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E 1.1 Section 1 e

Problem 1.1.1 (Humphreys 1.1)
Let L be the real vector space R3. Define [xy] = x × y (cross product of vectors) for x, y ∈ L,
and verify that L is a Lie algebra. Write down the structure constants relative to the usual
basis of R3.

Solution:
It suffices to check the 3 axioms given in class that define a Lie algebra:

• L1 (Bilinearity): This can be quickly seen from the formula

a × b = ∥a∥ · ∥b∥ sin(θab)n̂ab

where n̂ab is the vector orthogonal to both a and b given by the right-hand rule. The
result follows readily from a direct computation:

(ra) × (tb) = ∥ra∥ · ∥tb∥ sin(θra,tb)n̂ra,tb

= (rt)∥a∥ · ∥b∥ sin(θa,b)n̂a,b

= (rt) (a × b) ,

where we’ve used the fact that the angle between a and b is the same as the angle between
any of their scalar multiples, as is their normal.

• L2: that a × a = 0 readily follows from the same formula, since sin(θa,a) = sin(0) = 0.

• L3 (The Jacobi identity): This is most easily seen from the “BAC - CAB” formula,

a × (b × c) = b⟨a, c⟩ − c⟨a, b⟩.

We proceed by expanding the Jacobi expression:

a × (b × c) + c × (a × b) + b × (c × a) = b⟨a, c⟩ − c⟨a, b⟩
+ a⟨c, b⟩ − b⟨c, a⟩
+ c⟨a, b⟩ − a⟨b, c⟩

= 0.

For the structure constants, let {e1, e2, e3} be the standard Euclidean basis for R3; we can

then write ei × ej =
3∑

k=1
ck

ijek and we would like to determine the ck
ij . One can compute the

following multiplication table:
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ei × ej e1 e2 e3

e1 0 e3 −e2
e2 −e3 0 e1
e3 e2 −e1 0

Thus the structure constants are given by the antisymmetric Levi-Cevita symbol,

ck
ij = εijk :=

{
0 if any index i, j, k is repeated
sgn σijk otherwise,

where σijk ∈ S3 is the permutation associated to (i, j, k) in cycle notation and sgn σ is the sign
homomorphism.
Remark 1.1.1: An example to demonstrate how the Levi-Cevita symbol works:

e1 × e2 = c1
12e1 + c2

12e2 + c3
12e3 = 0e1 + 0e2 + 1e3

since the first two terms have a repeated index and

c3
12 = ε1,2,3 = sgn(123) = sgn(12)(23) = (−1)2 = 1

using that sgn σ = (−1)m where m is the number of transpositions in σ.

Problem 1.1.2 (Humphreys 1.6)
Let x ∈ gln(F) have n distinct eigenvalues a1, . . . , an in F. Prove that the eigenvalues of adx

are precisely the n2 scalars ai − aj for 1 ≤ i, j ≤ n, which of course need not be distinct.

Solution:
For a fixed n, let eij ∈ gln(F) be the matrix with a 1 in the (i, j) position and zeros elsewhere.
We will use the following fact:

eijekl = δjkeil,

where δjk = 1 ⇐⇒ j = k, which implies that

[eijekl] = eijekl − ekleij = δjkeil − δliekj .

Suppose without loss of generalitya that x is diagonal and of the form x = diag(a1, a2, · · · , an).
Then the eigenvectors of x are precisely the eij , since a direct check via matrix multiplication
shows xeij = aieij .
We claim that every eij is again an eigenvector of adx with eigenvalue ai − aj . Noting that
the eij are also left eigenvectors satisfying eijx = ajeij , one readily computes

adxeij := [x, eij] = xeij − eijx = aieij − ajeij = (ai − aj)eij ,

yielding at least n2 eigenvalues. Since adx expanded in the basis {eij}1≤i,j≤n is an n × n
matrix, this exhausts all possible eigenvalues.
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aIf x is not diagonal, one can use that x is diagonalizable over F since x has distinct eigenvalues in F. So one
can reduce to the diagonal case by a change-of-basis of Fn that diagonalizes x.

Problem 1.1.3 (Humphreys 1.9, one Lie type only)
When chF = 0, show that each classical algebra L = Aℓ, Bℓ, Cℓ, or Dℓ is equal to [LL]. (This
shows again that each algebra consists of trace 0 matrices.)

Solution:
We will check for this type An, corresponding to L := sln+1. Since [LL] ⊆ L, it suffices to show
L ⊆ [LL], and we can further reduce to writing every basis element of L as a commutator in
[LL]. Note that L has a standard basis given by the matrices

•
{

xi := eij

∣∣∣ i > j
}

corresponding to n−,

•
{

hi := eii − ei+1,i+1
∣∣∣ 1 ≤ i ≤ n

}
corresponding to h, and

•
{

yi := eij

∣∣∣ i < j
}

corresponding to n+.

