# Friday, December 02 ## Convolution Formulas :::{.remark} Last time: \[ \mcx \da \ts{f\in \Hom_\CC(H\dual, \CC) \st \supp f \subseteq \Union_{i=1}^n (\lambda_i - \ZZ_{\geq 0} \Phi^+) } ,\] which is a commutative associative unital algebra under convolution, where $e_{ \lambda}(\mu) = \delta_{ \lambda \mu}$ for $\mu\in H\dual$ and $e_ \lambda\convolve e_ \mu = e_{ \lambda+ \mu}$ with $e_0 = 1$. We have $\ch_{M(0)}$ which records weights $\mu = \sum_{i=1}^m -i_j \beta_j$ with $i_j\in \ZZ_{\geq 0}$, and \[ \dim M(0)_\mu \da \ch_{M(0)}(\mu) = \size \ts{\vector i \in \ZZ_{\geq 0}^m \st \sum i_j \beta_j = -\mu } \da p(\mu) \] which is the **Kostant function** -- its negative is the Kostant partition function, which records the number of ways of writing a weight as a sum like this. We'll regard finding such a count as a known or easy problem, since this can be done by enumeration. Define the **Weyl function** $q\da \prod_{\alpha \in \Phi^+} (e_{\alpha\over 2} - e_{-{\alpha \over 2}})$ where the product is convolution. For \( \alpha\in \Phi+, f_ \alpha:H\dual \to \ZZ \), define \[ f_ \alpha( \lambda) \da \begin{cases} 1 & \lambda = -k \alpha \text{ for some } k\in \ZZ_{\geq 0} \\ 0 & \text{otherwise}. \end{cases} .\] We can regard this as an infinite sum $f_ \alpha = e_0 + e_{ - \alpha} + e_{ -2 \alpha} + \cdots = \sum_{k\geq 0} e_{ -k \alpha}$. ::: :::{.lemma title="A"} \envlist a. $p = \prod_{ \alpha\in \Phi^+} f_ \alpha$, b. $(e_0 - e_{- \alpha}) \convolve f_ \alpha = e_0$, c. $q = e_\rho \convolve \prod_{ \alpha\in \Phi^+} (e_0 - e_{ - \alpha})$. ::: :::{.proof title="of lemma A"} **Part a**: The coefficient of $e_\mu$ in $\prod_{i=1}^m f_{ \beta_j}$ is the convolution \[ \sum_{i_1,\cdots, i_m \in \ZZ_{\geq 0}, -\sum i_j \beta_j = \mu } f_{\beta_1}(-i_1 \beta_1) \cdots f_{ \beta_m }(-i_m \beta_m) = p(\mu) .\] **Part b**: \[ (e_0 - e_{- \alpha}) \convolve (e_0 + e_{- \alpha} + e_{-2 \alpha} + \cdots) = e_0 + e_{ - \alpha} - e_{ - \alpha}+ e_{ -2 \alpha}- e_{ -2 \alpha} +\cdots = e_0 ,\] noting the telescoping. This can be checked rigorously by regarding these as functions instead of series. **Part c**: Recall $\rho = \sum_{ \alpha\in \Phi^+} {1\over 2}\alpha$, so $e_\rho = \prod_{ \alpha\in \Phi^+} e_{\alpha\over 2}$. Thus the RHS is \[ \prod_{ \alpha\in \Phi^+} \qty{e_{\alpha\over 2} \convolve (e_0 - e_{- \alpha}) } = \prod_{\alpha\in \Phi^+}(e_{\alpha\over 2} - e_{- \alpha\over 2} ) \da q .\] Note that $q\neq 0$ since $q(\rho) = 1$. ::: :::{.lemma title="B"} Let $w\in W$, recalling that $w.e_{\alpha} = e_{w \alpha}$, \[ wq = (-1)^{\ell(w)} q .\] ::: :::{.proof title="of lemma B"} ETS for $\alpha \in \Delta$. Recall $s_ \alpha$ permutes \( \Phi^+ \smts{\alpha} \) and $s_ \alpha(\alpha) = - \alpha$, so $s_ \alpha q$ permutes the factors $(e_{ \beta\over 2} - e_{-{\beta\over 2}})$ for $\beta\neq \alpha$ and negates $e_{\alpha\over 2} - e_{- \alpha\over 2}$. ::: :::{.lemma title="C"} $q$ is invertible: \[ q\convolve p \convolve e_{\rho} = e_0 \quad \implies q\inv = \rho \convolve e_\rho .\] ::: :::{.proof title="of lemma C"} Use lemma A: \[ q\convolve \rho \convolve e_{-\rho} &= e_\rho \convolve \qty{ \prod_{ \alpha\in \Phi^+} (e_0 - e_{ - \alpha} ) } \convolve p \convolve e_{ - \rho} \qquad \text{by C} \\ &= \qty{ \prod_{ \alpha\in \Phi^+} (e_0 - e_{ - \alpha} ) } \convolve p \\ &= \qty{ \prod_{ \alpha\in \Phi^+} (e_0 - e_{ - \alpha}) \convolve f_{ \alpha} } \qquad \text{by A}\\ &= \prod_{ \alpha\in \Phi^+} e_0 \qquad \text{by B}\\ &= e_0 .\] ::: :::{.lemma title="D"} For \( \lambda, \mu\in H\dual \), \[ \ch_{M( \lambda)}( \mu) = p( \mu - \lambda) = (p \convolve e_ \lambda)( \mu) \implies \ch_{M( \lambda)} = p \convolve e_{ \lambda} .