# Monday, December 05 ## Kostant's Character Formula :::{.remark} Last time: $\mcm_ \lambda$ defined as a certain category of $L\dash$modules for \( \lambda\in H\dual \), and we defined $\theta( \lambda) \da \ts{ \mu\in H\dual \st \mu \sim \lambda,\,\, \mu\leq \lambda} \subseteq W. \lambda$. Proposition from last time: a. $M(\lambda)$ has a composition series, b. Each composition factor of $M(\lambda)$ is of the form $L( \mu)$ for some $\mu \in \theta( \lambda)$, c. $[M (\lambda): L( \mu) ] = 1$. Note that any character of $M$ is the sum of the characters of its composition factors. ::: :::{.proof title="of proposition"} **Part b**: Each composition factor of $M( \lambda)$ is in $\mcm_ \lambda$, hence by the lemma has a maximal vector. Since it's irreducible, it is a highest weight module $L( \mu)$ for some \( \mu\in \theta( \lambda) \). **Part c**: $[M( \lambda) : L( \lambda)] = 1$ since $\dim M( \lambda)_ \lambda = 1$ and all other weights are strictly less than $\lambda$. ::: :::{.remark} Order $\theta( \lambda) = \ts{ \mu_1, \cdots, \mu_t}$ such that $\mu_\leq \mu_j \implies i\leq j$. In particular, $\mu_t = \lambda$. By the proposition, $\ch_{M( \mu_j)}$ is a $\ZZ_{\geq 0}\dash$linear combination of $\ch_{L(\mu_i)}$ where $i\leq j$, and the coefficient of $\ch_{L(\mu_j)}$ is 1. Recording multiplicities in a matrix, we get the following: \begin{tikzcd} & {\ch_{M(\mu_j)}} &&&&& {\,} \\ {\ch_{L(\mu_i)}} && 1 & \bullet & \bullet & \bullet \\ && 0 & 1 & \bullet & \bullet \\ && 0 & 0 & \ddots & \bullet \\ && 0 & 0 & 0 & 1 \\ & {\,} \arrow[no head, from=1-2, to=6-2] \arrow[no head, from=1-2, to=1-7] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMjAsWzIsMSwiMSJdLFszLDIsIjEiXSxbNCwzLCJcXGRkb3RzIl0sWzUsNCwiMSJdLFs1LDMsIlxcYnVsbGV0Il0sWzQsMiwiXFxidWxsZXQiXSxbMywxLCJcXGJ1bGxldCJdLFs0LDEsIlxcYnVsbGV0Il0sWzUsMSwiXFxidWxsZXQiXSxbNSwyLCJcXGJ1bGxldCJdLFsyLDIsIjAiXSxbMiwzLCIwIl0sWzMsMywiMCJdLFsyLDQsIjAiXSxbMyw0LCIwIl0sWzQsNCwiMCJdLFswLDEsIlxcY2hfe0woXFxtdV9pKX0iXSxbMSwwLCJcXGNoX3tNKFxcbXVfail9Il0sWzEsNSwiXFwsIl0sWzYsMCwiXFwsIl0sWzE3LDE4LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzE3LDE5LCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV1d) This is an upper triangular unipotent matrix, and thus invertible. ::: :::{.corollary title="?"} Let $\lambda \in H\dual$, then \[ \ch_{L( \lambda)} = \sum_{ \mu \in \theta( \lambda)} c( \mu) \ch_{M( \mu)}, \qquad c( \mu)\in \ZZ, \, c( \lambda) = 1 .\] ::: :::{.remark} Assume \( \lambda\in \Lambda^+ \), and recall: - $\mcx = \ts{f: H\dual \to \CC \st \text{ the "forest" support condition }}$, - $p=\ch_{M(0)}$, - $p(\mu) = \size\ts{ \tv{i_1:\cdots:i_m} \in \ZZ_{\geq 0}^m }$, - $q\da \prod_{ \alpha\in \Phi^+} (e_{\alpha\over 2} - e_{-{\alpha\over 2}})$, - $\mu = -\sum_{1\leq j\leq m} i_j \beta_j$, - $wq = (-1)^{\ell(w)} q$ for $w\in W$, - $q \convolve p \convolve e_{-\rho} = e_0$, - $\ch_{M(\lambda)} = p \convolve e_ \lambda$, - $q \convolve \ch_{M( \lambda) } = e_{ \lambda+ \rho}$, - $\ch_ \lambda\da \ch_{L( \lambda)} = \sum_{ \mu\in \theta( \lambda)} c( \mu) \ch_{M( \mu)}$, - $q\convolve \ch_{L( \lambda)} = \sum c( \mu) q \convolve \ch_{M( \mu)} = \sum c( \mu) e_{ \mu + \rho}$. $\qquad\star_1$ Fixing $w\in W$, we have \[ \sum_{ \mu\in \theta( \lambda) } c( \mu) e_{w (\lambda+ \rho)} &= w( q \convolve \ch_ \lambda) \\ &= wq \convolve w \ch_{ \lambda} \\ &= (-1)^{\ell(w)} q \ch_ \lambda \qquad \text{since $\ch_ \lambda$ is $W\dash$invariant} \\ &= (-1)^{\ell(w)} \sum_ \mu c( \mu) e_{ \mu+ \rho} .\] Since \( \lambda\in \Lambda^+ \), $W$ acts simply transitively on $\theta( \lambda) + \rho \da \ts{v+\rho \st v\in \theta( \lambda) }$. Note \( \mu \sim \lambda\iff \mu+ \rho = w( \lambda+ \rho) \) for some $w\in W$, which is unique since \( \lambda+ \rho \) is strongly/strictly dominant, and lemma 13.2A shows its stabilizer is the identity. So $\stab_W( \lambda+ \rho) = \ts{1}$. The equation $\mu + \rho = w( \lambda+ \rho)$ implies $\mu + \rho \leq \lambda+ \rho$, since apply $W$ to dominant elements goes down in the partial order. Thus $\mu\in \theta(\lambda)$, and $\theta( \lambda)$ consists of precisely those $\mu$ satisfying this equation, and \[ \theta( \lambda) = W\cdot \lambda .\] Continuing the computation, take $\mu = \lambda$ on the LHS, so $w( \lambda+ \rho) = \mu+ \rho$ and \[ c( \lambda) e_{w( \lambda+ \rho)} = (-1)^{\ell(w)} c( \mu) e_{ \mu+ \rho}\implies c(\mu) = (-1)^{\ell(w)} c( \lambda) .\] Substituting this into $\star_1$ yields \[ q \convolve \ch_ \lambda = \sum_{w\in W} (-1)^{\ell(w)} e_{w ( \lambda+ \rho)} \qquad \star_2 ,\] so \[ \ch_ \lambda &= q \convolve p \convolve e_{ - \rho} \convolve \ch_ \lambda\\ &= p \convolve e_{- \rho} \convolve \sum_{w\in W} (-1)^{\ell(w)} e_{w (\lambda+ \rho)} \\ &= \sum_{w\in W} (-1)^{\ell(w)} p \convolve e_{w( \lambda+ \rho) - \rho} &= \sum_{w\in W} (-1)^{\ell(w)} p \convolve e_{w\cdot \lambda} .\] This yields the following: ::: :::{.theorem title="Kostant"} For \( \lambda\in \Lambda^+ \) dominant, the weight multiplicities in $L( \lambda)$ are given by \[ \dim L( \lambda)_\mu \da m_ \lambda( \mu) = \sum_{w\in W} (-1)^{\ell(w)} p( \mu+ \rho - w( \lambda+ \rho)) = \sum_{w\in W} (-1)^{\ell(w)} p( \mu - w\cdot \lambda) .\] ::: ## $\S 24.3$ Weyl's Character Formula :::{.lemma title="?"} \[ q = \sum_{w\in W} (-1)^{\ell(w)} e_{w \rho} .\] ::: :::{.proof title="?"} Take $\lambda = 0$ in $\star_2$, and use that $\ch_0 = e_0$ where $L(0) \cong \CC$. ::: :::{.theorem title="Weyl's Character Formula"} Let $\lambda \in \Lambda^+$, then \[ \qty{ \sum_{w\in W} (-1)^{ \ell(w)} e_{w\rho} } \convolve \ch_{L( \lambda)} = \sum_{w\in W} (-1)^{\ell(w)} e_{w( \lambda+ \rho)} .\] ::: :::{.proof title="?"} Apply $\star_2$ and the lemma. ::: :::{.corollary title="Weyl's Dimension Formula"} \[ \dim L( \lambda) = { \prod_{ \alpha\in \Phi^+} \inp { \lambda+ \rho}{ \alpha} \over\prod_{\alpha\in \Phi^+} \inp \rho \alpha } = \sum_{ \mu \in \Pi( \lambda)} m_ \lambda( \mu) .\] :::