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" 1.1 Section 1 ~

Problem 1.1.1 (Humphreys 1.1)

Let L be the real vector space R>. Define [zy] = x x y (cross product of vectors) for =,y € L,

and verify that L is a Lie algebra. Write down the structure constants relative to the usual
basis of R3.

Solution:
It suffices to check the 3 axioms given in class that define a Lie algebra:

o L1 (Bilinearity): This can be quickly seen from the formula
axb=|al - |bl sin(Oup)ap

where 7 is the vector orthogonal to both a and b given by the right-hand rule. The
result follows readily from a direct computation:

(ra) x (tb) = |rall - [|tb]| sin(0ra,tb) Pra,um
= (rt)llall - [|b] sin(Oa,p)Ma,p
= (rt) (a x b),

where we’ve used the fact that the angle between a and b is the same as the angle between
any of their scalar multiples, as is their normal.

o L2: that a x a = 0 readily follows from the same formula, since sin(f,,4) = sin(0) = 0.

o L3 (The Jacobi identity): This is most easily seen from the “BAC - CAB” formula,
ax (bxc)="bla, c) —cla, b).
We proceed by expanding the Jacobi expression:

ax(bxc)+ex(axb)+bx(cxa)=bla, c)—-cla, b)
+ —ble, a)
+ c(a, b) —
=0.

For the structure constants, let {ej, e2,e3} be the standard Euclidean basis for R3; we can
3
then write e; x e; = Z cfjek and we would like to determine the cfj One can compute the
k=1
following multiplication table:
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€ X e €1 €2 €3
€1 0 €3 —e€9
€2 —e3 0 €1
€3 €9 —e1 0

Thus the structure constants are given by the antisymmetric Levi-Cevita symbol,

C:

ko ik . {0 if any index 1, j, k is repeated
1) T

sgno;j; otherwise,

where 0,5, € S3 is the permutation associated to (i, j, k) in cycle notation and sgn o is the sign
homomorphism.
Remark 1.1.1: An example to demonstrate how the Levi-Cevita symbol works:

1
e] X eg = cjqg€1 + 6%262 + 01{’263 = 0ey 4 Oeg + leg
since the first two terms have a repeated index and

0?2 = €123 = sgn(123) = sgn(12)(23) = (—1)2 =1

using that sgno = (—1)" where m is the number of transpositions in o.

Problem 1.1.2 (Humphreys 1.6)
Let x € gl,(F) have n distinct eigenvalues aq,...,a, in F. Prove that the eigenvalues of ad,
are precisely the n? scalars a; — a; for 1 <4, j < n, which of course need not be distinct.

Solution:
For a fixed n, let e;; € gl,(F) be the matrix with a 1 in the (7, j) position and zeros elsewhere.
We will use the following fact:

€ijer = Ojkeil,
where 0, =1 <= j = k, which implies that
leijen] = €ijens — exeij = djnein — duiex;.

Suppose without loss of generality® that x is diagonal and of the form x = diag(a,az, - ,ay).
Then the eigenvectors of x are precisely the e;;, since a direct check via matrix multiplication
shows we;; = a;e;;.

We claim that every e;; is again an eigenvector of ad, with eigenvalue a; — a;. Noting that
the e;; are also left eigenvectors satisfying e;;x = aje;;, one readily computes

adxel-j = [l‘, EZ]] = xeij — eijx = aieij — ajeij = ((li — aj)eij,

yielding at least n? eigenvalues. Since ad, expanded in the basis {eij} <ij<n isann xn
matrix, this exhausts all possible eigenvalues. S
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°If z is not diagonal, one can use that x is diagonalizable over [F since x has distinct eigenvalues in F. So one
can reduce to the diagonal case by a change-of-basis of F" that diagonalizes z.

Problem 1.1.3 (Humphreys 1.9, one Lie type only)
When chF = 0, show that each classical algebra L = Ay, By, Cy, or Dy is equal to [LL]. (This
shows again that each algebra consists of trace 0 matrices.)