\] ::: :::{.proof title="of lemma D"} $M( \lambda)$ has basis $y_{\beta_1}^{i_1}\cdots y_{ \beta_m}^{i_m} \cdot v^+$ where $v^+$ is a highest weight vector of weight \( \lambda \). Note that \[ \mu = \lambda- \sum_{j=1}^M i_j \beta_j \iff \mu- \lambda= - \sum_{i=1}^m i_j \beta_j ,\] and $\dim M(\lambda)_ \mu = p( \mu- \lambda)$. Now check $(p\convolve e_ \lambda)( \mu) \da p( \mu - \lambda) e_ \lambda(\lambda) = p( \mu- \lambda)$. ::: :::{.lemma title="E"} \[ q \convolve \ch_{M( \lambda)} = e_{ \lambda+ \rho} .\] ::: :::{.proof title="of lemma E"} \[ \text{LHS} \equalsbecause{D} q \convolve p \convolve e_ \lambda \equalsbecause{C} e_ \rho \convolve e_ \lambda = e_{ \lambda+ \rho} .\] ::: ## $\S 24.2$ Kostant's Multiplicity Formula :::{.remark} Recall that characters of Verma modules are essentially known. For \( \lambda\in \Lambda^+ \), we have $\ch_{ \lambda} \da \ch_{L( \lambda)}$, recalling that $L( \lambda)$ is a finite-dimensional irreducible representation. Goal: express this as a finite $\ZZ\dash$linear combination of certain $\ch_{M( \lambda)}$. Fix \( \lambda\in H\dual \) and let $\mcm_ \lambda$ be the collection of all $L\dash$modules satisfying the following: 1. $V = \bigoplus _{ \mu\in H\dual} V_ \mu$, 2. $\mcz(L)\actson V$ by $\chi_ \lambda$, 3. $\ch_V \in \mcx$ Note that any highest weight module of highest weight \( \lambda \) is in $\mcm_ \lambda$, and this is closed under submodules, quotients, and finite direct sums. The Harish-Chandra theorem implies that \[ \mcm_ \lambda = \mcm_{\mu} \iff \lambda\sim \mu\iff \mu = w. \lambda .\] ::: :::{.lemma title="?"} If $0\neq V \in \mcm_ \lambda$ then $V$ has a maximal vector. ::: :::{.proof title="?"} By (3), the weights of $V$ lie in a finite number of cones $\lambda_i - \ZZ_{\geq 0} \Phi^+$. So if $\mu$ is a weight of $V$ and $\alpha\in \Phi^+$, then $\mu + k \alpha$ is not a weight of $V$ for $k\gg 0$. Iterating this for the finitely many positive weights, there exists a weight $\mu$ such that $\mu + \alpha$ is not a weight for any $\alpha\in \Phi^+$. Then any $0\neq v\in V_ \mu$ is a maximal vector. ::: :::{.definition title="?"} For $\lambda \in H\dual$, set \[ \Theta( \lambda) \da \ts{ \mu\in H\dual \st \mu\sim \lambda\, \text{ and } \, \mu\leq \lambda} ,\] which by the Harish-Chandra theorem is a subset of $W\cdot \lambda$ which is a finite set. ::: :::{.remark} The following tends to hold in any setting with "standard" modules, e.g. quantum groups or superalgebras: ::: :::{.proposition title="?"} Let $\lambda\in H\dual$, then a. $M( \lambda)$ has a composition series, b. Each composition factor of $M( \lambda)$ is of the form $L( \mu)$ for some $\mu\in \Theta( \lambda)$. Define $[M (\lambda): L( \mu)]$ to be the multiplicity of $L(\mu)$ as a composition factor of $M( \lambda)$. c. $[M( \lambda): L( \lambda)] = 1$. ::: :::{.proof title="?"} By induction on the number of maximal vectors (up to scalar multiples). If $M( \lambda)$ is irreducible then it's an irreducible highest weight module, and these are unique up to isomorphism and so $M( \lambda) = L( \lambda)$ and we're done. Otherwise $M( \lambda)$ has a proper irreducible submodule $V$, and $V\in \mcm_ \lambda$ by closure under submodules. By the lemma, $V$ has a maximal vector of some weight $\mu$ which must be strictly less than $\lambda$, i.e. $\mu < \lambda$. As before, $\chi_{ \mu} = \chi_ \lambda$ and thus $\mu\in \Theta( \lambda)$. Consider $V$ and $M( \lambda)/ V$ -- each lies in $\mcm_ \lambda$ and either has fewer weights linked to \( \lambda \) than $M( \lambda)$ has, or else it must have exactly the same set of weights linked to $\lambda$, just with smaller multiplicities. By induction each of these has a composition series, and these can be pieced together into a series for $M$ since they fit into a SES. :::