu\leq \lambda} ,\] all of the possible weights that could appear, then $\size M_f < \infty$ since this is a finite union of finite sets. Choose \( \lambda\in \Lambda^+ \) maximal with respect to the property that $c( \lambda)\neq 0$, and set $f' \da f- c( \lambda) \character_ \lambda$. Note that $f'$ is again $W\dash$invariant, since $f$ and $\character_ \lambda$ are both $W\dash$invariant, and $M_{ \character_ \lambda} \subseteq M_f$. However \( \lambda \not\in M_{f'} \) by maximality, since we've subtracted $c( \lambda) e(\lambda)$ off, so $\size M_{f'} < \size M_f$. Inducting on $\size M_f$, $f'$ is a $\ZZ\dash$linear combination of $\ch_{\lambda'}$ for $\lambda' \in \Lambda$, and thus so is $f$. One checks the base case $L(0) \cong \CC$ where everything acts with weight zero. Uniqueness is relegated to exercise 22.8. ::: :::{.question} Is there an explicit formula for $\character_ \lambda$ for $\lambda \in \Lambda^+$? An intermediate goal will be to understand characters of Verma modules $\character M( \lambda)$ -- note that this isn't quite well-defined yet, since this is an infinite-dimensional module and thus the character has infinitely many terms and is not an element in $\ZZ[ \Lambda]$. ::: ## $\S 23.2$ Characters and Verma Modules :::{.question} Let $\mcz(L) \subseteq \mcu(L)$ be the center of $\mcu(L)$, not to be confused with $Z(L) \subseteq L$ which is zero since $L$ is semisimple (since $Z(L)$ is an abelian ideal). How does $\mcz(L) \actson M( \lambda)$? ::: :::{.remark} Note $M( \lambda) = \mcu(L) \tensor_{\mcu(B)} \CC_{ \lambda} \cong \mcu(N^-) \tensor_\CC \CC_ \lambda$ and write $v^+$ for a nonzero highest weight vector of $M( \lambda)$. Let $z\in \mcz(L)$ and $h\in H$, then \[ h.(z.v^+) = z.(h.v^+) = z.( \lambda(h) ) v^+ = \lambda(h) v^+ ,\] and $x_ \alpha(z.v^+) = z(x_ \alpha.v^+) = 0$ for all \( \alpha\in \Phi^+ \), so $z.v^+$ is a maximal vector in $M( \lambda)$ of weight \( \lambda \), i.e. there exists $\chi_ \lambda(z)\in \CC$ such that \[ z.v^+ = \chi_ \lambda( z) v^+ \] since $\dim M( \lambda)_ \lambda = 1$. Thus there is an algebra morphism \[ \chi_ \lambda: \mcz(L) \to \CC .\] Pick a PBW basis for the Verma module $M(\lambda)$, then \[ z. y_{\beta_1}^{i_1}\cdots y_{\beta_m }^{i_m} v^+ = y_{\beta_1}^{i_1}\cdots y_{\beta_m }^{i_m} z. v^+ = \chi_ \lambda(z) y_{\beta_1}^{i_1}\cdots y_{\beta_m }^{i_m} v^+ ,\] so $z.m = \chi_ \lambda(z)m$ for all $m\in M( \lambda)$, and thus $\mcz(L)\actson M(\lambda)$ by the character $\chi_ \lambda$. Consequently, $\mcz(L)$ acts on any subquotient of $M( \lambda)$. ::: :::{.question} When is $\chi_ \lambda= \chi_ \mu$ for two integral weights \( \lambda, \mu\in \Lambda \)? :::