Solution:

We will check for this type A,,, corresponding to L := sl,,1. Since [LL] C L, it suffices to show
L C [LL], and we can further reduce to writing every basis element of L as a commutator in
[LL]. Note that L has a standard basis given by the matrices

. {xl
. {hz’

. {yi = e ‘ 1< j} corresponding to n™.

€ij ) T > j} corresponding to n—,

= € — €it1it+1 ‘ 1< < n} corresponding to b, and

Considering the equation [e;jer] = 0;jxeq — diiex;, one can choose j = k to preserve the first
term and [ # 4 to kill the second term. So letting ¢,4,j be arbitrary with ¢ # j, we have

leiter;]) = Oueij — dijen = ey,

yielding all of the x; and y;. But in fact we are done, using the fact that h; = [z;y;].

Problem 1.1.4 (Humphreys 1.11)
Verify that the commutator of two derivations of an F-algebra is again a derivation, whereas
the ordinary product need not be.

Solution:
We want to show that [Der(L)Der(L)] C Der(L), so let f,g € Der(L). The result follows from
a direct computation; letting D = [fg|, we have

D(ab) = [fg](ab) = (fg — gf)(ab)
—fg(ab) gf(ab)
f(g(a )b+ag(b))
f(g(a)b) + f (ag(b)

=( 9)(a)b+ g(a)f(b)
+ f(a)g(b) +a(fg)(b)
— (9)(a)b+ f(a)g(b)
) (9.)(

g9(f(a)b+af(b))
) =9 (f(a)b) —

—

g (af(b))

—g(a)f(b) —algf)(b)
= [fgl(a)b—al/gl()
= D(a)b— aD(b).
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To see that ordinary products of derivations need not be derivations, consider the operators

0
D, = ,D, = — acting on a finite-dimensional vector space of multivariate polynomials

az’ Y T oy
of some bounded degree, as a sub R-algebra of R[z,y|. Take f(z,y) = = + y and g(z,y) = zy,

so that fg = gf = 2%y 4+ xy®. Then [D,D,] = 0 since mixed partial derivatives are equal, but

D,Dy(fg) = D (2% + 2wy) = 22+ 2y #0.

Problem 1.1.5 (Humphreys 1.12)
Let L be a Lie algebra over an algebraically closed field F and let x € L. Prove that the
subspace of L spanned by the eigenvectors of ad, is a subalgebra.

Solution:

Let E, C L be the subspace spanned by eigenvectors of ad,; it suffices to show [E,E,] C E,.
Letting y; € E,, we have ad,(y;) = A\jy; for some scalars \; € F, and we want to show
adz([y1y2]) = M2[y1ye] for some scalar A\j2. Note that the Jacobi identity is equivalent to ad
acting as a derivation with respect to the bracket, i.e.

ads([yz]) = [ada(y)2] + [yade(2)] = [2[yz]] = [[zy]2] + [y[z=]].

The result then follows from a direct computation:

ady([y192]) = [[zy1]y2] + [y1[zy2]]
= [My1y2] + [y1A2y2]
= (A1 + A2)[y12].

" 1.2 Section 2 ~

Problem 1.2.1 (Humphreys 2.1)
Prove that the set of all inner derivations ad,,x € L, is an ideal of Der L.

Solution:
It suffices to show [Der(L)Inn(L)] C Inn(L), so let f € Der(L) and ad, € Inn(L). The result
follows from the following check:

foade)(l) = (adz o f)(1)
) = [=f(D)]
+[2f ()] = [2f ()]

df( (1), and adj(,) € Inn(L).
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Problem 1.2.2 (Humphreys 2.2)
Show that sl (F) is precisely the derived algebra of gl,(F) (cf. Exercise 1.9).

Solution:
We want to show gl,,(F)) .= [gl,, (F)gl,,(F)] = sl,(F).
C: This immediate from the fact that for any matrices A and B,

tr([AB]) = tr(AB — BA) = tr(AB) — tr(BA) = tr(AB) — tr(AB) = 0.

D: From a previous exercise, we know that [sl,,(F)sl, (F)] = sl,,(F), and since sl,(F) C gl, (F)
we have

Problem 1.2.3 (Humphreys 2.5)
Suppose dim L = 3 and L = [LL]|. Prove that L must be simple. Observe first that any

homomorphic image of L also equals its derived algebra. Recover the simplicity of sly(IF) when
chF # 2.