Considering the equation [eijekl] = δjkeil − δliekj , one can choose j = k to preserve the first
term and l ̸= i to kill the second term. So letting t, i, j be arbitrary with i ̸= j, we have

[eitetj ] = δtteij − δijett = eij ,

yielding all of the xi and yi. But in fact we are done, using the fact that hi = [xiyi].

Problem 1.1.4 (Humphreys 1.11)
Verify that the commutator of two derivations of an F-algebra is again a derivation, whereas
the ordinary product need not be.

Solution:
We want to show that [Der(L) Der(L)] ⊆ Der(L), so let f, g ∈ Der(L). The result follows from
a direct computation; letting D := [fg], we have

D(ab) = [fg](ab) = (fg − gf)(ab)
= fg(ab) − gf(ab)
= f (g(a)b + ag(b)) − g (f(a)b + af(b))
= f (g(a)b) + f (ag(b)) − g (f(a)b) − g (af(b))
= (fg)(a)b + g(a)f(b)

+ f(a)g(b) + a(fg)(b)
− (gf)(a)b + f(a)g(b)
− g(a)f(b) − a(gf)(b)

= [fg](a)b − a[fg](b)
= D(a)b − aD(b).
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To see that ordinary products of derivations need not be derivations, consider the operators
Dx := ∂

∂x
, Dy = ∂

∂y
acting on a finite-dimensional vector space of multivariate polynomials

of some bounded degree, as a sub R-algebra of R[x, y]. Take f(x, y) = x + y and g(x, y) = xy,
so that fg = gf = x2y + xy2. Then [DxDy] = 0 since mixed partial derivatives are equal, but

DxDy(fg) = Dx

(
x2 + 2xy

)
= 2x + 2y ̸= 0.

Problem 1.1.5 (Humphreys 1.12)
Let L be a Lie algebra over an algebraically closed field F and let x ∈ L. Prove that the
subspace of L spanned by the eigenvectors of adx is a subalgebra.

Solution:
Let Ex ⊆ L be the subspace spanned by eigenvectors of adx; it suffices to show [ExEx] ⊆ Ex.
Letting yi ∈ Ex, we have adx(yi) = λiyi for some scalars λi ∈ F, and we want to show
adx([y1y2]) = λ12[y1y2] for some scalar λ12. Note that the Jacobi identity is equivalent to ad
acting as a derivation with respect to the bracket, i.e.

adx([yz]) = [adx(y)z] + [yadx(z)] =⇒ [x[yz]] = [[xy]z] + [y[xz]].

The result then follows from a direct computation:

adx([y1y2]) = [[xy1]y2] + [y1[xy2]]
= [λ1y1y2] + [y1λ2y2]
= (λ1 + λ2)[y1y2].

E 1.2 Section 2 e

Problem 1.2.1 (Humphreys 2.1)
Prove that the set of all inner derivations adx, x ∈ L, is an ideal of Der L.

Solution:
It suffices to show [Der(L) Inn(L)] ⊆ Inn(L), so let f ∈ Der(L) and adx ∈ Inn(L). The result
follows from the following check:

[fadx](l) = (f ◦ adx)(l) − (adx ◦ f)(l)
= f([xl]) − [xf(l)]
= [f(x)l] + [xf(l)] − [xf(l)]
= [f(x)l]
= adf(x)(l), and adf(x) ∈ Inn(L).
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Problem 1.2.2 (Humphreys 2.2)
Show that sln(F) is precisely the derived algebra of gln(F) (cf. Exercise 1.9).

Solution:
We want to show gln(F)(1) := [gln(F)gln(F)] = sln(F).
⊆: This immediate from the fact that for any matrices A and B,

tr([AB]) = tr(AB − BA) = tr(AB) − tr(BA) = tr(AB) − tr(AB) = 0.

⊇: From a previous exercise, we know that [sln(F)sln(F)] = sln(F), and since sln(F) ⊆ gln(F)
we have

sln(F) = sln(F)(1) ⊆ gln(F)(1).

Problem 1.2.3 (Humphreys 2.5)
Suppose dim L = 3 and L = [LL]. Prove that L must be simple. Observe first that any
homomorphic image of L also equals its derived algebra. Recover the simplicity of sl2(F) when
chF ̸= 2.

Solution:
Let I ⊴ L be a proper ideal, then dim L/I < dim L forces dim L/I = 1, 2. Since L ↠ L/I,
the latter is the homomorphic image of a Lie algebra and thus (L/I)(1) = L/I by the hint.
Note that in particular, L/I is not abelian. We proceed by cases:

• dim L/I = 1.

– In this case, L/I = Fx is generated by a single element x. Since [xx] = 0 in any Lie
algebra, we have (Fx)(1) = 0, contradicting that L/I is not abelian. E

• dim L/I = 2: Write L/I = Fx + Fy for distinct generators x, y, and consider the
multiplication table for the bracket.

– If [xy] = 0, then L/I is abelian, a contradiction. E
– Otherwise, without loss of generality [xy] = x as described at the end of section 1.4.

In this case, (L/I)(1) ⊆ Fx ⊊ L/I, again a contradiction. E

So no such proper ideals I can exist, forcing L to be simple.
Applying this to L := sl2(F), we have dimF sl2(F) = 22 − 1 = 3, and from a previous exercise
we know sl2(F)(1) = sl2(F), so the above argument applies and shows simplicity.

Problem 1.2.4 (Humphreys 2.10)
Let σ be the automorphism of sl2(F) defined in (2.3). Verify that

• σ(x) = −y,
• σ(y) = −x,
• σ(h) = −h.

1.2 Section 2 7



1 Problem Set 1

Note that this automorphism is defined as

σ = exp(adx) ◦ exp(ad−y) ◦ exp(adx).

Solution:
We recall that exp adx(y) :=

∑
n≥0

1
n!adn

x(y), where the exponent denotes an n-fold composition

of operators. To compute these power series, first note that adt(t) = 0 for t = x, y, h by axiom
L2, so

(exp adt)(t) = 1(t) + adt(t) + 1
2ad2

t (t) + · · · = 1(t) = t

where 1 denotes the identity operator. It is worth noting that if adn
t (t′) = 0 for some n

and some fixed t, t′, then it is also zero for all higher n since each successive term involves
bracketing with the previous term:

adn+1
t (t′) = [t adn

t (t′)] = [t 0] = 0.

We first compute some individual nontrivial terms that will appear in σ. The first order terms
are given by standard formulas, which we collect into a multiplication table for the bracket:

x h y

x 0 −2x h
h 2x 0 −2y
y −h 2y 0
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We can thus read off the following:

• adx(y) = h
• adx(h) = −2x
• ad−y(x) = [−yx] = [xy] = h
• ad−y(h) = [−yh] = [hy] = −2y

For reference, we compute and collect higher order terms:

• adn
x(y):

– ad1
x(y) = h from above,

– ad2
x(y) = adx([xy]) = adx(h) = [xh] = −[hx] = −2x,

– ad3
x(y) = adx(−2x) = 0, so ad≥3

x (y) = 0.

• adn
x(h):

– ad1
x(h) = −2x from above,

– ad2
x(h) = adx(−2x) = 0, so ad≥2

x (h) = 0.

• adn
−y(x):

– ad1
−y(x) = h from above,

– ad2
−y(x) = ad−y(h) = [−yh] = [hy] = −2y,

– ad2
−y(x) = ad−y(−2y) = 0, so adn≥2

−y (x) = 0.

• adn
−y(h):

– ad1
−y(h) = −2y from above, and so ad≥2

−y(h) = 0.

Finally, we can compute the individual terms of σ:
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(exp adx)(x) = x

(exp adx)(h) = 1(h) + adx(h)
= h + (−2x)
= h − 2x

(exp adx)(y) = 1(y) + adx(y) + 1
2ad2

x(y)

= y + h + 1
2(−2x)

= y + h − x

(exp ad−y)(x) = 1(x) + ad−y(x)x + 1
2ad2

−y(x)

= x + h + 1
2(−2y)

= x + h − y

(exp ad−y)(h) = 1(h) + ad−y(h)
= h − 2y

(exp ad−y)(y) = y,

and assembling everything together yields
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σ(x) = (exp adx ◦ exp ad−y ◦ exp adx)(x)
= (exp adx ◦ exp ad−y)(x)
= (exp adx)(x + h − y)
= (x) + (h − 2x) − (y + h − x)
= −y

σ(y) = (exp adx ◦ exp ad−y ◦ exp adx)(y)
= (exp adx ◦ exp ad−y)(y + h − x)
= exp adx ((y) + (h − 2y) − (x + h − y))
= exp adx (−x)
= −x

σ(h) = (exp adx ◦ exp ad−y ◦ exp adx)(h)
= (exp adx ◦ exp ad−y)(h − 2x)
= (exp adx)((h − 2y) − 2(x + h − y))
= (exp adx)(−2x − h)
= −2(x) − (h − 2x)
= −h.

1.2 Section 2 11


	Table of Contents
	Problem Set 1
	Section 1
	Section 2