Solution:

Let I < L be a proper ideal, then dim L/I < dim L forces dim L/I = 1,2. Since L — L/I,
the latter is the homomorphic image of a Lie algebra and thus (L/I)") = L/I by the hint.
Note that in particular, L/l is not abelian. We proceed by cases:

e dimL/T=1.

— In this case, L/I = Fx is generated by a single element x. Since [zz] = 0 in any Lie
algebra, we have (Fz)(!) = 0, contradicting that L/I is not abelian. £

o dimL/I = 2: Write L/I = Fz + Fy for distinct generators x,y, and consider the
multiplication table for the bracket.

— If [zy] =0, then L/I is abelian, a contradiction. #
— Otherwise, without loss of generality [zy] = x as described at the end of section 1.4.
In this case, (L/I)) C F, C L/I, again a contradiction. #

So no such proper ideals I can exist, forcing L to be simple.
Applying this to L = sl(F), we have dimp sly(F) = 22 — 1 = 3, and from a previous exercise
we know sl (F)(l) = sly(F), so the above argument applies and shows simplicity.

Problem 1.2.4 (Humphreys 2.10)
Let o be the automorphism of sly(IF) defined in (2.3). Verify that

° U(.T) =Y,
« o(y) = -,
e o(h)=—h

1.2 Section 2 7
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Note that this automorphism is defined as

o = exp(ad,) o exp(ad_,) o exp(ady).

Solution: .
We recall that expad,(y) := Z —'adg(y), where the exponent denotes an n-fold composition

n>0""
of operators. To compute these power series, first note that ad(t) = 0 for t = x, y, h by axiom
L2, so
1
(expady)(t) = 1(t) + ads(t) + §ad§(t) do=1(t) =t

where 1 denotes the identity operator. It is worth noting that if ad}(t') = 0 for some n
and some fixed t,t', then it is also zero for all higher n since each successive term involves
bracketing with the previous term:

ad? T (t) = [tad?(t))] = [t0] = 0.

We first compute some individual nontrivial terms that will appear in o. The first order terms
are given by standard formulas, which we collect into a multiplication table for the bracket:

x h Y
z 0 —2x h
h 2x O —2y

y —h 2y 0

1.2 Section 2 8
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We can thus read off the following;:

o adg(y) =h

o ady(h) =—2z

« ad_y(x) = [~yz] = [zy] = h

e ad_y(h) = [—yh] = [hy] = 2y

For reference, we compute and collect higher order terms:

» ad;(y):
— adl(y) = h from above,
— ad?(y) = ad,([zy]) = ad, (k) = [zh] = —[hx] = —2z,
— ad3(y) = ad,(—2z) = 0, so ad=3(y) = 0.

o adl}(h):

— adl(h) = —2x from above,

— ad?(h) = ad,(—2x) = 0, so ad=2(h) = 0.
o ad” (2):

— adl, (x) = h from above,
- ad2 (l’) = ad_y(h) = [—yh] = [hy] — —2y’
— ad?, (z) = ad_,(—2y) = 0, so ad7_‘§2(g;) = 0.

o ad” (h):
1 >200
— ad_,(h) = —2y from above, and so ad=} (h) = 0.

Finally, we can compute the individual terms of o:
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(expad_y)(y) =,

and assembling everything together yields

1.2 Section 2
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o(z) = (expad, o expad_y o expady,)(z)
= (expadg o expad_y)(z)

= (expady)(z + h —y)
=(z)+(h—22) = (y+h—2)

-y

o(y) = (expad, o exp ad_y o exp adz)(y)
= (expad; oexpad_,)(y +h —x)
=expad; ((y) + (h—2y) — (x+h —y))
= expad, (—z)

=-z

= (expad, o expad_y o expady)(h)
expad, o expad_,)(h — 2x)
expad,)((h — 2y) — 2z + h — 1))
expady)(—2z — h)

= —2(z) — (h —2x)

= —h.

(
= (
= (

(
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